CN1260485A - 非破坏性定量检测砷化镓单晶化学配比的方法 - Google Patents

非破坏性定量检测砷化镓单晶化学配比的方法 Download PDF

Info

Publication number
CN1260485A
CN1260485A CN 99100087 CN99100087A CN1260485A CN 1260485 A CN1260485 A CN 1260485A CN 99100087 CN99100087 CN 99100087 CN 99100087 A CN99100087 A CN 99100087A CN 1260485 A CN1260485 A CN 1260485A
Authority
CN
China
Prior art keywords
monocrystal
grating constant
gallium
constant
arsenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 99100087
Other languages
English (en)
Other versions
CN1117982C (zh
Inventor
陈诺夫
林兰英
王玉田
何宏家
钟兴儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN 99100087 priority Critical patent/CN1117982C/zh
Publication of CN1260485A publication Critical patent/CN1260485A/zh
Application granted granted Critical
Publication of CN1117982C publication Critical patent/CN1117982C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

非破坏性定量检测砷化镓单晶化学配比的方法;利用X射线双晶衍射仪测量半绝缘砷化镓单晶片的晶格常数am;采用实时仪器校正X射线双晶衍射仪产生的误差,以高纯(11个″9″)、无位错硅单晶片为标准样品,每次测量晶格常数后,测量标准样品的晶格常数,计算仪器误差:Δa’=a’-a’0其中,a’0=5.431058A为硅单晶的标准晶格常数;按下式消除仪器的测量误差,得到准确的单晶晶格常数:a=am-Δa’,am为半绝缘砷化镓单晶晶格常数的测量值。

Description

非破坏性定量检测砷化镓单晶化学配比的方法
本发明提供一种检测砷化镓单晶化学配比的方法,特别是一种非破坏性定量检测砷化镓单晶化学配比的方法。
化学配比是决定化合物半导体单晶质量,即晶体均匀性、稳定性和重复性的关键因素。了解砷化镓单晶的化学配比及其分布是提高砷化镓单晶的基础之一。非破坏性定量检测砷化镓单晶化学配比是国际上三十多年来一直未能解决的难题。本发明出现以前,唯一可以检测半绝缘砷化镓单晶的化学配比的方法是库仑滴定。这是一种破坏性的检测方法,首先需要将被检测样品研磨成粉末,再配制成溶液。由于砷元素的易挥发性,在制备溶液过程中不可避免地要损失一定量的砷原子,使测量产生误差。所以,库仑滴定方法既难度大,又不准确,不能作为常规检测方法。
本发明的目的在于提供一种非破坏性定量检测砷化镓单晶化学配比的方法,该方法不对被检测样品进行破坏,利用X射线双晶衍射仪定量检测砷化镓单晶的化学配比,其具有测量误差小,检测方便和实用意义大的优点。
本发明非破坏性定量检测砷化镓单晶化学配比的方法,其特征在于:
利用X射线双晶衍射仪精密测量半绝缘砷化镓单晶片的晶格常数am
采用实时仪器校正X射线双晶衍射仪产生的误差,以高纯(11个“9”〕、无位错硅单晶片为标准样品,每次测量砷化镓单晶片的晶格常数之后,测量标准样品的晶格常数,计算仪器误差:
              Δa′=a′-a′0
其中,a′0=5.431058为硅单晶的标准晶格常数;
按下式消除仪器的测量误差,得到准确的砷化镓单晶晶格常数:
a=am-Δa′
其中am为半绝缘砷化镓单晶晶格常数的测量值。
由下式计算出相应的化学配比: [ As ] ( [ As ] + [ Ga ] ) = 1 + 2 x 2 + 2 x
式中x由下式得出: x = θ × a - a 0 a 0
其中,θ=2.64767为与砷化镓单晶密度和弹性有关的常数,a为被检测样品的晶格常数,
          a0=5.653254
为半绝缘砷化镓单晶的标准晶格常数。
为进一步说明本发明的方法,以下对本发明作一详细说明:
其中,图1为实施例2的太空生长砷化镓单晶片化学配比的二维分布图。
一种非破坏性定量检测砷化镓单晶化学配比的方法,是利用X射线双晶衍射仪精密测量半绝缘砷化镓单晶片的晶格常数am
采用实时仪器校正X射线双晶衍射仪产生的误差,以高纯(11个“9”〕、无位错硅单晶片为标准样品,每次测量砷化镓单晶片的晶格常数之后,测量标准样品的晶格常数,计算仪器误差:
                 Δa′=a′-a′0
其中,a′0=5.431058为硅单晶的标准晶格常数;
按下式消除仪器的测量误差,得到准确的砷化镓单晶晶格常数:
                  a=am-Δa′
其中am为半绝缘砷化镓单晶晶格常数的测量值。
由下式计算出相应的化学配比: [ As ] ( [ As ] + [ Ga ] ) = 1 + 2 x 2 + 2 x
式中x由下式得出: x = θ × a - a 0 a 0
其中,θ=2.64767为与砷化镓单晶密度和弹性有关的常数,a为被检测样品的晶格常数,
                  a0=5.653254
为半绝缘砷化镓单晶的标准晶格常数。
本发明非破坏性定量检测砷化镓单晶化学配比的方法,是利用X射线双晶衍射仪定量检测砷化镓单晶化学配比的方法。
杂质和晶体缺陷,如位错、点缺陷等都会影响晶体的晶格常数,找不出它们,特别是晶体缺陷与晶格常数之间的内在联系,就不可能实现化学配比的非破坏性定量检测。我们首先在理论和实验的结合上证明了,砷化镓单晶中的过量砷主要是以原子对的形态出现的,并获得了它与晶格常数的定量关系。据此通过精密测量砷化镓单晶的晶格常数,即可以得出单晶的化学配比。但是位错会影响化学配比的正确测量,应当消除这种误差。所以要适当选择样品的测量点。
本方法是以半绝缘砷化镓单晶作为研究对象,但也适用于非掺杂和低浓度掺杂的砷化镓单晶。
实施例1
检测半绝缘砷化镓单晶片的化学配比
(1〕测量样品的晶格常数
              am=5.653722
(2)测量标准样品的晶格常数a′=5.431030,测量误差为:
         Δa′=a′-a′0=-0.000028
计算消除仪器误差后的被检测样品晶格常数为:
         a=am-Δa′=5.653750
(3)计算相应的化学配比
根据 x = 2.64767 × a - a 0 a 0 = 2.322988 × 10 - 4
得出化学配比为: [ As ] ( [ As ] + [ Ga ] ) = 1 + 2 x 2 + 2 x = 0.50012
实施例2
检测太空生长半绝缘砷化镓单晶片化学配比的两维分布
在单晶片上每间隔2mm设置一个晶格常数测量点,在每一个测量点应用实施例1进行晶格常数测量、化学配比计算。这样即可得出整个单晶片化学配比的二维分布(如图1所示)。单晶片的平均化学配比为0.50007,均方差为
                6×6-6
本发明与现有技术相比具有:不破坏被检测样品、测量的误差小、检测方便和实际意义大的优点。

Claims (2)

1、一种非破坏性定量检测砷化镓单晶化学配比的方法,其特征在于:
利用X射线双晶衍射仪精密测量半绝缘砷化镓单晶片的晶格常数am
采用实时仪器校正X射线双晶衍射仪产生的误差,以高纯(11个“9”〕、无位错硅单晶片为标准样品,每次测量砷化镓单晶片的晶格常数之后,测量标准样品的晶格常数,计算仪器误差:
      Δa′=a′-a′0
其中,a′0=5.431058为硅单晶的标准晶格常数;
按下式消除仪器的测量误差,得到准确的砷化镓单晶晶格常数:
      a=am-Δa′
其中am为半绝缘砷化镓单晶晶格常数的测量值。
2、按权利要求1所述的一种非破坏性定量检测砷化镓单晶化学配比的方法,其特征在于:
由下式计算出相应的化学配比: [ As ] ( [ As ] + [ Ga ] ) = 1 + 2 x 2 + 2 x
式中x由下式得出: x = θ × a - a 0 a 0
其中,θ=2.64767为与砷化镓单晶密度和弹性有关的常数,a为被检测样品的晶格常数,
           a0=5.653254为半绝缘砷化镓单晶的标准晶格常数。
CN 99100087 1999-01-08 1999-01-08 非破坏性定量检测砷化镓单晶化学配比的方法 Expired - Fee Related CN1117982C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 99100087 CN1117982C (zh) 1999-01-08 1999-01-08 非破坏性定量检测砷化镓单晶化学配比的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 99100087 CN1117982C (zh) 1999-01-08 1999-01-08 非破坏性定量检测砷化镓单晶化学配比的方法

Publications (2)

Publication Number Publication Date
CN1260485A true CN1260485A (zh) 2000-07-19
CN1117982C CN1117982C (zh) 2003-08-13

Family

ID=5269783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 99100087 Expired - Fee Related CN1117982C (zh) 1999-01-08 1999-01-08 非破坏性定量检测砷化镓单晶化学配比的方法

Country Status (1)

Country Link
CN (1) CN1117982C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447951C (zh) * 2006-06-14 2008-12-31 日立电线株式会社 氮化物半导体自支撑衬底和氮化物半导体发光元件
CN107748171A (zh) * 2017-10-25 2018-03-02 哈尔滨工业大学 用于消除光学晶体超精密加工亚表面损伤检测样品安装误差的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447951C (zh) * 2006-06-14 2008-12-31 日立电线株式会社 氮化物半导体自支撑衬底和氮化物半导体发光元件
CN107748171A (zh) * 2017-10-25 2018-03-02 哈尔滨工业大学 用于消除光学晶体超精密加工亚表面损伤检测样品安装误差的方法
CN107748171B (zh) * 2017-10-25 2020-04-24 哈尔滨工业大学 用于消除光学晶体超精密加工亚表面损伤检测样品安装误差的方法

Also Published As

Publication number Publication date
CN1117982C (zh) 2003-08-13

Similar Documents

Publication Publication Date Title
CN1117982C (zh) 非破坏性定量检测砷化镓单晶化学配比的方法
Höfler et al. Observation of interstitial carbon in heavily carbon‐doped GaAs
Cao et al. Determination of trace rare earth elements in plant and soil samples by inductively coupled plasma-mass spectrometry
Brozel et al. Calibration of the carbon localized vibrational mode absorption line in GaAs
CN108387575A (zh) 一种应用连续流动分析仪测定植物全氮的方法
CN1401999A (zh) 应变硅锗薄膜材料掺杂浓度测试方法
CN114235725A (zh) 测定食品添加剂中危害元素铅或镉的方法
Massies et al. Mismatch and electron mobility in MBE Ga x In 1− x as epitaxial layers on InP substrates
Ibrahim et al. New development quantification methods for salt iodine and urinary iodine using microfluidics based nanotechnology
Gauneau et al. Use of implanted samples as standards in spark-source mass spectrometry with application to the analysis of III—V semiconductors
CN102539357B (zh) 一种铝镓氮晶片外延层中铝元素含量的测试方法
Taylor et al. Determination of microgram quantities of thorium in water
Cole et al. Ion beam crystallography of InGaAs epitaxial layers on InP substrates
CN114964984A (zh) 一种锑化镓高精度定向方法
Hsu et al. A newly developed chemical bevelling technique used for depth independent high depth resolution SIMS analysis
Gulliksen et al. Examination of background contamination levels for gas counting and AMS target preparation in Trondheim
Ambros et al. Quantitative analysis of carbon concentration in MOMBE p‐GaAs by low‐temperature photoluminescence
Chiang et al. Analyzing the uncorrected error of dilution water demand for the dilution biochemical oxygen demand method
Kitagawara et al. Infrared spectrophotometry of carbon‐induced localized vibrational mode in indium‐doped liquid‐encapsulated Czochralski GaAs
CN101349670A (zh) 一种快速测定痕量铝含量的装置及方法
Kehl et al. Fluorescent X-ray Spectrographic Determination of Uranium in Waters and Brines
Alferov et al. Electron‐beam microprobe analysis of epitaxial GaxIn1− xP solid solutions
Liu et al. Spectrophotometric and polarographic methods for the determination of silicon at ng/g levels in gallium arsenide
Nakamura et al. Small-angle X-ray scattering with imaging plate application to dilute polymer solutions
Reß et al. Structural investigations of shadow masks by means of x-ray reciprocal space mapping

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee