CN1259460C - 一种避免电镀沉积铜装置沉积的薄膜生成空穴的方法 - Google Patents

一种避免电镀沉积铜装置沉积的薄膜生成空穴的方法 Download PDF

Info

Publication number
CN1259460C
CN1259460C CN200410006409.0A CN200410006409A CN1259460C CN 1259460 C CN1259460 C CN 1259460C CN 200410006409 A CN200410006409 A CN 200410006409A CN 1259460 C CN1259460 C CN 1259460C
Authority
CN
China
Prior art keywords
electroplating
copper
rotation platform
electroplating deposition
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN200410006409.0A
Other languages
English (en)
Other versions
CN1530471A (zh
Inventor
陈学忠
蔡腾群
杨名声
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Publication of CN1530471A publication Critical patent/CN1530471A/zh
Application granted granted Critical
Publication of CN1259460C publication Critical patent/CN1259460C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明提供一种避免电镀沉积铜(Electro-Chemical Deposition Copper,ECD-Cu)装置沉积的薄膜生成空穴(cavity)的方法。该电镀装置包含有一电解槽,一阳极,设于该电解槽内,以及一旋转平台,用以放置一作为电镀沉积阴极的晶圆。本发明方法是于进行该电镀铜沉积制程时,控制该旋转平台以1秒至10秒的周期交替正、逆时针方向旋转,以避免于该电解槽内的电镀溶液形成稳定的漩涡,进而抑制漩涡中的气泡附着在晶圆表面而于电镀铜薄膜中形成许多空穴的现象。

Description

一种避免电镀沉积铜装置沉积的薄膜生成空穴的方法
技术领域
本发明涉及一种电镀沉积铜(Electro-Chemical Deposition Copper,ECD-Cu)装置,尤指一种避免的电镀沉积铜装置沉积的薄膜生成空穴的方法。
背景技术
随着积体电路的积集度不断增加,金属连线的RC延迟(RC time delay)效应将可预期地会影响到元件操作效能。若欲改善此一状况可以采用电阻值较低的金属做为金属导线或是降低金属导线间的介电层的寄生电容。铜制程是一个解决RC延迟效应的可行方案。近两年,一些制程技术的改进,例如各种扩散阻障的研究发展,以及铜化学机械研磨技术的开发等等,使得早期铜制程所遭遇的问题,逐一被解决。制程整合问题的解决,加上铜本身具有低电阻值及高导热性等优点,因此在0.25μm世代以下的制程中,铜在积体电路制程中的应用将会越来越广泛。
目前,用以沉积铜膜的技术包括有物理气相沉积、化学气相沉积、无电镀法、及电镀法等。其中,由于铜电镀法具有成本便宜以及产出率快的优点,已被广泛应用在工业界中。在电镀过程中,镀膜表面的均匀性会受到镀液的成分、温度、电流密度、以及被镀物表面的洁净镀等因素的影响。例如,在镀铜的时候,含氰离子的镀液所镀的铜膜会比含硫酸根离子的镀液所镀的铜膜光滑。在高温及高电流密度下所得到的镀膜表面较为粗造,而镀液所含的污染物或是被镀物表面的污染物则均会导致镀膜容易脱落。因此在电镀时,为了增加表面均匀性会对以上的条件做控制。
此外,为了使被镀物表面的离子浓度维持定值,一般阴极多采用旋转电极,使镀液中的离子易于传至被镀物的表面。请参阅图1与2,图1与图2为习知的电镀装置示意图。首先,如图1所示,电镀主槽10,分为内外两层,其分别为电镀内槽12以及电镀外槽14,用以盛装电镀液。电镀液的主要成分为含有铜离子的溶液。参考电极(Reference electrode)16,阳极(Counter electrode)18,皆采用多孔铜网设计,可使场流方向一致。阴极(Work electrode)20,为一旋转电极,连接至欲电镀的晶圆22上。当此电镀系统被施予一外在电压或是电流时,由阳极、电镀液、阴极所组成的电路便会被导通,在阴极进行还原反应,而将铜原子沉积在晶圆上。
图2为阴极运动方向示意图。如图2所示,为了增进镀膜厚度的均匀性,一般在电镀时阴极都会旋转,以确保晶圆22能持续接触到新鲜的电解液。习知技术中,阴极采单一运动方向,也就是在电镀过程中朝同一方向旋转,这样很容易在溶液中形成一稳定的漩涡(vortex),并会有许多气泡生成夹杂在漩涡中不易去除。这些气泡会造成镀膜表面有空洞(cavity)产生,进而影响镀膜的品质。
发明内容
因此,本发明的目的为提供一种避免电镀沉积铜装置沉积的薄膜生成空穴的方法,以改善镀膜品质。
本发明提供了:一种避免一电镀沉积铜(Electro-Chemical DepositionCopper,ECD-Cu)装置沉积的薄膜生成空穴(cavity)的方法,该电镀沉积铜装置包含有一电解槽用来盛装一电解液,一阳极设于该电解槽内,以及一旋转平台,用来置放一作为电镀沉积阴极的晶圆,该方法使该旋转平台于该电镀沉积铜制程进行时以约为1秒至10秒的周期交替正逆方向旋转。
该电解液为硫酸铜(copper sulfate,CuSo4)溶液。
该电解液的流量约为每分钟1公升(1pm)至每分钟15公升。
该电镀沉积装置使用一直流电(DC),电流约为1安培(A)至10安培,或使用一交流电(AC),电流约为-10安培(A)至10安培,频率约为5赫兹(Hz)至20赫兹。
该旋转平台的转速约每分钟50转(rpm)至每分钟150转。
由于本发明的放置晶圆的旋转平台以顺时针及逆时针方向交错运转,可改善习知技术中的单一方向旋转而造成稳定漩涡的缺点,进而改善漩涡中的气泡留置于晶圆表面而导致镀膜表面有许多空洞产生的问题,以达到提高镀膜品质的目的。
附图说明
图1为习知技术的电镀装置。
图2为习知技术的阴极运动方式示意图。
图3为本发明的电镀方式。
图4为本发明的阴极运动方式示意图。
符号说明
10    电解主槽    12    电解内槽    14    电解外槽
16    参考电极    18    阳极        20    阴极
22    电镀的晶圆  30    电解主槽    32    电解内槽
34    电解外槽    36    参考电极    38    阳极
40    阴极        42    电镀的晶圆
具体实施方式
本发明实施例中使用了一种用于半导体制程的电镀沉积(Electro-ChemicalDeposition,ECD)装置,该电镀装置包含有一电解槽,一阳极,设于该电解槽内,以及一旋转平台,用以放置一作为电镀沉积阴极的晶圆,且该旋转平台于该电镀沉积制程进行时以顺时针及逆时针方向交错运转。由于本发明的旋转平台以顺时针及逆时针方向交错运转,故可有效地降低溶液中稳定漩涡的形成,以改善漩涡中的气泡附着于晶圆表面,而不易排除的缺点,进而减少镀膜表面所产生的许多小洞,以提高镀膜品质。
图3与图4为本发明的示意图。请参考图3,图3为本发明实施例中的电镀装置,同样地,电解主槽30,分为内外两层,分别为电解内槽32以及电解外槽34,用以盛装电解液。电解液的主要成分为含有铜离子的溶液,现在工业上所使用的镀液内以分为含有氰离子及硫酸根离子等溶液。不过基于环保上的考量,目前工业界多使用硫酸铜溶液。此外,在镀液中还会加入一些添加剂,以增加镀膜表面平整度。在本发明的较佳实施例中,电解液为硫酸铜溶液,流量约为1公升每分钟(liter per minute,1pm)至15公升每分钟。
参考电极(Reference electrode)36以及阳极(Counter electrode)38,皆采多孔铜网设计,可使场流方向一致,阴极(Work electrode)40,为一旋转电极,连接至欲电镀的晶圆42上。当此电镀系统被施予一外在电压或是电流,由阳极、电解液、阴极所组成的电路便会被导通,而在阴极进行还原反应,而将铜原子沉积在晶圆上。在本发明所使用的为一直流电(DC),电流约为1安培(A)至10安培,或是一交流电(AC),电流约为-10安培(A)至10安培,频率约为5赫兹(Hz)至20赫兹。
图4为本发明的阴极运动方向示意图。如图4所示,为了增进镀膜厚度的均匀性,一般在电镀时阴极都会旋转,以确保晶圆22能持续接触到新鲜的电解液。在本发明中,阴极采顺时针与逆时针方向交错运转,其正逆旋转方向交替周期约为1秒至10秒,转速约每分钟50转(rpm)至每分钟150转。藉由这样的正逆方向交错运转,可以避免溶液中产生稳定的漩涡,以避面漩涡中的气泡留滞于镀膜表面,而在镀膜表面造成空洞。
相较于习知技术,本发明藉由改变阴极旋转电极的运动方向,来避免溶液中稳定漩涡的产生,以改善气泡留滞于镀膜表面的现象,而达到减少镀膜表面空洞产生的目的,以增加镀膜的平坦度。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明专利的涵盖范围。

Claims (5)

1.一种避免一电镀沉积铜装置沉积的薄膜生成空穴的方法,该电镀沉积铜装置包含有一电解槽用来盛装一电解液,一阳极设于该电解槽内,以及一旋转平台,用来置放一作为电镀沉积阴极的晶圆,该方法使该旋转平台于该电镀沉积铜制程进行时以1秒至10秒的周期交替正逆方向旋转。
2.如权利要求1所述的方法,其特征在于,该电解液为硫酸铜溶液。
3.如权利要求2所述的方法,其特征在于,该电解液的流量为每分钟1公升至每分钟15公升。
4.如权利要求1所述的方法,其特征在于,该电镀沉积装置使用一直流电,电流为1安培至10安培,或使用一交流电,电流为-10安培至10安培,频率为5赫兹至20赫兹。
5.如权利要求1所述的方法,其特征在于,该旋转平台的转速每分钟50转至每分钟150转。
CN200410006409.0A 2003-03-10 2004-02-27 一种避免电镀沉积铜装置沉积的薄膜生成空穴的方法 Expired - Lifetime CN1259460C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/249,007 US20040178058A1 (en) 2003-03-10 2003-03-10 Electro-chemical deposition apparatus and method of preventing cavities in an ECD copper film
US10/249,007 2003-03-10

Publications (2)

Publication Number Publication Date
CN1530471A CN1530471A (zh) 2004-09-22
CN1259460C true CN1259460C (zh) 2006-06-14

Family

ID=32961151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200410006409.0A Expired - Lifetime CN1259460C (zh) 2003-03-10 2004-02-27 一种避免电镀沉积铜装置沉积的薄膜生成空穴的方法

Country Status (2)

Country Link
US (2) US20040178058A1 (zh)
CN (1) CN1259460C (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243428A1 (en) * 2005-08-19 2009-10-01 The University Of Akron Nanoporous materials for use in the conversion of mechanical energy and/or thermal energy into electrical energy
US7571075B2 (en) * 2006-03-02 2009-08-04 Plant Sense, Inc. Computerized plant selection system
US8580090B2 (en) * 2007-08-01 2013-11-12 Intermolecular, Inc. Combinatorial electrochemical deposition
CN101871110B (zh) * 2009-04-24 2011-11-30 中芯国际集成电路制造(上海)有限公司 电镀铜方法
CN105895904B (zh) * 2014-08-13 2019-02-22 孚能科技(赣州)有限公司 制备和回收锂离子电池的正极活性材料的方法
CN114540929B (zh) * 2020-11-26 2023-09-08 长鑫存储技术有限公司 电镀方法以及电镀装置
US11959186B2 (en) 2020-11-26 2024-04-16 Changxin Memory Technologies, Inc. Electroplating method and electroplating apparatus
CN112813482B (zh) * 2020-12-30 2021-11-02 泉芯集成电路制造(济南)有限公司 芯片电镀系统及芯片电镀控制方法
CN114959846A (zh) * 2022-05-17 2022-08-30 安徽工业大学 一种阴极件单元、电化学沉积涂层实验装置、实验方法及其制得的涂层

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1247547A (en) * 1983-06-22 1988-12-28 Paul Hadvary Leucine derivatives
US6004996A (en) * 1997-02-05 1999-12-21 Hoffman-La Roche Inc. Tetrahydrolipstatin containing compositions
US6159354A (en) * 1997-11-13 2000-12-12 Novellus Systems, Inc. Electric potential shaping method for electroplating
TW562878B (en) * 2000-06-30 2003-11-21 Ebara Corp Copper-plating liquid, plating method and plating apparatus
US6858121B2 (en) * 2000-08-10 2005-02-22 Nutool, Inc. Method and apparatus for filling low aspect ratio cavities with conductive material at high rate
US6964792B1 (en) * 2000-11-03 2005-11-15 Novellus Systems, Inc. Methods and apparatus for controlling electrolyte flow for uniform plating
US7211174B2 (en) * 2001-01-17 2007-05-01 Novellus Systems, Inc. Method and system to provide electrical contacts for electrotreating processes

Also Published As

Publication number Publication date
US20040178058A1 (en) 2004-09-16
CN1530471A (zh) 2004-09-22
US20060199381A1 (en) 2006-09-07

Similar Documents

Publication Publication Date Title
Hu et al. Effects of deposition modes on the microstructure of copper deposits from an acidic sulfate bath
US8168540B1 (en) Methods and apparatus for depositing copper on tungsten
CN1259460C (zh) 一种避免电镀沉积铜装置沉积的薄膜生成空穴的方法
EP0568733A2 (en) Low profile copper foil and process and apparatus for making bondable metal foils
US20180030611A1 (en) Method and apparatus for electroplating semiconductor wafer when controlling cations in electrolyte
TW200304966A (zh)
CA2305456A1 (en) Copper metallization of silicon wafers using insoluble anodes
CN1433487A (zh) 在衬底上电沉积具有最小边缘隔绝的均匀薄膜的方法和设备
Rosso Electrodeposition from a binary electrolyte: new developments and applications
Nagar et al. The effect of cupric ion concentration on the nucleation and growth of copper on RuTa seeded substrates
CN1534112A (zh) 一种避免电镀沉积铜薄膜生成空穴的装置及其使用方法
JPH1197391A (ja) 半導体ウエハー配線電解メッキ方法
CN100449710C (zh) 电化学电镀半导体晶圆的方法及其电镀装置
JP4416979B2 (ja) 銅電気メッキに用いるメッキ溶液
JP2000256898A (ja) ウェーハの銅めっき方法
TW200540145A (en) Method and composition to enhance wetting of ecp electrolyte to copper seed
Dudin et al. High rate of copper electrodeposition from the hexafluorosilicate bath
CN1091174C (zh) 连续制造卷式发泡金属带材的技术
US20030188974A1 (en) Homogeneous copper-tin alloy plating for enhancement of electro-migration resistance in interconnects
JP2007297652A (ja) めっき方法及びめっき装置
US20040118699A1 (en) Homogeneous copper-palladium alloy plating for enhancement of electro-migration resistance in interconnects
TWI783968B (zh) 高效能的低溫鋁電鍍
Nagar et al. Nucleation and growth of copper on Ru-based substrates: I. The effect of the inorganic components
Yang et al. Selective Cu electrodeposition for Through Glass Via (TGV)
CN1558447A (zh) 薄膜晶体管的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20060614