CN1259062A - 排除方法 - Google Patents

排除方法 Download PDF

Info

Publication number
CN1259062A
CN1259062A CN98805738A CN98805738A CN1259062A CN 1259062 A CN1259062 A CN 1259062A CN 98805738 A CN98805738 A CN 98805738A CN 98805738 A CN98805738 A CN 98805738A CN 1259062 A CN1259062 A CN 1259062A
Authority
CN
China
Prior art keywords
well
contaminated soil
layer
uncontamination
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98805738A
Other languages
English (en)
Other versions
CN1130270C (zh
Inventor
E·德路夫菲纳克
H·J·威尼加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1259062A publication Critical patent/CN1259062A/zh
Application granted granted Critical
Publication of CN1130270C publication Critical patent/CN1130270C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/005Extraction of vapours or gases using vacuum or venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • B09C1/062Reclamation of contaminated soil thermally by using electrode or resistance heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Paleontology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Liquid Crystal Substances (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Centrifugal Separators (AREA)
  • Steroid Compounds (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

本发明提供了一种从污染土壤除去挥发性液污染物的方法,该污染土壤位于未受污染的土壤层上面,该方法包括以下步骤:加热非污染层直到接近污染层的大部分非污染层的温度至少为污染液的沸点温度,以防止蒸发后的污染物从土壤污染层向下移动。

Description

排除方法
发明领域
本发明涉及一种就地热解吸以排除(remediation)挥发性污染物的方法。
发明背景
例如在美国专利4973811、5076727、5152341、5190405、5193934、5221827和5271693中建议使用热解吸方法就地从土壤中除去挥发性污染物。加热方法包括微波和射频电能以及在电极之间的电阻加热;注入热气体和通过土壤传导电流。例如在美国专利5190405和5271693中建议从热注射井转移传导热。美国专利5271693建议了一加热器井,经过它蒸汽被从岩层中提取出来。
这些方法通常依赖在表面或在蒸汽提取井眼处维持低压,以控制污染物从其最初位置移到他们可以得到回收的地方。由于需要相当大的压差,使得大量蒸汽从土壤中溢出,因此通过这些方法仅仅能提供低的加热速率,或者在存在经蒸发的污染物的地方产生压力并足以使经蒸发的污染物从最初污染土壤中离开,而不是准备除去污染物的方向。因此本发明的目的是提供一种通过就地加热从污染土壤中除去污染物的方法,其中经蒸发的污染物不沿污染土壤向下移动。
发明简述
通过从受污染的土壤中除去挥发性液体污染物的方法来实现本目的和其它目的,该污染土壤位于未受污染土壤层的上面,该方法包括以下步骤:给污染的土壤钻至少一个井眼,以便井眼穿透污染土壤,而且至少一个井眼钻入非污染层;从非污染层内井眼向非污染层加热,直到与污染层接近的非污染层的大部分温度至少为污染液的沸点温度;从污染土壤内井眼向污染土壤加热,其中,在与污染层接近的大部分非污染层的温度在污染液的沸点附近之后,污染土壤的温度上升到污染液的沸点。
井眼最好垂直钻入污染土壤并穿过以准备通过井眼除去污染土壤内产生的蒸汽。令人吃惊地发现,当将位于污染土壤下面的土壤层加热以防止污染土壤下面的污染物冷凝时,污染土壤中的污染物蒸发时,他们不向下移动,而是被推向表面或穿过井眼回收。优选实施方式
本发明针对在热排除方法中蒸发的污染物的抑制问题。已发现在待净化的土壤温度上升到污染土壤中液体沸点附近之前,加热污染物下的土壤层可以有效地阻滞蒸汽向下移动。
可以通过本发明的方法从污染土壤中除去的挥发性污染物为各种污染物。通常认为具有挥发性的污染物例如汽油,可以通过本发明除去,但是更重的碳氢化合物和更高沸点的物质也可能具有挥发性并能通过本发明除去。例如,制造气体的工厂产生的多氯化联苯(“PCBs”)、汞和重油可以通过本发明以蒸汽除去。即使温度没有达到这些物质的正常沸点的地方,也将产生水蒸气,甚至污染物的有限蒸汽压将使得用足量的蒸汽就能除去污染物。
本发明的井眼可以是例如用于石油工业的装有套管和渗碳井眼,但是这类精工制作的井眼在大多数应用中不能调整。可以提供一个浅的套管以确保清洁覆盖层不被从岩层中除去的蒸汽污染。当将井眼套装到井眼底部时,根据石油工业中公知的方法可以将它钻入。井眼可以是垂直、水平或垂直与水平之间的角度。
可以通过从井眼传导向污染土壤施加热量,优选向污染土壤下面的未受污染的土壤层加热。用于加热井眼以将热量传导到岩层中的井眼加热器为已知。例如,在美国专利2902270和3181613中指出的气体火焰井眼加热器,加入本文作为参考。例如在美国专利5060287中公开了电井眼加热器,加入本文作为参考。优选气体火焰井眼加热器公开在例如美国专利5255742中,加入本文作为参考。
通过传导向污染土壤加热,优选从同时作为从井眼除去含污染物蒸汽的吸气源的井眼加热。在本优选实施方式中,蒸发的污染物因此从岩层直接转移到井眼回收,他们不可能转移到污染物可能冷凝的更冷土壤中,使发生冷凝的地方的污染物浓度增加。
可以选择性地通过注入热流体例如蒸汽、燃烧气体或已受热的氮气加热非污染层。
当向土壤加热时,通常没有什么发生,直到受热产生蒸汽。如果污染物为轻挥发性组分(正常沸点低于水的沸点)例如汽油,最初产生的蒸汽所含污染物的浓度相当高。由于较重污染物在蒸汽中的蒸汽压,因此较重污染物随土壤中存在的水所产生的蒸汽蒸发。在污染土壤中保持的压力越低,重污染物在蒸汽中的浓度越高,因此,注射以蒸发污染物所需热量越少。如果污染物不能与水混合,那么在那部分土壤的压力下在约水的沸点处产生蒸汽。可以在非污染层温度到达污染液沸点之前使污染土壤受热,但是在未受污染的土壤层到达该温度之前为了防止污染物蒸发(和因此移动),污染土壤的温度应保持低于污染区域处液体的沸点。
根据本发明的井可以是水平或垂直井。垂直井最好延伸穿过污染土壤并进入污染土壤下面的非污染层。根据井之间的距离选择污染土壤下面的深度。典型地,井之间距离的约三分之一左右将在污染物下提供足够的井眼,以向非污染层提供热注射。在本发明的优选实施方式中,井装有一导管以从岩层移去蒸发物质,并作为加热器的位置。在套管内最好保持负压以从土壤中抽出污染物。可以在每个套管中配备两个加热器元件,一个在污染土壤内,一个在污染土壤下面的层中。加热器元件可以通过污染土壤提供热量并可以选择性地延伸到污染土壤下面的非污染层中。选择性地,第二个加热器元件可以在污染土壤下面的部分井眼中提供热量。如果将加热器元件设计成能在污染土壤下面提供更大的热放出(典型地每单位长度约多50%热量),以便在污染土壤到达污染土壤下面层中液体沸点之前,污染土壤的温度到达该温度附近,那么可以配备一个加热器元件。这可以通过提供具有不同单元直径的加热器元件来实现。例如,可以使用镍铬线加热元件,该元件在污染区域的直径为0.32cm,在非污染区域直径为0.26cm。由于在整个去除过程中存在热流差异使能量无效,并且由于套管温度的限制可能相当大地限制热流进入污染区域,因此加热器最好彼此独立。并且,当使用独立的加热器时,在污染区域下面的层中的加热器可以首先打开,然后关闭,至少一部分时间使用另一加热器以减少能量消耗。在覆盖层下套管可以绝缘,或者可以配备其它加热器以确保蒸汽中的污染物不在套管中冷凝。
现在讨论电阻加热器,但是也可以使用其它类型的加热器。电加热器可以方便地控制,而且由于他们在套管中不需要流线,留出更多空间让污染土壤中的蒸汽流动。
配备以钻入热量并除去蒸汽的其它井眼优选围绕污染土壤安装在土壤中,以确保污染物不从最初污染土壤移走。
在覆盖层下面显示的是污染土壤,但是如果将土壤加热到表面,那么可以在表面上提供绝缘。而且,如果污染土壤延伸到表面附近,可能带来的好处是:在表面上提供一蒸汽密封层以防止大量空气被带入污染土壤,并防止污染蒸汽进入大气。如果污染土壤延伸到表面,表面加热器可以从表面施加热量。
蒸汽最好通过延伸到污染土壤中的井眼去除,然后这些蒸汽可以经过处理以通过本领域已知的方法除去污染物。例如,热氧化剂可以使污染物氧化,然后剩下的蒸汽可以通过碳床以收集剩余的污染物和/或污染物的氧化产物。通常安装一鼓风机以在井眼和岩层中保持一低的绝对压力。由于较低压力降低了污染土壤中水和污染物蒸发时的温度,因此较低压力是有好处的。负压也防止了蒸汽进入大气中。
加热器和吸气井的布局最好能够给污染土壤提供均匀的热量,并减少完成排除污染土壤所需的时间。可以适宜地安装成三角形或正方形布局。在正方形或三角形布局中井之间的距离可以是例如0.9-6m。由于通过传导经过土壤的热传递相对慢,因此优选相对紧凑的间距。
在相似方式中,如果未受污染的土壤层位于污染土壤上面,可以将额外的热量施加到污染土壤上面以及下面。该额外热量可以由独立加热器施加,或者由经设计以在污染土壤上面的未受污染的土壤层中提供更大热放出的加热元件施加。
加热器-吸气井的布局优选延伸通过污染土壤外周。与污染土壤下面的层相同,在将污染土壤加热到污染土壤中液体的沸点之上以前,最好将围绕污染土壤外围的该环加热到该环中液体的沸点附近。或者,污物可以侧向被例如敲入地下的金属壳的阻挡层或水泥阻挡层或倒入窄沟中的泥浆包含。
实施例
从污染土壤下面加热污染土壤的重要性在沙层填充玻璃柱中得到证实,在干净底层中装载湿砂子,底部含不同量的冬青油(水杨酸甲酯)以模拟例如PCB的污染物。水杨酸甲酯的密度大于水的密度,因此倾向通过水下沉。该装置内径为7.6cm,玻璃柱长91.5cm。在顶部可以抽真空。为了除去经蒸发的冬青油,在柱的顶部保持轻度真空(约2.54cm水柱)。在玻璃外围通过缠线柔性加热器施加热量,缠线厚3.2cm,与加热器四周绝缘。所用加热器为17欧姆电阻加热器,宽43cm,长30.5cm,可以从Minco Products Inc.,of Houston,Texas,USA获得。一个加热器缠绕在含冬青油的截面周围,另一加热器缠绕在柱底截面周围。在本发明的实施例中,首先打开底部加热器,在干净砂子温度达到冬青油沸点之后打开顶部加热器。在对比实施例C1-C3中,不使用底部加热器。在每一实施例中,干净砂子放在玻璃柱的底部,砂子另一部分与冬青油混合并放在干净砂子的上部。连续加热直到砂子温度达到约250℃,然后冷却该柱,测定在顶部和底部的砂子中冬青油的浓度。
表中概括了实施例1-10和对比实施例C1-C3的结果。最初油含量为在柱上部20cm处冬青油的重量百分比。最终顶部油的浓度是将顶部截面加热到约250℃并经冷却之后柱顶部截面样品的油含量。柱底部最终油含量为柱经过加热和冷却之后在柱底部截面发现的最大油浓度。
在每次操作中,柱内温度稳定上升直到达到水的沸点,然后保持恒温直到水蒸发掉。然后再次稳定升温直到达到冬青油的沸点,然后保持恒温直到冬青油基本上都蒸发掉,然后再升温。表
 实施例号  最初油含量ppm Wt.  最终顶部油含量ppm Wt.  最终底部油含量ppm Wt.
 1  20,000  0  0
 2  39,900  10  10
 3  10,000  10  0
 C1  20,000  330  200
 C2  29,900  0  3,230
 C3  39,800  20  8,940
在对比实施例C1、C2和C3中,在顶部截面最初油浓度越高,冷凝到较低干净砂子中的污染物就越多。在首先加热底部截面的这些实施例中(实施例1、2和3),事实上在较低干净砂子中没有油冷凝。

Claims (11)

1.一种从污染土壤除去挥发性液体污染物的方法,污染土壤位于未受污染的土壤层上面,该方法包括以下步骤:
给污染土壤钻至少一个井眼,以便井眼钻入污染土壤,并且至少将一个井眼钻入非污染层;
从非污染层内的井眼向非污染层施加热量,直到与污染层接近的大部分非污染层的温度至少为污染液的沸点温度;和
从污染土壤内的井眼向污染土壤施加热量,其中在与污染层接近的地方非污染层的温度在污染液的沸点附近之后,污染土壤的温度上升到污染液的沸点。
2.权利要求1的方法,还包括通过至少一个吸气井眼从污染土壤除去蒸发后的污染物,其中在吸气井眼中保持负压。
3.权利要求2的方法,其中吸气井眼也是将热量施加到污染土壤的井眼。
4.权利要求1的方法,其中至少一个井眼钻入污染土壤并从污染土壤延伸到非污染层。
5.权利要求3的方法,其中提供吸气-加热器井眼布局。
6.权利要求5的方法,其中布局中的井眼间隔约0.9-约6m。
7.权利要求1的方法,其中至少一个钻入非污染层的井眼为基本上水平的井眼。
8.权利要求1的方法,其中至少一个钻入非污染层的井眼为基本上垂直且也钻入污染土壤的井眼。
9.权利要求1的方法,其中从非污染层内井眼向非污染层施加热量。
10.权利要求1的方法,其中非污染土壤位于未受污染的土壤下面,还包括在将污染土壤加热到污染液正常沸点之前,将污染土壤上面的未受污染的土壤的温度加热到污染液正常沸点之上。
11.权利要求8的方法,其中从电加热元件向污染土壤和非污染层施加热量,该电加热元件通过污染土壤内的井眼延伸并进入非污染层的井眼中,电加热元件是在污染土壤内直径比非污染层内大的金属线。
CN98805738A 1997-06-05 1998-06-03 从污染土壤除去挥发性液体污染物的方法 Expired - Lifetime CN1130270C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US4874497P 1997-06-05 1997-06-05
US60/048,744 1997-06-05
US6152097P 1997-10-09 1997-10-09
US60/061,520 1997-10-09

Publications (2)

Publication Number Publication Date
CN1259062A true CN1259062A (zh) 2000-07-05
CN1130270C CN1130270C (zh) 2003-12-10

Family

ID=26726485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98805738A Expired - Lifetime CN1130270C (zh) 1997-06-05 1998-06-03 从污染土壤除去挥发性液体污染物的方法

Country Status (20)

Country Link
US (1) US5997214A (zh)
EP (1) EP1011882B1 (zh)
JP (1) JP4399033B2 (zh)
KR (1) KR100499762B1 (zh)
CN (1) CN1130270C (zh)
AT (1) ATE222147T1 (zh)
AU (1) AU720947B2 (zh)
BR (1) BR9809922A (zh)
CA (1) CA2289080C (zh)
CZ (1) CZ294883B6 (zh)
DE (1) DE69807238T2 (zh)
DK (1) DK1011882T3 (zh)
EA (1) EA001706B1 (zh)
ES (1) ES2182337T3 (zh)
HU (1) HU224761B1 (zh)
ID (1) ID22887A (zh)
NZ (1) NZ500724A (zh)
PL (1) PL191230B1 (zh)
SK (1) SK283577B6 (zh)
WO (1) WO1998055240A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837367A (zh) * 2009-03-17 2010-09-22 Dec股份有限公司 热解吸设备的操作方法
CN102580993A (zh) * 2012-02-21 2012-07-18 天津生态城环保有限公司 一种有机污染土壤的原位修复技术
CN105290096A (zh) * 2015-11-06 2016-02-03 北京建工环境修复股份有限公司 一种原位阴燃系统

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052704A1 (en) * 1997-05-20 1998-11-26 Shell Internationale Research Maatschappij B.V. Remediation method
AU2844700A (en) * 1998-12-17 2000-07-03 Edison International Inc. Ground water decontamination using lower-side thermal barrier
US6276873B1 (en) * 1999-01-29 2001-08-21 Southern California Edison Company Ground water remediation control process
US6632047B2 (en) 2000-04-14 2003-10-14 Board Of Regents, The University Of Texas System Heater element for use in an in situ thermal desorption soil remediation system
US6824328B1 (en) 2000-04-14 2004-11-30 Board Of Regents, The University Of Texas System Vapor collection and treatment of off-gas from an in-situ thermal desorption soil remediation
US6485232B1 (en) 2000-04-14 2002-11-26 Board Of Regents, The University Of Texas System Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
NZ522211A (en) 2000-04-24 2004-05-28 Shell Int Research A method for treating a hydrocarbon containing formation
US20030146002A1 (en) 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
CN1671944B (zh) 2001-10-24 2011-06-08 国际壳牌研究有限公司 可拆卸加热器在含烃地层内的安装与使用
DE60227826D1 (de) * 2001-10-24 2008-09-04 Shell Int Research Vereisung von böden als vorwegmassnahme zu deren thermischer behandlung
KR100925130B1 (ko) 2001-10-24 2009-11-05 쉘 인터내셔날 리써취 마트샤피지 비.브이. 수은 오염된 토양의 복원
BR0213511B1 (pt) * 2001-10-24 2011-07-26 mÉtodo de remediaÇço de solo contaminado, e, sistema de remediaÇço de solo.
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
AU2004235350B8 (en) 2003-04-24 2013-03-07 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
US7534926B2 (en) * 2003-05-15 2009-05-19 Board Of Regents, The University Of Texas System Soil remediation using heated vapors
US7004678B2 (en) * 2003-05-15 2006-02-28 Board Of Regents, The University Of Texas System Soil remediation with heated soil
US6881009B2 (en) * 2003-05-15 2005-04-19 Board Of Regents , The University Of Texas System Remediation of soil piles using central equipment
WO2005103445A1 (en) 2004-04-23 2005-11-03 Shell Oil Company Subsurface electrical heaters using nitride insulation
JP2006150157A (ja) * 2004-11-25 2006-06-15 Material Control Inc 揮発性有機化合物の処理装置及び処理方法
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
NZ567656A (en) 2005-10-24 2012-04-27 Shell Int Research Methods of filtering a liquid stream produced from an in situ heat treatment process
EP2010755A4 (en) 2006-04-21 2016-02-24 Shell Int Research HEATING SEQUENCE OF MULTIPLE LAYERS IN A FORMATION CONTAINING HYDROCARBONS
RU2460871C2 (ru) 2006-10-20 2012-09-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ in situ С ИСПОЛЬЗОВАНИЕМ НАГРЕВАТЕЛЬНОЙ СИСТЕМЫ С ЗАМКНУТЫМ КОНТУРОМ
JO2601B1 (en) * 2007-02-09 2011-11-01 ريد لييف ريسورسيز ، انك. Methods of extraction of hydrocarbons from hydrocarbons using existing infrastructure and accompanying systems
US7862706B2 (en) * 2007-02-09 2011-01-04 Red Leaf Resources, Inc. Methods of recovering hydrocarbons from water-containing hydrocarbonaceous material using a constructed infrastructure and associated systems
WO2008131179A1 (en) 2007-04-20 2008-10-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8003844B2 (en) * 2008-02-08 2011-08-23 Red Leaf Resources, Inc. Methods of transporting heavy hydrocarbons
AU2009251533B2 (en) 2008-04-18 2012-08-23 Shell Internationale Research Maatschappij B.V. Using mines and tunnels for treating subsurface hydrocarbon containing formations
GB2476439B (en) * 2008-10-13 2013-08-28 Mi Llc Treatment of recovered wellbore fluids
EP2334894A1 (en) 2008-10-13 2011-06-22 Shell Oil Company Systems and methods of forming subsurface wellbores
US8323481B2 (en) 2009-02-12 2012-12-04 Red Leaf Resources, Inc. Carbon management and sequestration from encapsulated control infrastructures
US8490703B2 (en) * 2009-02-12 2013-07-23 Red Leaf Resources, Inc Corrugated heating conduit and method of using in thermal expansion and subsidence mitigation
US8349171B2 (en) 2009-02-12 2013-01-08 Red Leaf Resources, Inc. Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems maintained under positive pressure
AU2010213717B2 (en) 2009-02-12 2013-05-16 Red Leaf Resources, Inc. Articulated conduit linkage system
WO2010093957A2 (en) * 2009-02-12 2010-08-19 Red Leaf Resources, Inc. Convective heat systems for recovery of hydrocarbons from encapsulated permeability control infrastructures
US8366917B2 (en) * 2009-02-12 2013-02-05 Red Leaf Resources, Inc Methods of recovering minerals from hydrocarbonaceous material using a constructed infrastructure and associated systems
US8365478B2 (en) 2009-02-12 2013-02-05 Red Leaf Resources, Inc. Intermediate vapor collection within encapsulated control infrastructures
CA2752499A1 (en) * 2009-02-12 2010-08-19 Red Leaf Resources, Inc. Vapor collection and barrier systems for encapsulated control infrastructures
US20100258291A1 (en) 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
AP3601A (en) 2009-12-03 2016-02-24 Red Leaf Resources Inc Methods and systems for removing fines from hydrocarbon-containing fluids
US8961652B2 (en) 2009-12-16 2015-02-24 Red Leaf Resources, Inc. Method for the removal and condensation of vapors
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
JP5808632B2 (ja) * 2011-09-30 2015-11-10 オルガノ株式会社 地下水中の揮発性物質の除去システム及び除去方法
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
CN102513347A (zh) * 2011-12-22 2012-06-27 天津生态城环保有限公司 一种原位热强化组合土壤气相抽提技术治理污染土壤的方法
AU2012367826A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2902270A (en) * 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US3181613A (en) * 1959-07-20 1965-05-04 Union Oil Co Method and apparatus for subterranean heating
DE3721981A1 (de) * 1987-07-03 1989-01-12 Norddeutsche Seekabelwerke Ag Verfahren und vorrichtung zur beseitigung von verunreinigungen im boden
EP0409771A3 (en) * 1989-06-27 1991-06-12 Ciba-Geigy Ag Process of photochemical and thermal stabilization of polyamide fibres, dyeable by acid and basic dyes, and of their mixtures amongst themselves and with other fibres
US4973811A (en) * 1989-11-30 1990-11-27 Shell Oil Company In situ decontamination of spills and landfills by radio frequency induction heating
US5011329A (en) * 1990-02-05 1991-04-30 Hrubetz Exploration Company In situ soil decontamination method and apparatus
US5152341A (en) * 1990-03-09 1992-10-06 Raymond S. Kasevich Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes
US5076727A (en) * 1990-07-30 1991-12-31 Shell Oil Company In situ decontamination of spills and landfills by focussed microwave/radio frequency heating and a closed-loop vapor flushing and vacuum recovery system
US5060287A (en) * 1990-12-04 1991-10-22 Shell Oil Company Heater utilizing copper-nickel alloy core
US5370477A (en) * 1990-12-10 1994-12-06 Enviropro, Inc. In-situ decontamination with electromagnetic energy in a well array
US5190405A (en) * 1990-12-14 1993-03-02 Shell Oil Company Vacuum method for removing soil contaminants utilizing thermal conduction heating
US5389267A (en) * 1991-05-10 1995-02-14 The Board Of Trustees Of The Leland Stanford Junior University In-situ vapor stripping for removing volatile organic compounds from groundwater
US5246309A (en) * 1991-05-16 1993-09-21 Hobby Michael M System and method for decontamination of contaminated ground
US5193934A (en) * 1991-05-23 1993-03-16 Shell Oil Company In-situ thermal desorption of contaminated surface soil
US5347070A (en) * 1991-11-13 1994-09-13 Battelle Pacific Northwest Labs Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5271693A (en) * 1992-10-09 1993-12-21 Shell Oil Company Enhanced deep soil vapor extraction process and apparatus for removing contaminants trapped in or below the water table
US5449251A (en) * 1993-05-04 1995-09-12 The Regents Of The University Of California Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater
US5360067A (en) * 1993-05-17 1994-11-01 Meo Iii Dominic Vapor-extraction system for removing hydrocarbons from soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837367A (zh) * 2009-03-17 2010-09-22 Dec股份有限公司 热解吸设备的操作方法
CN102580993A (zh) * 2012-02-21 2012-07-18 天津生态城环保有限公司 一种有机污染土壤的原位修复技术
CN105290096A (zh) * 2015-11-06 2016-02-03 北京建工环境修复股份有限公司 一种原位阴燃系统

Also Published As

Publication number Publication date
PL337202A1 (en) 2000-08-14
ES2182337T3 (es) 2003-03-01
CA2289080C (en) 2006-07-25
KR20010013307A (ko) 2001-02-26
KR100499762B1 (ko) 2005-07-07
HU224761B1 (en) 2006-01-30
CN1130270C (zh) 2003-12-10
EP1011882B1 (en) 2002-08-14
JP4399033B2 (ja) 2010-01-13
HUP0003002A3 (en) 2003-10-28
SK283577B6 (sk) 2003-09-11
EA199901079A1 (ru) 2000-06-26
DE69807238T2 (de) 2003-01-02
ID22887A (id) 1999-12-16
CZ432099A3 (cs) 2000-04-12
DK1011882T3 (da) 2002-12-16
US5997214A (en) 1999-12-07
PL191230B1 (pl) 2006-03-31
SK162499A3 (en) 2000-05-16
AU8215198A (en) 1998-12-21
BR9809922A (pt) 2000-08-01
DE69807238D1 (de) 2002-09-19
JP2002513329A (ja) 2002-05-08
EP1011882A1 (en) 2000-06-28
HUP0003002A2 (hu) 2001-01-29
CA2289080A1 (en) 1998-12-10
WO1998055240A1 (en) 1998-12-10
CZ294883B6 (cs) 2005-04-13
ATE222147T1 (de) 2002-08-15
AU720947B2 (en) 2000-06-15
EA001706B1 (ru) 2001-06-25
NZ500724A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
CN1130270C (zh) 从污染土壤除去挥发性液体污染物的方法
US5769569A (en) In-situ thermal desorption of heavy hydrocarbons in vadose zone
US5360067A (en) Vapor-extraction system for removing hydrocarbons from soil
US5271693A (en) Enhanced deep soil vapor extraction process and apparatus for removing contaminants trapped in or below the water table
US5586213A (en) Ionic contact media for electrodes and soil in conduction heating
EP1604749B1 (en) Method and system for cleaning a soil containing contaminants
US5621845A (en) Apparatus for electrode heating of earth for recovery of subsurface volatiles and semi-volatiles
US5660500A (en) Enhanced deep soil vapor extraction process and apparatus utilizing sheet metal pilings
US5190405A (en) Vacuum method for removing soil contaminants utilizing thermal conduction heating
US5664911A (en) Method and apparatus for in situ decontamination of a site contaminated with a volatile material
US5813799A (en) Combustion process and apparatus for removing volatile contaminants from groundwater or subsurface soil
WO1997048504A9 (en) In-situ thermal desorption of heavy hydrocarbons in vadose zone
CN102513347A (zh) 一种原位热强化组合土壤气相抽提技术治理污染土壤的方法
Heron et al. Removal of PCE DNAPL from tight clays using in situ thermal desorption
Heron et al. Heat it all the way-mechanisms and results achieved using in-situ thermal remediation
MXPA99010909A (en) Remediation method
Heron et al. Use of thermal conduction heating for the remediation of DNAPL in fractured bedrock
WO2023222796A1 (en) In situ or on-site hybrid thermal desorption: combination of thermal desorption and skimming
van Zutphen et al. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil
McLay Current technical and regulatory developments: Overview of remediation technologies for dense nonaqueous phase liquids
PINEO et al. Heating Methods to Enhance Soil Remediation by Vacuum Extraction: Recent Field Applications in North America and Europe
McLay Overview of Remediation Technologies for Dense Nonaqueous Phase Liquids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20031210

CX01 Expiry of patent term