CN1246706C - 确定地下储层性质的方法和设备 - Google Patents

确定地下储层性质的方法和设备 Download PDF

Info

Publication number
CN1246706C
CN1246706C CNB018142036A CN01814203A CN1246706C CN 1246706 C CN1246706 C CN 1246706C CN B018142036 A CNB018142036 A CN B018142036A CN 01814203 A CN01814203 A CN 01814203A CN 1246706 C CN1246706 C CN 1246706C
Authority
CN
China
Prior art keywords
transmitter
receiver
mode
antenna
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018142036A
Other languages
English (en)
Other versions
CN1447924A (zh
Inventor
赛闻·埃林斯鲁德
特杰·艾德斯默
翰斯·麦格尼·派德森
托·肖格-比特森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electromagnetic Geoservices AS
Original Assignee
Electromagnetic Geoservices AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26244836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1246706(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB0019956A external-priority patent/GB0019956D0/en
Priority claimed from GBGB0023921.0A external-priority patent/GB0023921D0/en
Application filed by Electromagnetic Geoservices AS filed Critical Electromagnetic Geoservices AS
Publication of CN1447924A publication Critical patent/CN1447924A/zh
Application granted granted Critical
Publication of CN1246706C publication Critical patent/CN1246706C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Abstract

本发明披露了一种用于检测或确定地下储层的性质的方法。利用偶极子天线发射机施加电磁场,而利用偶极子天线接收机检测该电磁场。利用直线排列和平行排列的天线进行测量,并利用这两组测量值之间的差值。特性差别表示对应于烃类储层的高电阻层。

Description

确定地下储层性质的方法和设备
技术领域
本发明涉及确定水下和地下储层的性质的方法和设备。本发明特别适用于确定一个已知其大致几何形状和位置的储层是否含有烃类(hydrocarbon)或水,但是本发明也能应用于检测具有特定特性的储层。
背景技术
当前,在进行地质勘测,特别是在对水下情况进行地质勘测时使用最广泛的技术是地震方法。这些地震技术能以某种精度揭示地下地层的结构。然而,尽管地震勘测能揭示潜在储层的位置和形状,但是它不能揭示储层的性质。
因此,其解决方案是对该储层钻孔。然而,钻一口勘探井花费的成本往往在两千五百万英磅左右,而且由于其成功率一般约为十分之一,因此这往往是一种成本很高的试验。
因此,本发明的一个目的是提供一种系统,用于以更高可靠性确定地下储层的性质而无需开掘井孔。
本申请人已经认识到,尽管充油地层与充水地层的地震性质差别不显著,但是它们的电磁电阻率(介电常数)的确不同。因此,采用电磁勘测方法,可以利用这些差别并显著提高预测储层性质的成功率。这表明有可能节省大量成本。
因此,基于本申请人的第PCT/GB01/00419号未决国际专利申请,提供了一种实现这些原理的方法和设备。
该专利申请设想了一种确定已知其大致几何形状和位置的地下储层的性质的方法,该方法包括:对含有该储层的地层施加时变电磁场;检测电磁波场响应;在该波场响应中寻找代表来自烃层的折射波分量;以及根据存在或不存在烃层折射的波分量,确定储层的成分。
该专利申请还设想了一种用于寻找含烃地下储层的方法,该方法包括:对地下地层施加时变电磁场;检测电磁波场响应;在该波场响应中寻找代表折射波的分量;以及根据存在或不存在烃层折射的波分量,确定是否存在任何识别出的储层和/或它的性质。
该专利申请还设想出一种用于确定已知其大致几何形状和位置的地下储层的性质,或者用于寻找含烃地下储层的设备,该设备包括:对含有该储层的地层施加时变电磁场的装置;以及在该波场响应中寻找代表折射波的分量,从而确定是否存在储层和/或储层的性质的装置。
折射波的表现不同,它取决于传播它的地层的性质。具体地说,烃类地层的传播损耗比含水地层的传播损耗低得多,而传播速度却高得多。因此,在存在含油储层并施加EM场时,可以检测到强、快速传播折射波。所以,这样可以表明是否存在储层,或者如果已知存在该储层,表明该储层的性质。
电磁勘测技术本身是已知的。然而,它们没有被广泛用于实践。通常,感兴趣的储层约在海底以下1km或更深。为了在这种情况下作为一种独立技术进行电磁勘测,并使其具有合理分辨率,必须采用短波长。不幸的是,这种短波长被严重衰减。长波长不能提供足够分辨率。因为这些原因,最好采用地震技术。
然而,电磁技术施加的长波长不能提供足够信息以给出各种地层边界的准确位置,但是,如果已经知道地质结构,而且如果特定的被识别出的地层的性质可能会显著改变电磁特性,那么这些较长的波长能用于确定哪个地层的性质。分辨率并不特别重要,于是可以采用不会受到强烈衰减的长波长。
海水的电阻率约为0.3ohm-m,海底下面覆盖层的电阻率通常约在0.3至4ohm-m之间,例如约2ohm-m。然而,油储层的电阻率可能达到20至300ohm-m。采用本发明技术可以利用这样大的差别。通常,含烃地层的电阻率会比含水地层的电阻率大20至300倍。
由于含气/含油地层与含水地层具有不同的电磁性质,所以人们可以预期在含油地层/含水地层的边界存在发射场的反射和折射。然而,覆盖层性质与含水层性质之间的相似性意味着可能不会发生反射和折射。
因此,位于海底或接近位于海底的电偶极子发射机天线感应海水中和水面下地层中的电磁(EM)场和电流。在海水中,EM场被严重衰减,因为在含盐情况下,电导率高,然而,具有较小电导率的水面下地层可能可以作为EM场的引导(低衰减)。如果频率足够低(1Hz数量级),则EM波可以深入到水面下,而且其电阻率比覆盖层(例如充烃类储层)的电阻率高的深埋地质层会对EM波产生影响。根据入射角和偏振状态,入射到高电阻层的EM波会在该层内激发导(引导)波模式(wave mode)。导波模式(ducted wave mode)横向传播并对覆盖层和位于海底的各接收机泄漏能量。术语“折射”波在该说明书中指这种波模式。
理论和实验经验均显示仅对接近布鲁斯特角和临界角(总反射角)的入射角,具有横向磁(TM)偏振(垂直于入射平面的磁场)的入射波,导波模式被观察到。对于横向电(TE)偏振(垂直于入射平面的电场),不能观察到导波模式。由于感应电流与电场成正比,所以对于TE偏振,电流平行于层界面,但是对于TM偏振,有相当大的电流通过层界面。
位于海底的水平偶极子源将产生TE波和TM波,但是通过改变接收机天线的方向,可以改变对两种偏振方式的灵敏度。它表明直线排列方向(偶极子源和接收机偶极子成直线排列)对TM偏振方式更灵敏,而平行方向(偶极子源和接收机偶极子平行排列)对TM偏振方式更灵敏。存在埋入高电阻层会对TM方式产生影响,而不对TE方式产生影响。通过利用两个天线配置进行测量并且通过利用两组测量值之间的差别,可以识别深埋高电阻率区,即烃类储层。
基于上述认识提出本发明。
发明内容
根据本发明的一个方面,提供了一种用于确定地下储层的性质的方法,该方法包括:配置电偶极子发射机天线,所述电偶极子发射机天线具有一个轴,该轴是水平的;配置第一电偶极子接收机天线,所述第一电偶极子接收机天线具有一个轴,该轴与发射机的轴成直线排列;利用发射机对含有储层的地层施加电磁场;利用第一接收机检测电磁波场响应,并根据第一方式,识别该响应中表示来自储层的折射波的分量;配置第二偶极子接收机天线,所述第二偶极子接收机天线具有一个轴,该轴与发射机的轴正交定向;利用发射机对地层施加电磁场;利用第二接收机检测电磁波场响应,并根据第二方式识别该响应中表示来自储层的折射波的分量;以及将基于第一方式折射波响应的储层电导率与基于第二方式折射波响应的储层的电导率进行比较以确定储层的性质;所述第一方式包含横向磁偏振方式和横向电偏振方式其中之一,所述第二方式包含横向电偏振方式和横向磁偏振方式其中之另一。
根据本发明的另一个方面,提供了一种用于寻找含烃地下储层的方法,该方法包括:配置电偶极子发射机天线,所述电偶极子发射机天线具有一个轴,该轴是水平的;配置第一电偶极子接收机天线,所述第一电偶极子接收机天线具有一个轴,该轴与电偶极子发射机天线的轴成直线排列;利用发射机对地下地层施加电磁场;利用第一接收机检测电磁波场响应;根据第一方式,在该响应中寻找表示由高电阻率区产生的折射波的分量;配置第二偶极子接收机天线,所述第二偶极子接收机天线具有一个轴,该轴与电偶极子发射机天线的轴正交定向;利用发射机对地层施加电磁场;利用第二接收机检测电磁波场响应;根据第二方式,寻找该响应中表示折射波的分量;以及将基于第一方式折射波响应的储层电导率与基于第二方式折射波响应的储层的电导率进行比较以确定高电阻率区的存在或性质,或者高电阻率区的存在和性质;所述第一方式包含横向磁偏振方式和横向电偏振方式其中之一,所述第二方式包含横向电偏振方式和横向磁偏振方式其中之另一。
第一方式即TM方式,而第二方式即TE方式。
因此,根据本发明,利用以直线排列和平行排列的发射机和接收机进行测量,并将这两组测量值进行比较。各数值之间的特性差别表示在高电导率地层下面存在高电阻层。高电阻率表示存在烃类,因此各数值的差别是烃类的直接表示。
可以与传统地震技术结合使用该技术以识别烃类储层。
发射机和/或接收机最好包括偶极子天线阵列。
该技术可以应用于勘探陆基地下储层,而且该技术尤其可以应用于勘探位于水下的、特别是位于海洋下的地下储层。最好利用位于地面上的一个或多个发射机施加电磁场,并利用位于地面上的一个或多个接收机进行检测。在优选应用中,发射机和/或接收机位于或靠近海底或其它水域底面。
在优选设置中,发射机和接收机位于拖在船只后面的公共电缆上。这样会产生固定间距或者在采用几个接收机时产生一系列固定间距。发射机最好发射两种方式,因此发射机最好可以包括互相以直角排列的两个偶极子。每个接收机最好包括互相以直角排列的两个偶极子。一个发射机偶极子和一个接收机偶极子最好与电缆方向成直角排列。作为一种选择,发射机和/或接收机可以分别包括与电缆方向倾斜排列(例如成45°)的单个偶极子天线。利用这种排列,可以解决了发射场。
利用这种技术,在使用同一个信号和间距时,可以根据两种方式获得可比结果。即使发射机的频率和振幅发生漂移也不要紧。此外,可以实时检测储层。因此,如果结果显示两种方式存在差别,则明显表明存在充H/C储层,因此可以立即进行更详细研究。
这种系统通常可以使用一个发射源和几个接收机,通常多于10个。不同间距适用于检测位于不同深度的储层。
可以将接收机配置在一条电缆上,也可以配置在一系列平行电缆上。也可以有几个发射机。
实际上,船只正常停止,并在发射前使电缆下沉。在移动到另一个位置之前,以几个不同频率进行发射。该技术尤其适用于边缘检测,并且选择适当分辨率是一件简单事情。然而,如果在性质不明区域内进行勘测,则应该利用例如MT方法或者在进行反射研究后进行变换,测绘顶层电阻率。
如果发射机与接收机之间的间距明显大于储层到海底深度(即覆盖层的厚度)的3倍,可以认为折射波的衰减通常小于直达波和反射波的衰减。其原因是,折射波的路径是从发射机向下到储层的有效距离,即覆盖层的厚度,加上沿储层的间距,加上从储层到各接收机的距离,即再一次加上覆盖层的厚度。
源发射的偏振将确定有多少能量沿接收机方向发射到含油层。因此,选择的发射机采用偶极子天线。通常,最好采用有效长度长的偶极子。因此,发射机偶极子的长度可以是100至1000米,而且在两个正交方向牵引发射机偶极子。接收机偶极子的最佳长度由覆盖层的厚度确定。
发射场可以是脉冲式的,但是最好是具有阶梯变化频率的相干连续波。它可以发射相当长一段时间,在此期间,发射机最好是静止不动的(尽管它可以慢慢移动),而且发射稳定。因此,可以将该电磁场发射3秒至60分钟的一段时间,最好为3分钟到30分钟,例如约为20分钟。还可以排列各接收机以检测直达波和储层折射的折射波,而且分析过程可以包括从直达波的相应数据中提取折射波的相位和振幅。
发射波长应该最好在如下范围内:
0.1s≤λ≤5s其中λ是通过覆盖层发射的波长,s是从海底到储层的距离。λ最好是在约0.5s至2s范围内。发射频率可以在0.01Hz至1kHz范围内,最好在1至20Hz范围内,例如5Hz。
发射机与接收机之间的距离应该最好在如下范围内:
0.5λ≤L≤10λ其中λ是通过覆盖层发射的波长,L是发射机与第一接收机之间的距离。
应当理解本发明可以用于确定特定地层的位置、范围、性质以及容量,而且还可以用于在一段时间内检测这些参数的变化。
本发明还可以扩展到一种勘测地下储量的方法,该方法包括:进行地震勘测以确定区域地质结构;以及在勘测显示存在地下储层的地方,顺序执行上述方法。
附图说明
可以以各种方式实现本发明,现在利用以下实施例以及缩小比例的研究和模拟说明本发明。附图包括:
图1是测试箱的垂直剖视图;
图2是图1所示测试箱的平面图;
图3是在图1所示测试箱内使用的天线的平面图;
图4是图3所示天线的侧视图;
图5和图6分别是为了进行测量设置的测试箱的平面示意图和侧视图;
图7是示出在模型实验过程中对于给定频率的发射电磁场的计算值和测量值的曲线图;
图8是示出根据仿真地球模型的电场计算值的曲线图;
图9是利用船只牵引的电缆的示意侧视图;
图10与图9对应的平面图;以及
图11和图12是类似于图10示出两种变换排列的示意图。
具体实施方式
图1和图2所示的测试箱11包括9m长、6m宽、8m深的密闭空间。将海水12注入测试箱11内。将充满清水的膜盒(diaphgram)放置在测试箱内。膜盒13的长为7.5m、宽为4.25m、厚为0.25m,而且它可以位于测试箱11内水平方向的任何要求高度。
在14℃下测量的海水12的电导率为5.3S/m,而所测量的清水的电导率为0.013S/m。因此,这两个电导率的比值非常接近400。
下式给出导电介质的临界频率fc,即位移电流等于传导电流时的频率:
f c = σ 2 π ϵ r ϵ o ≈ 18 · σ ϵ r GHz
其中εr是介质的相对介电常数,σ是电导率(S/m)。对于水,在感兴趣频率和温度下,εr=80。对于两种电导率值σ=5.2S/m和σ=0.013S/m,临界频率分别为fc=1.2GHz和3Mhz。由于在该实验中,最高频率为0.83MHz,所以几乎可以忽略位移电流,即使对于清水。
对于非磁性、导电介质,下式给出传播常数γ:
γ = jω ϵμ = jω ( ϵ r ϵ o + σ jω ) μ o
≈ jω μ o σ = 2 π j · fσ 5
下式给出被定义为相位变化2π的距离的波长λ:
λ = 2 π Re { γ } ≈ 10 fσ
λ的单位为m,f的单位为MHz,σ的单位为S/m。趋肤深度,即振幅减小1/e的距离与波长具有如下关系:
δ = λ 2 π = π 2 f μ o σ
对于频率范围的极限,对于σ=5.2S/m的海水,
  频率   30kH   830kH
  趋肤深度   1.27m   0.24m
  波长   8.01m   1.52m
而对于σ=0.013S/m的清水,
  频率   30kH   830kH
  趋肤深度   25.4m   4.8m
  波长   160.2m   30.4m
现在参考图3和图4,对发射机和接收机采用两个相同电偶极子天线,如图所示。
每个天线15包括安装在环氧树脂基底17上的两个15cm见方的正方形黄铜板16。每个黄铜板16分别与同轴电缆18相连,同轴电缆18穿过与黄铜板16成直角安装的环氧树脂管19与平衡-不平衡变换器相连,该平衡-不平衡变换器将天线的阻抗从在海水中的约2Ω变换到约50Ω。
图5和图6示出测量。自动网络分析器(ANA)对作为距离(间距)和频率的函数的各天线之间的传输进行测量。图5所示的设置示出天线15为平行方向。通过在水平平面上将两个天线旋转90°,可以实现直线排列方向。
图7示出测量结果以及相应的理论结果。该测量结果与理论结果非常相符,而且该图示出两组曲线,一条代表平行天线,另一条代表直线排列天线。对无穷小偶极子天线计算理论结果。该图中示出天线的方向和频率。
相对于可能的实际情况,换算实验参数。为了对振幅数量级有所了解,如果按系数40,000缩小频率并按系数10缩小电导率,则要按系数632加大尺寸,所建立的实验方法对应于位于300m厚、电导率为0.52S/m的覆盖层之下的电导率为0.0013S/m、厚度为150m的低电导率层。相应频率范围在0.75Hz至20Hz之间,而且天线长度接近300m。
通过利用典型深水水下沉积物的电参数值对简单水平分层地球模型进行计算机模拟,对采用TE方式和TM方式的方法进行测试。该模型具有无限绝缘空气层、0.3125Ωm的1150米水层、1Ωm的950米覆盖层、50Ωm的150米储层区以及1Ωm的无限底层。图8示出由1Hz信号产生的、作为接收机间距(offset)的函数的振幅响应|E|(电场)。该图示出TM方式(具有x的实线)和TE方式(具有+的虚线)的响应。在5km间距时,TM方式的振幅约大10倍。作为参考,对这两种配置示出1Ωm均匀半空中(halfspace)的响应(即对应于充水储层或该储层区域之外的响应)。TE方式与其半空的偏差最大,即该方式对烃类层更灵敏。
图9和图10示出牵引电缆(或浮缆)32的船只刚好位于海底33的上方。电缆32承载发射机偶极子天线34和几个接收机偶极子35,仅示出其中的4个偶极子。水深约为1000m,发射机34与最近接收机35之间的间距可以约为2000m,而且各接收机之间可以相隔约100m。船只31通过电缆32控制发射机34,而且接收机35检测的响应再通过电缆32实时返回船只31。
图10示出船31牵引3条分别承载一系列接收机45、46、47的电缆41、42、43的排列。利用桅杆44将3条电缆41、42、43间隔开。
在图11所示的排列中,发射机48采用两个偶极子天线形式,一个平行于电缆42,另一个与电缆42成直角。
图12所示的排列与图11类似,但是在这种情况下,发射机51是与电缆42成45°排列的一个偶极子。

Claims (18)

1.一种用于确定地下储层的性质的方法,该方法包括:配置电偶极子发射机天线,所述电偶极子发射机天线具有一个轴,该轴是水平的;配置第一电偶极子接收机天线,所述第一电偶极子接收机天线具有一个轴,该轴与电偶极子发射机天线的轴成直线排列;利用发射机对含有储层的地层施加电磁场;利用第一接收机检测电磁波场响应,并根据第一方式,识别该响应中表示来自储层的折射波的分量;配置第二偶极子接收机天线,所述第二偶极子接收机天线具有一个轴,该轴与电偶极子发射机天线的轴正交定向;利用发射机对地层施加电磁场;利用第二接收机检测电磁波场响应,并根据第二方式识别该响应中表示来自储层的折射波的分量;以及将基于第一方式折射波响应的储层电导率与基于第二方式折射波响应的储层的电导率进行比较以确定储层的性质;所述第一方式包含横向磁偏振方式和横向电偏振方式其中之一,所述第二方式包含横向电偏振方式和横向磁偏振方式其中之另一。
2.一种用于寻找含烃地下储层的方法,该方法包括:配置电偶极子发射机天线,所述电偶极子发射机天线具有一个轴,该轴是水平的;配置第一电偶极子接收机天线,所述第一电偶极子接收机天线具有一个轴,该轴与电偶极子发射机天线的轴成直线排列;利用发射机对地下地层施加电磁场;利用第一接收机检测电磁波场响应;根据第一方式,在该响应中寻找表示由高电阻率区产生的折射波的分量;配置第二偶板子接收机天线,所述第二偶极子接收机天线具有一个轴,该轴与电偶极子发射机天线的轴正交定向;利用发射机对地层施加电磁场;利用第二接收机检测电磁波场响应;根据第二方式,寻找该响应中表示折射波的分量;以及将基于第一方式折射波响应的储层电导率与基于第二方式折射波响应的储层的电导率进行比较以确定高电阻率区的存在或性质,或者高电阻率区的存在和性质;所述第一方式包含横向磁偏振方式和横向电偏振方式其中之一,所述第二方式包含横向电偏振方式和横向磁偏振方式其中之另一。
3.根据权利要求1或2所述的方法,其特征在于,第一方式是横向磁偏振方式,第二方式是横向电偏振方式。
4.根据权利要求1或2所述的方法,其特征在于,发射机或接收机,或者发射机和接收机两者分别包括偶极子天线阵列。
5.根据权利要求1或2所述的方法,其特征在于,发射机或接收机,或者发射机和接收机两者位于或靠近海底或其它水域底面。
6.根据权利要求1或2所述的方法,其特征在于,发射机和接收机位于拖在船只后面的公共电缆上。
7.根据权利要求1或2所述的方法,其特征在于,发射机包括互相以直角排列的两个偶极子天线。
8.根据权利要求1或2所述的方法,其特征在于,所述两个接收机包括互相以直角排列的两个偶极子天线。
9.根据权利要求6所述的方法,其特征在于,发射机或发射机和接收机中的每一个分别包括与电缆方向倾斜排列的单个偶极子天线。
10.根据权利要求1或2所述的方法,其特征在于,在进行发射期间,连续改变电磁场的频率。
11.根据权利要求1或2所述的方法,其特征在于,将电磁场发射3秒至60分钟的一段时间。
12.根据权利要求11所述的方法,其特征在于,发射时间在3分钟至30分钟之间。
13.根据权利要求1或2所述的方法,其特征在于,下式给出发射波长:
0.1s≤λ≤10s
其中λ是通过覆盖层发射的波长,s是从海底到储层的距离。
14.根据权利要求1或2所述的方法,其特征在于,
发射机与接收机之间的距离应该最好在如下范围内:
0.5λ≤L≤10λ
其中λ是通过覆盖层发射的波长,L是发射机与接收机之间的距离。
15.根据权利要求1或2所述的方法,其特征在于,发射频率在0.01Hz至1kHz之间。
16.根据权利要求15所述的方法,其特征在于,发射频率在1Hz至20Hz之间。
17.根据权利要求1或2所述的方法,其特征在于,该方法包括抑制直达波,从而降低接收机的要求动态范围,而提高折射波的分辨率。
18.一种勘测地下储量的方法,该方法包括:进行地震勘测以确定区域地质结构;以及在勘测显示存在地下储层的地方,随后执行权利要求1或2所述的方法。
CNB018142036A 2000-08-14 2001-08-02 确定地下储层性质的方法和设备 Expired - Fee Related CN1246706C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0019956A GB0019956D0 (en) 2000-08-14 2000-08-14 Method and apparatus for determining the nature of subterranean reservoirs
GB0019956.2 2000-08-14
GB0023921.1 2000-09-29
GBGB0023921.0A GB0023921D0 (en) 2000-09-29 2000-09-29 Method and apparatus for determining the nature of subterranean reservoirs

Publications (2)

Publication Number Publication Date
CN1447924A CN1447924A (zh) 2003-10-08
CN1246706C true CN1246706C (zh) 2006-03-22

Family

ID=26244836

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018142036A Expired - Fee Related CN1246706C (zh) 2000-08-14 2001-08-02 确定地下储层性质的方法和设备

Country Status (16)

Country Link
US (2) US7038456B2 (zh)
EP (1) EP1309887B2 (zh)
CN (1) CN1246706C (zh)
AT (1) ATE263383T1 (zh)
AU (3) AU7858001A (zh)
BR (2) BR0113208A (zh)
CA (1) CA2417832C (zh)
DE (1) DE60102595T2 (zh)
DK (1) DK1309887T4 (zh)
EG (1) EG22885A (zh)
ES (1) ES2218438T3 (zh)
MX (1) MXPA03001367A (zh)
MY (1) MY127089A (zh)
NO (1) NO324897B1 (zh)
PT (1) PT1309887E (zh)
WO (1) WO2002014906A1 (zh)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9818875D0 (en) 1998-08-28 1998-10-21 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
GB0002422D0 (en) * 2000-02-02 2000-03-22 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
CN1246706C (zh) * 2000-08-14 2006-03-22 电磁地形服务公司 确定地下储层性质的方法和设备
GB2383133A (en) * 2001-08-07 2003-06-18 Statoil Asa Investigation of subterranean reservoirs
GB2378511B (en) * 2001-08-07 2005-12-28 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs
GB2385923B (en) * 2002-05-24 2004-07-28 Statoil Asa System and method for electromagnetic wavefield resolution
US6842006B2 (en) 2002-06-27 2005-01-11 Schlumberger Technology Corporation Marine electromagnetic measurement system
GB2390904B (en) 2002-07-16 2004-12-15 Univ Southampton Electromagnetic surveying for hydrocarbon reservoirs
GB2395563B (en) 2002-11-25 2004-12-01 Activeem Ltd Electromagnetic surveying for hydrocarbon reservoirs
WO2004053528A1 (en) * 2002-12-10 2004-06-24 The Regents Of The University Of California System and method for hydrocarbon reservoir monitoring using controlled-source electromagnetic fields
US7023213B2 (en) 2002-12-10 2006-04-04 Schlumberger Technology Corporation Subsurface conductivity imaging systems and methods
GB2399640B (en) * 2003-03-17 2007-02-21 Statoil Asa Method and apparatus for determining the nature of submarine reservoirs
GB2402745B (en) 2003-06-10 2005-08-24 Activeem Ltd Electromagnetic surveying for hydrocarbon reservoirs
US7228903B2 (en) * 2003-07-08 2007-06-12 Baker Hughes Incorporated Apparatus and method for wireline imaging in nonconductive muds
GB2409900B (en) 2004-01-09 2006-05-24 Statoil Asa Processing seismic data representing a physical system
GB2411006B (en) 2004-02-16 2006-01-25 Ohm Ltd Electromagnetic surveying for hydrocarbon reservoirs
GB2413851B (en) 2004-05-06 2006-08-09 Ohm Ltd Electromagnetic surveying for hydrocarbon reservoirs
GB2420855B (en) * 2004-12-02 2009-08-26 Electromagnetic Geoservices As Source for electromagnetic surveying
GB2422673B (en) * 2005-02-01 2010-03-24 Electromagnetic Geoservices As Optimum signal for sea bed logging
GB2423370B (en) 2005-02-22 2007-05-02 Ohm Ltd Electromagnetic surveying for resistive or conductive bodies
US7295013B2 (en) 2005-04-11 2007-11-13 Schlumberger Technology Corporation Remotely operable measurement system and method employing same
US7894989B2 (en) 2005-06-09 2011-02-22 Exxonmobil Upstream Research Co. Method for determining earth vertical electrical anisotropy in marine electromagnetic surveys
WO2006135568A2 (en) 2005-06-10 2006-12-21 Exxonmobil Upstream Research Company Method for controlled source electromagnetic reconnaissance surveying
US7330790B2 (en) * 2005-10-03 2008-02-12 Seismic Sciences, Inc. Method of seismo electromagnetic detecting of hydrocarbon deposits
US7411399B2 (en) 2005-10-04 2008-08-12 Schlumberger Technology Corporation Electromagnetic survey system with multiple sources
NO323889B3 (no) * 2005-11-03 2007-07-16 Advanced Hydrocarbon Mapping As Framgangsmåte for kartlegging av hydrokarbonreservoarer samt apparat for anvendelse ved gjennomføring av framgangsmåten
US7884612B2 (en) 2005-12-22 2011-02-08 Westerngeco L.L.C. Multi-component field sources for subsea exploration
GB2434868B (en) 2006-02-06 2010-05-12 Statoil Asa Method of conducting a seismic survey
GB2435693A (en) * 2006-02-09 2007-09-05 Electromagnetic Geoservices As Seabed electromagnetic surveying
NO326957B1 (no) * 2006-02-13 2009-03-23 Norsk Hydro As Elektromagnetisk metode pa grunt vann med bruk av styrt kilde
CA2643057C (en) 2006-02-21 2015-05-26 Exxonmobil Upstream Research Company Method for electromagnetic air-wave suppression by active cancellation and shielding
US20070216416A1 (en) * 2006-03-15 2007-09-20 Baker Hughes Incorporated Electromagnetic and Magnetostatic Shield To Perform Measurements Ahead of the Drill Bit
GB2442849B (en) * 2006-03-29 2008-08-20 Pgs Geophysical As Low noise towed electromagnetic system for subsurface exploration
US7471089B2 (en) 2006-04-24 2008-12-30 Schlumberger Technology Corporation Electrode array for marine electric and magnetic field measurements having first and second sets of electrodes connected to respective first and second cables
BRPI0711282B8 (pt) * 2006-05-04 2018-09-11 Exxonmobil Upstream Res Co métodos para determinar mudanças dependentes de tempo no teor de hidrocarboneto de um reservatório de sub-superfície
GB2439378B (en) * 2006-06-09 2011-03-16 Electromagnetic Geoservices As Instrument for measuring electromagnetic signals
US7860655B2 (en) 2006-07-14 2010-12-28 Westerngeco L.L.C. Electromagnetically detecting thin resistive bodies in shallow water and terrestrial environments
US7657391B2 (en) 2006-07-14 2010-02-02 Westerngeco L.L.C. Electromagnetically detecting thin resistive bodies in shallow water and terrestrial environments
GB2441786A (en) * 2006-09-15 2008-03-19 Electromagnetic Geoservices As Combined electromagnetic and seismic surveying
GB2442749B (en) 2006-10-12 2010-05-19 Electromagnetic Geoservices As Positioning system
US7400977B2 (en) 2006-10-12 2008-07-15 Schlumberger Technology Corporation Computing values for surveying a subterranean structure based on measurements according to different electromagnetic survey techniques
US7504829B2 (en) * 2006-10-24 2009-03-17 Westerngeco L.L.C. Methods and apparatus for subsurface geophysical exploration using joint inversion of steady-state and transient data
US7430474B2 (en) 2006-10-31 2008-09-30 Schlumberger Technology Corporation Removing sea surface-related electromagnetic fields in performing an electromagnetic survey
US7667464B2 (en) 2006-11-02 2010-02-23 Westerngeco L.L.C. Time segmentation of frequencies in controlled source electromagnetic (CSEM) applications
NO326978B1 (no) * 2006-11-27 2009-03-30 Advanced Hydrocarbon Mapping As Framgangsmate for kartlegging av hydrokarbonreservoarer pa grunt vann samt apparat for anvendelse ved gjennomforing av framgangsmaten
GB2445582A (en) 2007-01-09 2008-07-16 Statoil Asa Method for analysing data from an electromagnetic survey
US8207901B2 (en) * 2007-01-29 2012-06-26 Agency For Science, Technology And Research Antenna for underwater communications
NO330103B1 (no) 2007-02-09 2011-02-21 Statoil Asa Sammenstilling for boring og logging, fremgangsmate for elektropulsboring og logging
US7659724B2 (en) 2007-03-29 2010-02-09 Westerngeco L.L.C. Surveying method using an arrangement of plural signal sources
US7826972B2 (en) 2007-03-30 2010-11-02 Westerngeco L.L.C Methods of electromagnetic logging using a current focusing receiver
US7633296B2 (en) 2007-03-30 2009-12-15 Westerngeco L.L.C. Receivers and methods for electromagnetic measurements
US7640110B2 (en) * 2007-04-27 2009-12-29 Schlumberger Technology Corporation Pixel based inversion method for surface electromagnetic measurement
US7872477B2 (en) * 2007-04-30 2011-01-18 Kjt Enterprises, Inc. Multi-component marine electromagnetic signal acquisition cable and system
US8026723B2 (en) * 2007-04-30 2011-09-27 Kjt Enterprises, Inc. Multi-component marine electromagnetic signal acquisition method
US7746077B2 (en) 2007-04-30 2010-06-29 Kjt Enterprises, Inc. Method for measuring the magnetotelluric response to the earth's subsurface
NZ581872A (en) 2007-05-14 2012-07-27 Ocean Floor Geophysics Inc Underwater electric field electromagnetic prospecting system
US7863901B2 (en) * 2007-05-25 2011-01-04 Schlumberger Technology Corporation Applications of wideband EM measurements for determining reservoir formation properties
US7705599B2 (en) * 2007-07-09 2010-04-27 Kjt Enterprises, Inc. Buoy-based marine electromagnetic signal acquisition system
US7852087B2 (en) * 2007-08-10 2010-12-14 Schlumberger Technology Corporation Removing effects of near surface geology from surface-to-borehole electromagnetic data
US7949470B2 (en) 2007-11-21 2011-05-24 Westerngeco L.L.C. Processing measurement data in a deep water application
US7834632B2 (en) 2007-12-03 2010-11-16 Pgs Geophysical As Receiver streamer system and method for marine electromagnetic surveying
US7671598B2 (en) * 2007-12-03 2010-03-02 Pgs Geophysical As Method and apparatus for reducing induction noise in measurements made with a towed electromagnetic survey system
US7660671B2 (en) * 2007-12-06 2010-02-09 Schlumberger Technology Corporation Method and apparatus for electromagnetic logging of a formation
AU2008335609B2 (en) * 2007-12-12 2013-07-18 Exxonmobil Upstream Research Company Method and apparatus for evaluating submarine formations
US20090265111A1 (en) * 2008-04-16 2009-10-22 Kjt Enterprises, Inc. Signal processing method for marine electromagnetic signals
US7999552B2 (en) * 2008-06-03 2011-08-16 Westerngeco L.L.C. Sensor cable for electromagnetic surveying
US8080999B2 (en) * 2008-07-05 2011-12-20 Westerngeco L.L.C. Sensor cable for electromagnetic surveying
US8499830B2 (en) * 2008-07-07 2013-08-06 Bp Corporation North America Inc. Method to detect casing point in a well from resistivity ahead of the bit
US7861801B2 (en) * 2008-07-07 2011-01-04 Bp Corporation North America Inc. Method to detect coring point from resistivity measurements
US8061442B2 (en) * 2008-07-07 2011-11-22 Bp Corporation North America Inc. Method to detect formation pore pressure from resistivity measurements ahead of the bit during drilling of a well
US8228208B2 (en) * 2008-07-28 2012-07-24 Westerngeco L.L.C. Communication system for survey source and receiver
US20100045296A1 (en) * 2008-08-19 2010-02-25 Pgs Geophysical As Cable system for marine data acquisition
GB2466764B (en) 2008-10-02 2013-03-27 Electromagnetic Geoservices As Method for enhanced subsurface electromagnetic sensitivity
US8164340B2 (en) * 2008-10-23 2012-04-24 Kjt Enterprises, Inc. Method for determining electromagnetic survey sensor orientation
EP2376952A4 (en) * 2008-12-15 2017-03-01 The Governing Council Of The University Of Toronto A continuously towed seafloor electromagnetic prospecting system
US8143897B2 (en) * 2009-02-11 2012-03-27 Mtem Ltd. Short-offset transient electromagnetic geophysical surveying
US8729903B2 (en) * 2009-11-09 2014-05-20 Exxonmobil Upstream Research Company Method for remote identification and characterization of hydrocarbon source rocks using seismic and electromagnetic geophysical data
US20110255368A1 (en) * 2010-04-14 2011-10-20 S Dow Gustav G Ran Mattias Method for 2D and 3D electromagnetic field measurements using a towed marine electromagnetic survey system
US9588250B2 (en) 2010-04-14 2017-03-07 Baker Hughes Incorporated Three-coil system with short nonconductive inserts for transient MWD resistivity measurements
US8575938B2 (en) * 2010-04-20 2013-11-05 Pgs Geophysical As Electrical power system for towed electromagnetic survey streamers
GB2481845B (en) 2010-07-08 2014-04-30 Electromagnetic Geoservices As Low noise marine electric field sensor system
CN102466822B (zh) 2010-11-04 2013-09-04 中国石油天然气集团公司 一种海洋电磁勘探四极互组合布极方法
US20120194196A1 (en) * 2011-02-02 2012-08-02 Leendert Combee Electromagnetic Source to Produce Multiple Electromagnetic Components
US8587316B2 (en) 2011-12-08 2013-11-19 Pgs Geophysical As Noise reduction systems and methods for a geophysical survey cable
US8736269B2 (en) 2011-12-27 2014-05-27 Pgs Geophysical As Electromagnetic geophysical survey systems and methods employing electric potential mapping
US8922214B2 (en) 2011-12-27 2014-12-30 Pgs Geophysical As Electromagnetic geophysical survey systems and methods employing electric potential mapping
US9239401B2 (en) * 2012-03-01 2016-01-19 Pgs Geophysical As Stationary source for marine electromagnetic surveying

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2077707A (en) 1933-08-01 1937-04-20 Melton Benjamin Starr Electromagnetic prospecting method
US2531088A (en) 1947-10-16 1950-11-21 Standard Oil Dev Co Electrical prospecting method
US3052836A (en) 1957-12-24 1962-09-04 Shell Oil Co Method for marine electrical prospecting
US3398356A (en) 1964-02-10 1968-08-20 Westinghouse Electric Corp Method utilizing a pair of subsurface antennas for determining the physical properties effecting radio energy propagation through earth
GB1239953A (en) 1967-06-06 1971-07-21 Rech S Geol Et Minieres Bureau Improvements in or relating to methods and apparatus for determining the electrical resistance of the sub-soil
US4010413A (en) 1971-08-23 1977-03-01 Geo-Nav, Inc. Plural frequency geological exploration system and method with phase comparison
US3806795A (en) 1972-01-03 1974-04-23 Geophysical Survey Sys Inc Geophysical surveying system employing electromagnetic impulses
FR2288988A1 (fr) * 1974-07-30 1976-05-21 Duroux Jean Procede et appareil de prospection en mer par mesure de champs electromagnetiques
US4079309A (en) 1976-09-03 1978-03-14 The United States Of America As Represented By The Secretary Of The Navy Method for determining changes in earth resistivity by measuring phase difference between magnetic field components
FR2390743A1 (fr) 1977-05-09 1978-12-08 Geophysique Cie Gle Prospection electromagnetique du sous-sol par induction, associee a une prospection par sondage electrique
US4258321A (en) * 1978-03-09 1981-03-24 Neale Jr Dory J Radio geophysical surveying method and apparatus
US4308499A (en) 1978-05-26 1981-12-29 Kali Und Salz A.G. Method utilizing electromagnetic wave pulses for determining the locations of boundary surfaces of underground mineral deposits
US4446434A (en) 1978-12-20 1984-05-01 Conoco Inc. Hydrocarbon prospecting method with changing of electrode spacing for the indirect detection of hydrocarbon reservoirs
US5025218A (en) 1979-04-23 1991-06-18 The United States Of America As Represented By The Secretary Of The Navy Pulsed field system for detecting the presence of a target in a subsurface environment
MA18895A1 (fr) 1979-07-09 1981-04-01 Cie Generale De Geophysique Sa Procede et dispositif de prospection geophysique a courants transitoires
SE419269B (sv) 1979-11-29 1981-07-20 Boliden Ab Forfarande och anordning for bestemning av markens elektriska ledningsformaga
FR2479992A1 (fr) 1980-04-03 1981-10-09 Duroux Jean Procede de prospection geophysique par reflexion electromagnetique par mesure du champ electrique reflechi et moyen de mise en oeuvre par emetteur et recepteur rapproches
FR2497360A1 (fr) 1980-12-31 1982-07-02 Schlumberger Prospection Mesure de phase et d'amplitude pour un systeme de diagraphie des proprietes dielectriques
US4451789A (en) 1981-09-28 1984-05-29 Nl Industries, Inc. Logging tool and method for measuring resistivity of different radial zones at a common depth of measurement
US4506225A (en) 1981-12-28 1985-03-19 Barringer Research Limited Method for remote measurement of anomalous complex variations of a predetermined electrical parameter in a target zone
US4489276A (en) 1982-01-20 1984-12-18 The United States Of America As Represented By The United States Department Of Energy Dual-cone double-helical downhole logging device
CA1133058A (en) 1982-02-18 1982-10-05 Geonics Limited Electromagnetic geophysical surveying system
PL141895B1 (en) 1983-03-03 1987-09-30 Instytut Gornictwa Naftowego Gaz Method of and system for direct prospecting of hydrocarbon accumulations
US4594551A (en) 1983-03-31 1986-06-10 Texaco Inc. Method of deep penetration well logging using three receivers
US4617518A (en) * 1983-11-21 1986-10-14 Exxon Production Research Co. Method and apparatus for offshore electromagnetic sounding utilizing wavelength effects to determine optimum source and detector positions
US4616184A (en) 1984-06-27 1986-10-07 The United States Of America As Represented By The United States Department Of Energy CSAMT method for determining depth and shape of a sub-surface conductive object
US4652829A (en) 1984-12-28 1987-03-24 Schlumberger Technology Corp. Electromagnetic logging apparatus with button antennas for measuring the dielectric constant of formation surrounding a borehole
DE3529466A1 (de) 1985-08-16 1987-04-09 Pipeline Engineering Ges Fuer Verfahren zur bestimmung der grenzen von unterirdischen erdgas-lagerstaetten
US4686477A (en) 1985-09-30 1987-08-11 Mobil Oil Corporation Multiple frequency electric excitation method and identifying complex lithologies of subsurface formations
US5570024A (en) 1986-11-04 1996-10-29 Paramagnetic Logging, Inc. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes
US5633590A (en) 1986-11-04 1997-05-27 Paramagnetic Logging, Inc. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present
US4835474A (en) 1986-11-24 1989-05-30 Southwest Research Institute Method and apparatus for detecting subsurface anomalies
GB8825435D0 (en) 1988-10-31 1988-12-29 Cross T E Detection of non metallic material
US5066916A (en) 1990-01-10 1991-11-19 Halliburton Logging Services, Inc. Technique for separating electromagnetic refracted signals from reflected signals in down hole electromagnetic tools
US5877995A (en) 1991-05-06 1999-03-02 Exxon Production Research Company Geophysical prospecting
US5280284A (en) 1991-06-11 1994-01-18 Johler J Ralph Method of determining the electrical properties of the earth by processing electromagnetic signals propagated through the earth from a capacitor
US5192952A (en) 1991-06-11 1993-03-09 Johler J Ralph Method and apparatus for transmitting electromagnetic signals into the earth from a capacitor
US5230386A (en) 1991-06-14 1993-07-27 Baker Hughes Incorporated Method for drilling directional wells
USH1490H (en) 1992-09-28 1995-09-05 Exxon Production Research Company Marine geophysical prospecting system
USH1524H (en) 1993-01-15 1996-04-02 Exxon Production Research Company Method for using electromagnetic grounded antennas as directional geophones
US5486764A (en) 1993-01-15 1996-01-23 Exxon Production Research Company Method for determining subsurface electrical resistance using electroseismic measurements
US5373443A (en) 1993-10-06 1994-12-13 The Regents, University Of California Method for imaging with low frequency electromagnetic fields
US6060885A (en) 1993-10-14 2000-05-09 Western Atlas International, Inc. Method and apparatus for determining the resistivity and conductivity of geological formations surrounding a borehole
US5563513A (en) 1993-12-09 1996-10-08 Stratasearch Corp. Electromagnetic imaging device and method for delineating anomalous resistivity patterns associated with oil and gas traps
US5400030A (en) 1994-02-09 1995-03-21 Exxon Production Research Company Detection and mapping of hydrocarbon reservoirs with radar waves
US5811973A (en) 1994-03-14 1998-09-22 Baker Hughes Incorporated Determination of dielectric properties with propagation resistivity tools using both real and imaginary components of measurements
US5892361A (en) 1994-03-14 1999-04-06 Baker Hughes Incorporated Use of raw amplitude and phase in propagation resistivity measurements to measure borehole environmental parameters
NO314646B1 (no) 1994-08-15 2003-04-22 Western Atlas Int Inc Transient-elektromagnetisk måleverktöy og fremgangsmåte for bruk i en brönn
JP3423948B2 (ja) 1994-08-25 2003-07-07 ジオ・サーチ株式会社 地中探査方法及び地中探査装置
USH1561H (en) 1994-09-22 1996-07-02 Exxon Production Research Company Method and apparatus for detection of seismic and electromagnetic waves
FR2729222A1 (fr) 1995-01-10 1996-07-12 Commissariat Energie Atomique Determination de la porosite et de la permeabilite d'une formation geologique a partir du phenomene d'electrofiltration
RU2100829C1 (ru) 1995-03-06 1997-12-27 Акционерное общество "Новокуйбышевский нефтеперерабатывающий завод" Способ поиска нефтепродуктов в земле
DE19518420C2 (de) 1995-05-19 1998-01-02 Diether Alfred Schroeder Schaltungsanordnung zur Verwendung in einem geophysikalischen Prospektionsverfahren
GB2301902A (en) 1995-06-08 1996-12-18 Baker Hughes Inc Detecting boundaries between strata while drilling a borehole
GB2304483B (en) 1995-08-18 2000-03-29 London Electricity Plc System for and method of determining the location of an object in a medium
US6023168A (en) 1995-08-21 2000-02-08 Schlumberger Technology Corporation Apparatus and method for measuring the resistivity of underground formations
GB9521171D0 (en) 1995-10-17 1995-12-20 Millar John W A Detection method
US5886526A (en) 1996-06-19 1999-03-23 Schlumberger Technology Corporation Apparatus and method for determining properties of anisotropic earth formations
US5841280A (en) 1997-06-24 1998-11-24 Western Atlas International, Inc. Apparatus and method for combined acoustic and seismoelectric logging measurements
US6188222B1 (en) 1997-09-19 2001-02-13 Schlumberger Technology Corporation Method and apparatus for measuring resistivity of an earth formation
NO315725B1 (no) 1998-06-18 2003-10-13 Norges Geotekniske Inst Anordning for måling og overvåking av resistivitet utenfor et brönnrör i etpetroleumsreservoar
US6188221B1 (en) 1998-08-07 2001-02-13 Van De Kop Franz Method and apparatus for transmitting electromagnetic waves and analyzing returns to locate underground fluid deposits
GB9818875D0 (en) 1998-08-28 1998-10-21 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
US6573855B1 (en) 1998-08-31 2003-06-03 Osaka Gas Co., Ltd. Three-dimensional questing method, three-dimensional voxel data displaying method, and device therefor
US6163155A (en) 1999-01-28 2000-12-19 Dresser Industries, Inc. Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations
US6184685B1 (en) 1999-02-22 2001-02-06 Halliburton Energy Services, Inc. Mulitiple spacing resistivity measurements with receiver arrays
AU3622200A (en) 1999-03-12 2000-09-28 Profile Technologies, Inc. Dynamic electromagnetic methods for direct prospecting for oil
GB9909040D0 (en) 1999-04-20 1999-06-16 Flight Refueling Ltd Systems and methods for locating subsurface objects
US6353321B1 (en) 2000-01-27 2002-03-05 Halliburton Energy Services, Inc. Uncompensated electromagnetic wave resistivity tool for bed boundary detection and invasion profiling
GB0002422D0 (en) 2000-02-02 2000-03-22 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
CN1246706C (zh) * 2000-08-14 2006-03-22 电磁地形服务公司 确定地下储层性质的方法和设备
GB2378511B (en) 2001-08-07 2005-12-28 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs
GB2383133A (en) 2001-08-07 2003-06-18 Statoil Asa Investigation of subterranean reservoirs

Also Published As

Publication number Publication date
BRPI0113208B1 (pt) 2018-11-21
NO324897B1 (no) 2007-12-27
DE60102595D1 (de) 2004-05-06
ATE263383T1 (de) 2004-04-15
AU7858001A (en) 2002-02-25
DE60102595T2 (de) 2005-03-03
EG22885A (en) 2003-10-30
EP1309887A1 (en) 2003-05-14
BRPI0113208B8 (pt) 2019-08-20
DK1309887T4 (en) 2017-10-16
US7202669B2 (en) 2007-04-10
CN1447924A (zh) 2003-10-08
MXPA03001367A (es) 2003-06-06
EP1309887B1 (en) 2004-03-31
PT1309887E (pt) 2004-08-31
CA2417832C (en) 2005-10-11
ES2218438T3 (es) 2004-11-16
US20040027130A1 (en) 2004-02-12
EP1309887B2 (en) 2017-07-19
US7038456B2 (en) 2006-05-02
AU2007201981B2 (en) 2009-08-27
DK1309887T3 (da) 2004-06-07
AU2007201981A1 (en) 2007-05-24
BR0113208A (pt) 2003-07-01
WO2002014906A1 (en) 2002-02-21
NO20020201D0 (no) 2002-01-14
US20060091889A1 (en) 2006-05-04
CA2417832A1 (en) 2002-02-21
NO20020201L (no) 2002-04-02
AU2001278580B2 (en) 2007-04-26
MY127089A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
CN1246706C (zh) 确定地下储层性质的方法和设备
CN1254698C (zh) 确定地下储层性质的方法和装置
CN1178072C (zh) 用于确定地下储藏层特性的方法
US7483792B2 (en) Electromagnetic surveying for hydrocarbon reservoirs
US6696839B2 (en) Electromagnetic methods and apparatus for determining the content of subterranean reservoirs
CN100335917C (zh) 用于确定水下储层的性质的方法和装置
AU2001278580A1 (en) Method and apparatus for determining the nature of subterranean reservoirs
US20070150201A1 (en) Electromagnetic surveying for hydrocarbon reservoirs
BRPI0606711B1 (pt) Method for determining the electrical properties of a training containing submarine oil fluid
GB2413187A (en) Investigation of subterranean reservoirs
Thompson et al. Electromagnetic-to-seismic conversion: a new direct hydrocarbon indicator
Wang et al. Well-hole electromagnetic exploration techniques and its research progress
RU2277251C2 (ru) Способ для определения характера подземных резервуаров и способ поиска углеводородсодержащих подземных резервуаров
Corwin et al. Offshore applications of the direct-current resistivity method
Amarsaikhan et al. Evaluation of Horizontal Layers by Cross-Hole Borehole Radar
Sinha Stratigraphic mapping of sedimentary formations in Southern Ontario by ground EM methods

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060322

Termination date: 20200802

CF01 Termination of patent right due to non-payment of annual fee