CN100335917C - 用于确定水下储层的性质的方法和装置 - Google Patents

用于确定水下储层的性质的方法和装置 Download PDF

Info

Publication number
CN100335917C
CN100335917C CNB2004800071270A CN200480007127A CN100335917C CN 100335917 C CN100335917 C CN 100335917C CN B2004800071270 A CNB2004800071270 A CN B2004800071270A CN 200480007127 A CN200480007127 A CN 200480007127A CN 100335917 C CN100335917 C CN 100335917C
Authority
CN
China
Prior art keywords
field
receiver
seismic
wave
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800071270A
Other languages
English (en)
Other versions
CN1761889A (zh
Inventor
泰耶·艾德斯墨
斯韦恩·埃林斯鲁德
安德森·法里斯特维
汉斯·M·派德森
斯塔莱·约翰森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electromagnetic Geoservices AS
Original Assignee
Electromagnetic Geoservices AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9954916&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN100335917(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Electromagnetic Geoservices AS filed Critical Electromagnetic Geoservices AS
Publication of CN1761889A publication Critical patent/CN1761889A/zh
Application granted granted Critical
Publication of CN100335917C publication Critical patent/CN100335917C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6163Electromagnetic

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种用于调查地下地层的系统。从相同位置施加电磁场和地震事件,并利用各自位于与第一位置相隔开的第二位置处的各自的接收器检测响应。结合响应以识别地下储层的存在性和/或性质。使用折射波成分。

Description

用于确定水下储层的性质的方法和装置
技术领域
本发明涉及一种用于检测和确定水下和地下储层(reservoir)的性质的方法和装置。本发明尤其适用于确定储层是否包含烃类或水,以及用于检测具有特定特性的储层。
背景技术
目前,使用得最广泛的地质勘测技术,尤其是在水下情形中使用得最广泛的地质勘测技术,是地震方法。这些地震技术能够较精确地揭示水下地层的结构。但是,虽然地震勘测可揭示潜在的储层的位置和形状,它却通常无法揭示储层的性质。
因此,解决方案是钻孔到储层中。但是,钻勘探井所涉及的花费通常在2500万英镑左右,并且由于成功率通常约为1/10,所以这往往是非常昂贵的活动。
因此,本发明的一个目的是提供一种系统,用于定位地下储层并用于更肯定地确定其性质,而无需挖钻孔。
本申请人已意识到虽然充满烃类的地层和充满水的地层的地震属性的差异不大,但是它们的电磁电阻率确实不同。从而,通过使用电磁勘测方法,可勘探这些差异,并且可大大增大预测储层性质的成功率。
因此,一种包含这些原理的方法和装置形成本申请人的共同在审的英国专利申请0002422.4号的基础。
本发明计划了一种用于确定其大致几何形状和位置已知的地下储层的性质的方法,该方法包括:施加一个时变电磁场到包含储层的地层;检测电磁波场响应;在波场响应中寻找一个代表来自烃类层的折射波的成分;并且基于由烃类层折射的波成分的存在与否来确定储层的内容。
还计划了一种用于搜索包含烃类的地下储层的方法,该方法包括:施加一个时变电磁场到地下地层;检测电磁波场响应;在波场响应中寻找一个代表折射波的成分;并且基于由烃类层折射的波成分的存在与否确定任何被识别的储层的存在性和/或性质。
还计划了一种用于确定其大致几何形状和位置已知的地下储层的性质,或者用于搜索包含烃类的地下储层的装置,该装置包括:用于施加一个时变电磁场到包含储层的地层的装置;用于检测电磁波场响应的装置;用于在波场响应中寻找一个代表折射波的成分,从而允许确定储层的存在性和/或性质的装置。
折射波根据它在其中传播的地层的性质而有不同的表现。具体而言,烃类地层中的传播损耗比起含水地层中的低得多,而传播速度高得多。从而,当存在含油储层,并且施加EM场时,可检测到强劲且传播迅速的折射波。因此这可指示所述储层的存在性,或者如果其存在性已知的话,则能指示其性质。
电磁勘测技术本身是已知的。但是,实际上它们并未被广泛使用。一般而言,感兴趣的储层通常位于海床下1公里或更多处。为了在这些情形下以任何合理的分辨度进行作为独立技术的电磁勘测,短波长是必要的。不幸的是,这种短波长遭受着非常高的衰减。长波长不能提供足够的分辨率。
本发明的一个目的是提供一种方法和装置,用于在成本降低并且操作要求减少的情况下,可靠地定位和识别水下储层,尤其是烃类储层。
发明内容
根据本发明的一个方面,提供了一种方法,用于产生地下地层的一个勘测报告,该方法包括:部署一个电磁(EM)场发射器;在与EM场发射器基本相同的位置处部署一个地震源;在距发射器预定的偏移距离处部署一个EM场接收器;在与EM场接收器基本相同的位置处部署一个地震接收器;利用EM场发射器向地层施加一个EM场;利用EM场接收器检测EM波场响应;利用与EM场发射器处于基本上相同位置处的地震源向地层施加一个地震事件;利用与EM场接收器处于基本相同位置处的地震接收器检测地震响应;分析EM波场响应;分析地震响应,并核对两个响应,以便产生一个关于地层的存在性和性质的报告。
优选地,该方法包括从响应中抽取和使用相位和/或幅度信息。优选地,该方法包括识别EM波场响应的折射波成分,识别地震响应的折射波成分,并利用两个折射波成分来产生勘测报告。优选地,使用来自两个折射波成分的相位和/或幅度信息。
根据本发明的另一个方面,提供了一种方法,其利用来自一个施加的EM场的一个EM波场响应和来自一个施加的地震事件的一个地震响应来产生地下地层的一个勘测报告,该方法包括:识别EM波场响应的折射波成分;识别地震响应的折射波成分;以及利用两个折射波成分来产生关于地层的存在性和性质的报告。
同样,优选地,使用来自两个折射波成分的相位和/或幅度信息。该方法优选地包括以下步骤:部署一个EM场发射器;部署一个地震源;在距离EM场发射器预定偏移距离处部署一个EM场接收器;在距离地震源预定偏移距离处部署一个地震接收器;利用EM场发射器向地层施加一个EM场;利用EM场接收器检测EM波场响应;利用地震源向地层施加一个地震事件;并且利用地震接收器检测地震响应。
优选地,EM场发射器、地震源和两个接收器都在相同的平面中。优选地,两个接收器之间的距离为25米或更小,优选地为5米或更小,EM场发射器与地震源之间的距离小于或等于EM场发射器与EM场接收器之间的偏移距离的值的0.01倍。优选地,EM场发射器和地震源处于基本上相同的位置处,并且EM场接收器和地震接收器处于基本上相同的位置处。
优选地,EM场发射器包括一个电偶极天线,并且EM场接收器包括一个电偶极天线。
虽然由电磁技术施加的较长的波长无法提供充分的信息,以提供对各种地层的外界的精确指示,但是它们可用于确定特定的已识别的地层结构(formation)的性质,如果该地层结构的性质具有相当不同的电磁特性的话。分辨率不是特别重要,因此可采用不遭受过度衰减的较长波长。
但是,地震勘测技术可较精确地检测地下地层的边界,但是不易识别已定位的地层的性质。从而通过利用两种技术,可以结合其结果,并且可以更确定地识别潜在的含烃类的储层。
电磁和地震波服从类似的基本波方程。从而,在两种情况下,根据相同的基本理论获得均匀背景(上覆层)中的埋置层的时间谐波响应。主要差别是,在电磁情况下,存在复数波数(传播常数),引起衰减和散射(即时域中的相位失真)。
对于产生的信号,一般有三个对应于沿源和接收器之间的不同路径的传播的贡献:直接信号,反射信号和折射信号。折射信号是由层中激发的漏隙波导模式引起的,并且在无限厚的层的范围内,它被变换成沿上界面但在层内传播的横波或首波(head-wave)。
在电磁情况下,折射波只在发射器和接收器偶极天线成一直线的情况下才被强烈激发。作为偏移距离的函数,此波的相位延迟和指数减幅都将只取决于层的属性,即层厚度以及相对于上覆层的电阻对比度。在此情况下,直接波相当弱,并且,在低电阻率的上覆层的情况下,对于大的偏移距离,直接波和折射波都被强烈地减幅。在平行或同列多相(broadside)偶极天线排列的情况下,存在较强的直接波和弱得多的折射波,以使得观察到贡献主要是来自直接波和反射波的。
折射波的相位和幅度都取决于层的厚度和相对电阻率,并且这些相关性是由简单的数学公式所表达的,这此数学公式可用于量化测量。但是,幅度还具有额外的偏移相关性,它是由层中的几何波长分布所引起的。因此,相位测量与幅度测量相结合将会产生关于层的性质的最大限度的信息。可通过在不同频率下进行记录并利用已知的折射波的相位和幅度的频率相关性,来获得额外信息。
对于地震P波,情形与电磁波和处于多列同相配置的天线大体上是类似的:做出贡献的主要是直接波和反射波。如果层包含气态或液态烃类的话,一般就是这种情况。但是,对于固态层材料,在界面处可能有模式转换(例如从P波到S波以及反之),在这种情况下,例如来自地震源的P波可能激发层中的S波漏隙波导模式。然后此模式将会作为P波被折射回上覆层。此情形与电磁波情况下成一直线的天线激发折射波类似;主要差别是,现在确定折射地震波的相位延迟(以及相关的行程时间)的是地震波速度的对比度而不是电阻率对比度。因此通过结合关于地下储层的地震响应以及电磁响应的知识,可获得对地下储层的性质的更可靠的确定。
对于电磁波,为了记录折射的地震波,需要大偏移距离。因此,可在共同勘测中方便地结合两种技术,在该勘测中电磁和地震记录被同时执行。如果电磁记录天线与海床接触,则它们可以与允许P波和S波的记录的4C地震记录系统相结合。
优选地,接收器天线和地震接收器被安装在相同的结构上,例如距离彼此5至25秒内,并且EM场和地震事件被同时施加。或者,EM场和地震事件被紧接着相继施加,例如在5至25秒。
在优选系统中,分析EM波场响应和/或地震响应以识别各自的折射波成分。然后,利用两个折射波成分来确定地层的存在性和性质。优选地,该系统还包括从响应中抽取和使用相位和/或幅度信息,更优选地是从折射波中抽取和使用相位和/或幅度信息。优选地,反射波是在地震响应中识别地,并且反射波成分被用于识别地下地层。
此外,本发明可包括在与其他接收器相同的位置处部署一个磁接收器;检测一个磁场响应;并且结合EM波场响应和地震响应而使用磁场响应。与电场的情况一样,磁场响应是由EM传输和作为噪声背景始终存在的大地电磁信号所引起的。
海水的电阻率约为0.3欧姆-米,海床下的上覆层的电阻率通常为0.5到4欧姆-米,例如约为2欧姆-米。但是,烃类储层的电阻率很可能约为20-300欧姆-米。因此,通常含烃类的地层的电阻率要比含水地层的电阻率大20到300倍。这一巨大差异可用EM技术来勘探。
烃类储层的电阻率通常比周围材料(上覆层)的高得多。与高电阻率介质相比,在低电阻率介质中,EM波衰减得更迅速,行进得更慢。因此,与电阻率较低的上覆层相比,烃类储层对EM波的衰减更小。此外,在储层内EM波的速度将会更高。
从而,海床之上或接近海床的电偶极发射器天线在海水和表面下的地层中感应电磁EM场和电流。在海水中,由于含盐环境中的高导电率,EM场被强烈衰减,而导电率较低的表面下地层引起较小的衰减。如果频率足够低(1Hz量级),则EM能量能够深深穿透到表面之下,并且电阻率高于上覆层(例如充满烃类的储层)的深埋的地质层将会影响EM波。根据入射角度和极化状态,入射到高电阻率层上的EM波将会在层中激发波导型(引导型)波模。波导型模式沿着层横向传播,并且将能量泄漏回上覆层和位于海床之上的接收器。在本申请中,这种波模被称为“折射波”。
EM源和接收器之间的距离被称为偏移距离。由于在海水中(或在上覆层中)与直接波相比含烃类地层中的折射波将被衰减得更少这一事实,对于任何给定的含H/C地层,将存在临界偏移距离,在此距离下,折射波和直接波将会具有相同的信号强度。此临界偏移距离通常约比从源或接收器到含H/C地层的最短距离大两至三倍。从而,当偏移距离大于临界偏移距离时,折射到储层中并被引导经过储层的径向EM波将会对接收到的信号做出主要贡献。与没有HC储层的情况相比,所述接收的信号将具有更大的幅度,并且到达得较早(即具有较小的相移)。在许多情况下,在大于临界偏移距离的距离处记录的相位变化和/或幅度变化将会被直接用于计算储层电阻率。此外,将根据临界偏移距离、和/或代表记录信号相移或记录信号幅度作为发射器-接收器偏移距离的函数的曲线的斜率,来推断储层深度。最有用的EM源-接收器偏移距离通常大于“临界偏移距离”。在大于临界偏移距离的偏移距离处,代表记录信号相移或记录到的信号幅度作为源-接收器偏移距离的函数的曲线的斜率变化将会指示储层边界。
可通过移动接收器;或者移动发射器和地震源,或者甚至移动两者,来改变偏移距离。或者,可通过同时移动接收器以及发射器和地震源,来将偏移距离保持为常数。
电磁和地震波服从类似的基本方程。从而,在两种情况下,根据相同的基本理论获得均匀背景(上覆层)中的埋置层的时间谐波响应。主要差别是,在电磁情况下,存在复数波数(传播常数),引起衰减和散射(即时域中的相位失真)。
如果EM发射器和EM接收器之间的偏移距离比储层距海床的深度(即上覆层的厚度)的三倍大得多,则将会察觉到来自储层的折射波的衰减通常将会小于直接波和反射波的衰减。其原因是这一事实:折射波的路径实际上是从发射器向下到储层的距离,即上覆层的厚度,加上沿储层的偏移距离,加上从储层向上到接收器的距离,即再一次上覆层的厚度。
如果在EM发射器和接收器的区域中不存在H/C储层,则检测到的波响应将会由直接波或者可能还有反射波构成。因此它将会被强烈地衰减,并且其相位将会随着偏移距离的增大而迅速变化。
但是,如果存在H/C储层,则在波响应中将会有折射波成分,并且这一成分将会占据优势。由于充满H/C地层中的较高的相位速率(波速),这将会对接收到的波响应的相位产生影响。
作为源和接收器之间的偏移距离的函数,折射波的相位将会几乎线性地变化,并且比起直接波和反射波的相位变化得慢得多,并且由于后两种波还会随着偏移距离的增大而被更强烈地衰减,因此将会存在从迅速相位变化到缓慢的且斜率几乎恒定的相位变化的转变,从而指示H/C储层的存在。如果储层的边缘被穿过,则此缓慢的相位变化将会变成迅速相位变化和强烈的衰减。从而,对于大的偏移距离,从缓慢、线性的相位变化变成迅速相位变化,或者反之,将会指示H/C储层的边界。
如果在发射器和接收器之间保持恒定的偏移距离,同时改变其一或二者的位置,则记录到的相移应该是恒定的,只要源和接收器以下以及之间的表面下地层的电阻率是恒定的。如果在以恒定的偏移距离移动发射器和/或接收器的同时检测到相移变化,则这将会指示仪器之一处于H/C储层的边界附近。
源发射的极化将会确定在接收器方向多少能量将会被发射到含油层中。因此偶极天线是选中的发射器。一般而言,优选采用偶极子,对于它,电流矩,即电流和有效长度的乘积较大。因此发射器偶极子的长度可以为100到1000米,并且可在两个不同方向上被牵引,这两个不同的方向可以是正交。接收器偶极子的最优长度是由源偶极子的电流矩以及上覆层的厚度而确定的。
本发明的技术可适用于勘探基于陆地的地下储层,但尤其适用于水下,尤其是海底的地下储层。优选地,EM场是用位于地表的一个或多个发射器来施加的,并且检测是由位于地表的一个或多个接收器进行的。在优选应用中,发射器和/或接收器位于海床或某种其他水域的底部之上、或接近海床或某种其他水域的底部。
发射的EM场可以是脉冲型的,但是,可选择具有步进频率的相干连续波是优选的。它可在相当大的时段中被发射,在该时段中发射器应该优选为静止的(虽然它可以缓慢移动),并且发射稳定。从而,场可在从3秒到60分钟的时段中被发射,该时段优选为从10秒到5分钟,例如1分钟。EM接收器也可被安排来检测来自储层的直接波和反射波以及折射波,并且分析可包括区分折射波的相位和幅度数据和来自直接波的相应数据。
优选地,发射波长应该处于以下范围内
0.1s≤λ≤5s;
其中λ是发射经过上覆层的波长,s是从海床到储层的距离。更优选地,λ约为0.5s到2s。发射频率可以为0.01Hz到1kHz,优选地为0.1到20Hz,例如1Hz。
优选地,发射器和接收器之间的距离应该处于以下范围内
0.5λ≤L≤10λ;
其中λ是发射经过上覆层的波长,L是发射器和第一接收器之间的距离。
将会意识到,本发明可用于确定特定地层的位置、范围、性质和体积,并且还可用于通过将接收器(也可能还有EM场发射器和地震源)留在原处,来检测一段时间中这些参数的变化。
电磁信号对于地下层的电阻率是很敏感的,因此,电磁方法很适用于诸如H/C储层这样的高电阻层的检测。但是,没有烃类的层也可能具有高电阻率,例如由盐、玄武岩、方解石串或其他具有低多孔性和低水含量的致密岩石。此类高阻层一般具有比低阻上覆层更高的地震速率,而高阻H/C储层一般具有比低阻上覆层更低的地震速率。因此地震方法可用于区分高阻H/C储层和其他高阻层。
可基于由于所考虑的探查而可用的地震反射数据而对H/C储层和其他高阻层进行区分。但是,根据在地震源和地震接收器之间的偏移距离较大的情况下记录的地震折射数据可获得更可靠的区分。优选地,这可与电磁数据收集结合进行。
优选地,位于海床处的电磁接收器天线将会和也与海床接触的地震接收器相结合。这意味着要记录电磁和地震数据只需要一个勘测,并且可以执行折射地震信号的P波和S波成分的完全四个分量(除压力外还有位移向量的三个分量)-4C-地震记录。
将会意识到,在EM波场响应或地震响应中任何折射波成分的不存在将会表明不存在具有不同电阻率或不同声学属性的地层。在EM场响应和地震响应中存在折射波成分将会表明存在具有高电阻率和高声学速度(低多孔性)的地层,这例如暗示了玄武岩或盐坡面。存在折射EM波成分以及不存在折射地震波成分,将会表明高电阻率以及低声学速度,从而表明低多孔性,这暗示了诸如沙岩这样的多孔岩石地层中的可能存在的H/C(烃类)储层。
从而,对于大偏移距离,具有烃类的高阻层的特征在于存在折射电阻波,而没有任何折射地震波。相反,没有烃类的高阻层的特征在于既存在折射电磁波又存在折射地震波。通过在同一勘测中记录两种波型,可以获得对H/C储层的更可靠的识别。
地震设备,包括源和接收器,从设计和使用上来说都可以是常规的。
本发明允许了操作者通过进行等于初始2D地震勘测的勘测,然后联系由初始勘测所揭示的可能感兴趣的区域实施根据本发明的方法,来避免3D勘测的努力和花费。
本发明扩展到一种接收器组合件,该接收器组件包括:一个支持结构;安装在支持结构上的一个电偶极接收器天线;安装在支持结构上的一个三轴地震接收器;安装在支持结构上的一个地声测听器配置;安装在支持结构上的一个水听器;以及被安排为将支持结构附接到海床上的一个锚。
本发明还扩展到一种如上文联系产生勘测报告所描述的调查海底地层的方法,以及一种由本发明的方法所产生的勘测报告。

Claims (28)

1.一种方法,用于产生地下地层的勘测报告,该方法包括:
部署一个电磁(EM)场发射器;
在与所述EM场发射器基本相同的位置部署一个地震源;
在距所述发射器预定的偏移距离处部署一个EM场接收器;
在与所述EM场接收器基本相同的位置部署一个地震接收器;
利用所述EM场发射器向所述地层施加一个EM场;
利用所述EM场接收器检测EM波场响应;
利用与所述EM场发射器处于基本上相同位置的所述地震源向所述地层施加一个地震事件;
利用与所述EM场接收器处于基本相同位置的所述地震接收器检测地震响应;
分析所述EM波场响应;
分析所述地震响应并协调这两个响应,以便产生一个关于所述地层的存在性和性质的报告。
2.如权利要求1所述的方法,还包括从所述响应中抽取和使用相位和/或幅度信息。
3.如权利要求1所述的方法,包括识别所述EM波场响应的折射波成分,识别所述地震响应的折射波成分,并利用所述两个折射波成分来产生所述勘测报告。
4.如权利要求3所述的方法,其中使用来自所述两个折射波成分的相位和/或幅度信息。
5.如权利要求1所述的方法,其中所述EM场发射器、所述地震源和所述两个接收器都在相同的平面中。
6.如权利要求1所述的方法,其中所述EM场发射器包括一个电偶极天线。
7.如权利要求1所述的方法,其中所述EM场接收器包括一个电偶极天线。
8.如权利要求1所述的方法,其中所述EM场接收器和所述地震接收器被安装在相同的结构上。
9.如权利要求1所述的方法,其中所述EM场和所述地震事件被同时施加。
10.如权利要求1至8中任何一条所述的方法,其中所述EM场和所述地震事件被紧接着相继施加,例如在5至25秒。
11.如权利要求1所述的方法,其中所述地震响应的反射波成分被识别,并且所述反射波成分被用于识别地下地层。
12.如权利要求1所述的方法,包括:另外,在与所述EM场接收器基本上相同的位置处部署一个磁接收器;检测一个磁场响应;并且结合所述EM波场响应和所述地震响应来使用所述磁场响应。
13.如权利要求1所述的方法,包括对于多个EM发射和地震事件,在不同位置处,利用所述EM场发射器和地震源和/或所述EM场接收器和地震接收器重复该过程。
14.如权利要求1所述的方法,其中所述过程在不同偏移距离被重复。
15.如权利要求1所述的方法,包括部署和使用多个EM场接收器和/或多个地震接收器。
16.如权利要求15所述的方法,其中所述EM场接收器和地震接收器被安装在一条缆上。
17.如权利要求1所述的方法,其中所述EM场发射器和/或地震源,和/或EM接收器和/或地震接收器位于海床或某种其他水域的底部之上、或接近海床或某种其他水域的底部。
18.如权利要求17所述的方法,其中所述地震源位于所述水域的表面或接近所述水域的表面。
19.如权利要求1所述的方法,其中所述EM场的频率被在所述发射时段上连续改变。
20.如权利要求1所述的方法,其中所述EM场发射3秒到60分钟的一个时段。
21.如权利要求20所述的方法,其中所述发射时间为从10秒到5分钟。
22.如权利要求1所述的方法,其中所述发射的波长由以下公式给出
0.1s≤λ≤10s;
其中λ是所述经过上覆层的发射波长,s是所述从海床到所述储层的距离。
23.如权利要求1所述的方法,其中所述EM场发射器和所述EM场接收器之间的偏移距离由以下公式给出
0.5λ≤L≤10λ;
其中λ是所述经过上覆层的发射波长,L是所述发射器和所述接收器之间的距离。
24.如权利要求19至23中任何一条所述的方法,其中所述发射频率为从0.01Hz到1kHz。
25.如权利要求24所述的方法,其中所述发射频率为从0.1到20Hz。
26.如权利要求1所述的方法,其中所述地震接收器记录是一个完整流分量地震记录,包括三个位移矢量分量和一个压力分量。
27.由如权利要求1所述的方法所产生的一个勘测报告。
28.用于实现前述任何一条权利要求中所述的方法的装置,包括一个接收器组合件,该接收器组件包括:一个支持结构;安装在所述支持结构上的一个电偶极接收器天线;安装在所述支持结构上的一个三轴地震接收器;安装在所述支持结构上的一个地声测听器配置;安装在所述支持结构上的一个水听器;以及被设置为将所述支持结构附接到海床上的一个锚。
CNB2004800071270A 2003-03-17 2004-03-17 用于确定水下储层的性质的方法和装置 Expired - Fee Related CN100335917C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0306059.7 2003-03-17
GB0306059A GB2399640B (en) 2003-03-17 2003-03-17 Method and apparatus for determining the nature of submarine reservoirs

Publications (2)

Publication Number Publication Date
CN1761889A CN1761889A (zh) 2006-04-19
CN100335917C true CN100335917C (zh) 2007-09-05

Family

ID=9954916

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800071270A Expired - Fee Related CN100335917C (zh) 2003-03-17 2004-03-17 用于确定水下储层的性质的方法和装置

Country Status (23)

Country Link
US (1) US7567084B2 (zh)
EP (1) EP1613982B1 (zh)
CN (1) CN100335917C (zh)
AP (1) AP1946A (zh)
AT (1) ATE352047T1 (zh)
AU (1) AU2004221305B2 (zh)
BR (1) BRPI0408383A (zh)
CA (1) CA2518939A1 (zh)
CO (1) CO5660316A2 (zh)
CY (1) CY1105946T1 (zh)
DE (1) DE602004004386T2 (zh)
DK (1) DK1613982T3 (zh)
EG (1) EG23543A (zh)
ES (1) ES2277246T3 (zh)
GB (1) GB2399640B (zh)
MA (1) MA27755A1 (zh)
MX (1) MXPA05009984A (zh)
MY (1) MY137895A (zh)
NO (1) NO20054736L (zh)
OA (1) OA13110A (zh)
RU (1) RU2361248C2 (zh)
WO (1) WO2004083898A1 (zh)
ZA (1) ZA200507358B (zh)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO326506B1 (no) * 2003-07-10 2008-12-15 Norsk Hydro As Et maringeofysisk innsamlingssystem med en kabel med seismiske kilder og mottakere og elektromagnteiske kilder og mottakere
US8995224B2 (en) 2003-08-22 2015-03-31 Schlumberger Technology Corporation Real-time velocity and pore-pressure prediction ahead of drill bit
US7782709B2 (en) 2003-08-22 2010-08-24 Schlumberger Technology Corporation Multi-physics inversion processing to predict pore pressure ahead of the drill bit
GB2409900B (en) 2004-01-09 2006-05-24 Statoil Asa Processing seismic data representing a physical system
GB2420855B (en) 2004-12-02 2009-08-26 Electromagnetic Geoservices As Source for electromagnetic surveying
NO323490B1 (no) * 2005-01-10 2007-05-29 Norsk Hydro As Elektromagnetisk hydrokarbonprospektering i grunne havomrader
US7383132B2 (en) 2005-03-07 2008-06-03 Exxonmobil Upstream Research Co. Method for identifying resistivity anomalies in electromagnetic survey data
AU2006258149B2 (en) 2005-06-10 2011-07-14 Exxonmobil Upstream Research Company Method for controlled source electromagnetic reconnaissance surveying
US7330790B2 (en) * 2005-10-03 2008-02-12 Seismic Sciences, Inc. Method of seismo electromagnetic detecting of hydrocarbon deposits
GB2434868B (en) 2006-02-06 2010-05-12 Statoil Asa Method of conducting a seismic survey
GB2435693A (en) 2006-02-09 2007-09-05 Electromagnetic Geoservices As Seabed electromagnetic surveying
GB2439378B (en) 2006-06-09 2011-03-16 Electromagnetic Geoservices As Instrument for measuring electromagnetic signals
GB2441786A (en) * 2006-09-15 2008-03-19 Electromagnetic Geoservices As Combined electromagnetic and seismic surveying
GB2442749B (en) 2006-10-12 2010-05-19 Electromagnetic Geoservices As Positioning system
US7813219B2 (en) * 2006-11-29 2010-10-12 Baker Hughes Incorporated Electro-magnetic acoustic measurements combined with acoustic wave analysis
GB2445582A (en) 2007-01-09 2008-07-16 Statoil Asa Method for analysing data from an electromagnetic survey
NO330103B1 (no) 2007-02-09 2011-02-21 Statoil Asa Sammenstilling for boring og logging, fremgangsmate for elektropulsboring og logging
US7746077B2 (en) * 2007-04-30 2010-06-29 Kjt Enterprises, Inc. Method for measuring the magnetotelluric response to the earth's subsurface
US8026723B2 (en) * 2007-04-30 2011-09-27 Kjt Enterprises, Inc. Multi-component marine electromagnetic signal acquisition method
US7872477B2 (en) * 2007-04-30 2011-01-18 Kjt Enterprises, Inc. Multi-component marine electromagnetic signal acquisition cable and system
US7863901B2 (en) * 2007-05-25 2011-01-04 Schlumberger Technology Corporation Applications of wideband EM measurements for determining reservoir formation properties
US7705599B2 (en) * 2007-07-09 2010-04-27 Kjt Enterprises, Inc. Buoy-based marine electromagnetic signal acquisition system
US8612194B2 (en) 2007-08-08 2013-12-17 Westerngeco L.L.C. Updating a subterranean model using at least electromagnetic data
US20090265111A1 (en) * 2008-04-16 2009-10-22 Kjt Enterprises, Inc. Signal processing method for marine electromagnetic signals
US8055730B2 (en) * 2008-07-16 2011-11-08 Westerngeco L. L. C. System having a network connected to multiple different types of survey sensors
CA2733989C (en) 2008-09-24 2017-09-26 Exxonmobil Upstream Research Company Systems and methods for subsurface electromagnetic mapping
GB2466764B (en) 2008-10-02 2013-03-27 Electromagnetic Geoservices As Method for enhanced subsurface electromagnetic sensitivity
US8364442B2 (en) 2009-02-17 2013-01-29 Schlumberger Technology Corporation Automated structural interpretation
US8340912B2 (en) * 2009-02-17 2012-12-25 Schlumberger Technology Corporation Seismic attributes for structural analysis
US8729903B2 (en) 2009-11-09 2014-05-20 Exxonmobil Upstream Research Company Method for remote identification and characterization of hydrocarbon source rocks using seismic and electromagnetic geophysical data
GB2481845B (en) 2010-07-08 2014-04-30 Electromagnetic Geoservices As Low noise marine electric field sensor system
WO2012118931A2 (en) * 2011-03-02 2012-09-07 Multi-Phase Technologies, Llc Method and apparatus for measuring the electrical impedance properties of geological formations using multiple simultaneous current sources
US20120323541A1 (en) * 2011-06-14 2012-12-20 Seoul National University R&Db Foundation Seismic imaging method considering a contour of the sea bottom
WO2012174516A1 (en) * 2011-06-16 2012-12-20 Schlumberger Canada Limited Method of mapping a subterranean formation based upon wellbore position and seismic data and related system
RU2486550C1 (ru) * 2012-01-10 2013-06-27 Учреждение Российской академии наук Институт проблем нефти и газа РАН Способ поиска залежей углеводородов в осадочной толще
US10310123B2 (en) * 2012-03-09 2019-06-04 Cgg Services Sas Seismic reflection full waveform inversion for reflected seismic data
US9753167B2 (en) * 2012-07-23 2017-09-05 Westerngeco L.L.C. Calibrating rotation data and translational data
RU2559046C2 (ru) * 2013-02-14 2015-08-10 Общество с ограниченной ответственностью научно-производственная фирма "Мезон" Способ поиска углеводородов
RU2527322C1 (ru) * 2013-04-12 2014-08-27 Федеральное Государственное Унитарное Предприятие "Сибирский Научно-Исследовательский Институт Геологии, Геофизики И Минерального Сырья" Способ геофизической разведки залежей углеводородов
US11092710B2 (en) 2013-06-27 2021-08-17 Pgs Geophysical As Inversion techniques using streamers at different depths
US10459100B2 (en) 2013-06-27 2019-10-29 Pgs Geophysical As Survey techniques using streamers at different depths
US9651707B2 (en) 2013-06-28 2017-05-16 Cgg Services Sas Methods and systems for joint seismic and electromagnetic data recording
RU2615515C2 (ru) * 2013-10-29 2017-04-05 Учреждение Российской академии наук Институт космофизических исследований и распространения радиоволн Дальневосточного отделения РАН Способ дистанционного измерения напряжений в недрах сквозь толщу поглощающей породы в условиях сильных помех
CN104879126B (zh) * 2015-05-14 2017-09-26 中国石油天然气集团公司 一种基于阵列感应测井的碎屑岩储层流体识别方法
US10379256B2 (en) 2015-12-16 2019-08-13 Pgs Geophysical As Combined seismic and electromagnetic survey configurations
RU2657128C2 (ru) * 2016-06-30 2018-06-08 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана имени академика И.С. Грамберга" Способ комплексной системы поиска и разведки месторождений углеводородов сейсмическими и электромагнитными методами в шельфовой зоне
RU2680262C1 (ru) * 2017-12-07 2019-02-19 Федеральное государственное бюджетное учреждение науки Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова Российской академии наук (ИЗМИРАН) Способ определения глубины залегания изотермы Кюри

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975674A (en) * 1972-09-29 1976-08-17 Mceuen Robert B Geothermal exploration method utilizing electrical resistivity and seismic velocity
WO2002014906A1 (en) * 2000-08-14 2002-02-21 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs
US20030008634A1 (en) * 1998-07-16 2003-01-09 Telemac Corporation System and method for managing prepaid wireless service
US20030043692A1 (en) * 2000-02-02 2003-03-06 Svein Ellingsrud Method and apparatus for determining the nature of subterranean reservoirs

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2077707A (en) 1933-08-01 1937-04-20 Melton Benjamin Starr Electromagnetic prospecting method
US2531088A (en) 1947-10-16 1950-11-21 Standard Oil Dev Co Electrical prospecting method
US2907389A (en) 1956-06-18 1959-10-06 Phillips Petroleum Co Recovery of oil from oil sands and the like
US3052836A (en) 1957-12-24 1962-09-04 Shell Oil Co Method for marine electrical prospecting
FR1313189A (fr) * 1961-11-07 1962-12-28 Cie Generale De Geophysique Et Perfectionnements aux procédés de prospection sismique
US3332487A (en) 1963-09-30 1967-07-25 Pan American Petroleum Corp Aerobic bacteria in oil recovery
US3398356A (en) 1964-02-10 1968-08-20 Westinghouse Electric Corp Method utilizing a pair of subsurface antennas for determining the physical properties effecting radio energy propagation through earth
GB1239953A (en) 1967-06-06 1971-07-21 Rech S Geol Et Minieres Bureau Improvements in or relating to methods and apparatus for determining the electrical resistance of the sub-soil
US3836960A (en) 1970-03-12 1974-09-17 Gen Dynamics Corp Sensor system
US4010413A (en) 1971-08-23 1977-03-01 Geo-Nav, Inc. Plural frequency geological exploration system and method with phase comparison
US3806795A (en) 1972-01-03 1974-04-23 Geophysical Survey Sys Inc Geophysical surveying system employing electromagnetic impulses
US4168484A (en) 1972-10-16 1979-09-18 Bolt Beranek And Newman Inc. Method of and apparatus for radiant energy measurement of impedance transitions in media, for identification and related purposes
GB1456009A (en) 1973-06-25 1976-11-17 Central Geophysics Ltd Method for exciting and detecing resonant oscillations from electronic conductors in the earth
FR2288988A1 (fr) 1974-07-30 1976-05-21 Duroux Jean Procede et appareil de prospection en mer par mesure de champs electromagnetiques
US4079309A (en) 1976-09-03 1978-03-14 The United States Of America As Represented By The Secretary Of The Navy Method for determining changes in earth resistivity by measuring phase difference between magnetic field components
FR2390743A1 (fr) 1977-05-09 1978-12-08 Geophysique Cie Gle Prospection electromagnetique du sous-sol par induction, associee a une prospection par sondage electrique
US4296379A (en) 1977-08-25 1981-10-20 Eizaburo Yoshizumi Ground prospecting method utilizing electrical resistivity measurements for measuring the resistivity of unit blocks of the ground
US4258321A (en) 1978-03-09 1981-03-24 Neale Jr Dory J Radio geophysical surveying method and apparatus
US4308499A (en) 1978-05-26 1981-12-29 Kali Und Salz A.G. Method utilizing electromagnetic wave pulses for determining the locations of boundary surfaces of underground mineral deposits
US4446434A (en) 1978-12-20 1984-05-01 Conoco Inc. Hydrocarbon prospecting method with changing of electrode spacing for the indirect detection of hydrocarbon reservoirs
US5025218A (en) 1979-04-23 1991-06-18 The United States Of America As Represented By The Secretary Of The Navy Pulsed field system for detecting the presence of a target in a subsurface environment
MA18895A1 (fr) 1979-07-09 1981-04-01 Cie Generale De Geophysique Sa Procede et dispositif de prospection geophysique a courants transitoires
FR2497360A1 (fr) 1980-12-31 1982-07-02 Schlumberger Prospection Mesure de phase et d'amplitude pour un systeme de diagraphie des proprietes dielectriques
US4456067A (en) 1981-04-03 1984-06-26 Marathon Oil Company Process for inhibiting hydrate formation in producing gas wells
US4451789A (en) 1981-09-28 1984-05-29 Nl Industries, Inc. Logging tool and method for measuring resistivity of different radial zones at a common depth of measurement
US4506225A (en) 1981-12-28 1985-03-19 Barringer Research Limited Method for remote measurement of anomalous complex variations of a predetermined electrical parameter in a target zone
US4489276A (en) 1982-01-20 1984-12-18 The United States Of America As Represented By The United States Department Of Energy Dual-cone double-helical downhole logging device
PL141895B1 (en) 1983-03-03 1987-09-30 Instytut Gornictwa Naftowego Gaz Method of and system for direct prospecting of hydrocarbon accumulations
US4594551A (en) 1983-03-31 1986-06-10 Texaco Inc. Method of deep penetration well logging using three receivers
US4583095A (en) 1983-08-22 1986-04-15 Glen Peterson Radar seismograph improvement
US4617518A (en) * 1983-11-21 1986-10-14 Exxon Production Research Co. Method and apparatus for offshore electromagnetic sounding utilizing wavelength effects to determine optimum source and detector positions
GB8331546D0 (en) 1983-11-25 1984-01-04 Exxon Research Engineering Co Polymeric compositions
US4616184A (en) 1984-06-27 1986-10-07 The United States Of America As Represented By The United States Department Of Energy CSAMT method for determining depth and shape of a sub-surface conductive object
JPS61107181A (ja) 1984-10-31 1986-05-26 Hitachi Ltd 物体探査装置及び探査方法
US4652829A (en) 1984-12-28 1987-03-24 Schlumberger Technology Corp. Electromagnetic logging apparatus with button antennas for measuring the dielectric constant of formation surrounding a borehole
US4670166A (en) 1985-02-27 1987-06-02 Exxon Chemical Patents Inc. Polymer article and its use for controlled introduction of reagent into a fluid
AU608503B2 (en) 1985-07-15 1991-04-11 Chevron Research And Technology Company Method of avoiding stuck drilling equipment
DE3529466A1 (de) 1985-08-16 1987-04-09 Pipeline Engineering Ges Fuer Verfahren zur bestimmung der grenzen von unterirdischen erdgas-lagerstaetten
US5570024A (en) 1986-11-04 1996-10-29 Paramagnetic Logging, Inc. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes
US5633590A (en) 1986-11-04 1997-05-27 Paramagnetic Logging, Inc. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present
US4835474A (en) 1986-11-24 1989-05-30 Southwest Research Institute Method and apparatus for detecting subsurface anomalies
US4906575A (en) 1987-03-06 1990-03-06 Chevron Research Company Phosphate compound that is used in a microbial profile modification process
US4986354A (en) 1988-09-14 1991-01-22 Conoco Inc. Composition and placement process for oil field chemicals
GB8825435D0 (en) 1988-10-31 1988-12-29 Cross T E Detection of non metallic material
US4957172A (en) 1989-03-01 1990-09-18 Patton Consulting, Inc. Surveying method for locating target subterranean bodies
US5103920A (en) 1989-03-01 1992-04-14 Patton Consulting Inc. Surveying system and method for locating target subterranean bodies
US5043667A (en) 1989-04-21 1991-08-27 Amoco Corporation Method of magnetotelluric exploration using areal arrays
US4992995A (en) 1989-10-24 1991-02-12 Amoco Corporation Methods for attenuating noise in seismic data
US5066916A (en) 1990-01-10 1991-11-19 Halliburton Logging Services, Inc. Technique for separating electromagnetic refracted signals from reflected signals in down hole electromagnetic tools
US5185578A (en) 1990-01-17 1993-02-09 Stolar, Inc. Method for detecting anomalous geological zones by transmitting electromagnetic energy between spaced drillholes using different frequency ranges
US5044435A (en) 1990-07-16 1991-09-03 Injectech, Inc. Enhanced oil recovery using denitrifying microorganisms
US5083611A (en) 1991-01-18 1992-01-28 Phillips Petroleum Company Nutrient injection method for subterranean microbial processes
US5877995A (en) 1991-05-06 1999-03-02 Exxon Production Research Company Geophysical prospecting
US5192952A (en) 1991-06-11 1993-03-09 Johler J Ralph Method and apparatus for transmitting electromagnetic signals into the earth from a capacitor
US5280284A (en) 1991-06-11 1994-01-18 Johler J Ralph Method of determining the electrical properties of the earth by processing electromagnetic signals propagated through the earth from a capacitor
USH1490H (en) 1992-09-28 1995-09-05 Exxon Production Research Company Marine geophysical prospecting system
US5486764A (en) 1993-01-15 1996-01-23 Exxon Production Research Company Method for determining subsurface electrical resistance using electroseismic measurements
USH1524H (en) 1993-01-15 1996-04-02 Exxon Production Research Company Method for using electromagnetic grounded antennas as directional geophones
US5373443A (en) 1993-10-06 1994-12-13 The Regents, University Of California Method for imaging with low frequency electromagnetic fields
US6060885A (en) 1993-10-14 2000-05-09 Western Atlas International, Inc. Method and apparatus for determining the resistivity and conductivity of geological formations surrounding a borehole
US5563513A (en) 1993-12-09 1996-10-08 Stratasearch Corp. Electromagnetic imaging device and method for delineating anomalous resistivity patterns associated with oil and gas traps
US5400030A (en) 1994-02-09 1995-03-21 Exxon Production Research Company Detection and mapping of hydrocarbon reservoirs with radar waves
US5811973A (en) 1994-03-14 1998-09-22 Baker Hughes Incorporated Determination of dielectric properties with propagation resistivity tools using both real and imaginary components of measurements
US5892361A (en) 1994-03-14 1999-04-06 Baker Hughes Incorporated Use of raw amplitude and phase in propagation resistivity measurements to measure borehole environmental parameters
US6060884A (en) 1994-03-14 2000-05-09 Meyer, Jr.; Wallace Harold Method and apparatus for measuring electromagnetic properties of materials in borehole environs and simultaneously determining the quality of the measurements
NO314646B1 (no) 1994-08-15 2003-04-22 Western Atlas Int Inc Transient-elektromagnetisk måleverktöy og fremgangsmåte for bruk i en brönn
USH1561H (en) 1994-09-22 1996-07-02 Exxon Production Research Company Method and apparatus for detection of seismic and electromagnetic waves
US5581024A (en) 1994-10-20 1996-12-03 Baker Hughes Incorporated Downhole depth correlation and computation apparatus and methods for combining multiple borehole measurements
WO1996018119A1 (en) * 1994-12-06 1996-06-13 Farnsworth David F Method for forecasting an earthquake from precusor signals
FR2729222A1 (fr) 1995-01-10 1996-07-12 Commissariat Energie Atomique Determination de la porosite et de la permeabilite d'une formation geologique a partir du phenomene d'electrofiltration
DE19518420C2 (de) 1995-05-19 1998-01-02 Diether Alfred Schroeder Schaltungsanordnung zur Verwendung in einem geophysikalischen Prospektionsverfahren
US5553407A (en) 1995-06-19 1996-09-10 Vermeer Manufacturing Company Excavator data acquisition and control system and method of use
GB2304483B (en) 1995-08-18 2000-03-29 London Electricity Plc System for and method of determining the location of an object in a medium
US6023168A (en) 1995-08-21 2000-02-08 Schlumberger Technology Corporation Apparatus and method for measuring the resistivity of underground formations
GB2304895B (en) 1995-08-25 1999-05-19 Geco Prakla Method of and apparatus for controlling the quality of processed seismic data
FR2738871B1 (fr) 1995-09-19 1997-11-14 Elf Aquitaine Procede pour realiser une representation des textures d'une structure geologique
FR2738920B1 (fr) 1995-09-19 1997-11-14 Elf Aquitaine Methode de reconnaissance automatique de facies sismiques
GB9521171D0 (en) 1995-10-17 1995-12-20 Millar John W A Detection method
US5886526A (en) 1996-06-19 1999-03-23 Schlumberger Technology Corporation Apparatus and method for determining properties of anisotropic earth formations
US5901795A (en) 1996-06-25 1999-05-11 Exxon Production Research Company Well collision avoidance
US5777478A (en) 1996-08-27 1998-07-07 John R. Jackson Passive geophysical prospecting apparatus and method based upon detection of discontinuities associated with extremely low frequency electromagnetic fields
US5825188A (en) 1996-11-27 1998-10-20 Montgomery; Jerry R. Method of mapping and monitoring groundwater and subsurface aqueous systems
US5841280A (en) 1997-06-24 1998-11-24 Western Atlas International, Inc. Apparatus and method for combined acoustic and seismoelectric logging measurements
US6188222B1 (en) 1997-09-19 2001-02-13 Schlumberger Technology Corporation Method and apparatus for measuring resistivity of an earth formation
US6026913A (en) 1997-09-30 2000-02-22 Halliburton Energy Services, Inc. Acoustic method of connecting boreholes for multi-lateral completion
US5987388A (en) 1997-12-26 1999-11-16 Atlantic Richfield Company Automated extraction of fault surfaces from 3-D seismic prospecting data
GB9800741D0 (en) 1998-01-15 1998-03-11 Geco As Multiple attenuation of multi-component sea-bottom data
US6114972A (en) 1998-01-20 2000-09-05 Halliburton Energy Services, Inc. Electromagnetic resistivity tool and method for use of same
NO315725B1 (no) 1998-06-18 2003-10-13 Norges Geotekniske Inst Anordning for måling og overvåking av resistivitet utenfor et brönnrör i etpetroleumsreservoar
US6236212B1 (en) 1998-06-22 2001-05-22 The United States Of America As Represented By The Secretary Of The Interior Induced polarization system using towed cable carrying transmitters and receivers for identifying minerals on the ocean floor
US6188221B1 (en) 1998-08-07 2001-02-13 Van De Kop Franz Method and apparatus for transmitting electromagnetic waves and analyzing returns to locate underground fluid deposits
GB9818875D0 (en) 1998-08-28 1998-10-21 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
WO2000042287A1 (en) 1999-01-13 2000-07-20 Vermeer Manufacturing Company Automated bore planning method and apparatus for horizontal directional drilling
US6163155A (en) 1999-01-28 2000-12-19 Dresser Industries, Inc. Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations
US6181138B1 (en) 1999-02-22 2001-01-30 Halliburton Energy Services, Inc. Directional resistivity measurements for azimuthal proximity detection of bed boundaries
US6184685B1 (en) 1999-02-22 2001-02-06 Halliburton Energy Services, Inc. Mulitiple spacing resistivity measurements with receiver arrays
AU3622200A (en) 1999-03-12 2000-09-28 Profile Technologies, Inc. Dynamic electromagnetic methods for direct prospecting for oil
GB2349222B (en) * 1999-04-21 2001-10-31 Geco Prakla Method and system for electroseismic monitoring of microseismicity
US6294917B1 (en) 1999-09-13 2001-09-25 Electromagnetic Instruments, Inc. Electromagnetic induction method and apparatus for the measurement of the electrical resistivity of geologic formations surrounding boreholes cased with a conductive liner
GB2383133A (en) * 2001-08-07 2003-06-18 Statoil Asa Investigation of subterranean reservoirs
US6541975B2 (en) * 2001-08-23 2003-04-01 Kjt Enterprises, Inc. Integrated borehole system for reservoir detection and monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975674A (en) * 1972-09-29 1976-08-17 Mceuen Robert B Geothermal exploration method utilizing electrical resistivity and seismic velocity
US20030008634A1 (en) * 1998-07-16 2003-01-09 Telemac Corporation System and method for managing prepaid wireless service
US20030043692A1 (en) * 2000-02-02 2003-03-06 Svein Ellingsrud Method and apparatus for determining the nature of subterranean reservoirs
WO2002014906A1 (en) * 2000-08-14 2002-02-21 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs

Also Published As

Publication number Publication date
CA2518939A1 (en) 2004-09-30
NO20054736D0 (no) 2005-10-14
MA27755A1 (fr) 2006-02-01
WO2004083898A1 (en) 2004-09-30
GB2399640A (en) 2004-09-22
ZA200507358B (en) 2006-11-29
OA13110A (en) 2006-11-10
GB0306059D0 (en) 2003-04-23
BRPI0408383A (pt) 2006-03-21
CY1105946T1 (el) 2011-04-06
AU2004221305B2 (en) 2009-12-10
GB2399640B (en) 2007-02-21
RU2361248C2 (ru) 2009-07-10
ES2277246T3 (es) 2007-07-01
CO5660316A2 (es) 2006-07-31
US7567084B2 (en) 2009-07-28
RU2005131965A (ru) 2006-05-27
AU2004221305A1 (en) 2004-09-30
AP1946A (en) 2009-02-04
DE602004004386D1 (de) 2007-03-08
AP2005003398A0 (en) 2005-12-31
MXPA05009984A (es) 2006-03-09
EG23543A (en) 2006-05-07
MY137895A (en) 2009-03-31
EP1613982A1 (en) 2006-01-11
DK1613982T3 (da) 2007-03-19
DE602004004386T2 (de) 2007-10-18
CN1761889A (zh) 2006-04-19
US20060197532A1 (en) 2006-09-07
ATE352047T1 (de) 2007-02-15
NO20054736L (no) 2005-12-15
EP1613982B1 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
CN100335917C (zh) 用于确定水下储层的性质的方法和装置
CN1254698C (zh) 确定地下储层性质的方法和装置
US6900639B2 (en) Electromagnetic method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
RU2394256C2 (ru) Электромагнитная разведка углеводородов в мелком море
USH1561H (en) Method and apparatus for detection of seismic and electromagnetic waves
US20100045295A1 (en) Method and apparatus for determining the nature of submarine reservoirs
Meunier et al. Reservoir monitoring using permanent sources and vertical receiver antennae: The Céré-la-Ronde case study
Anderson et al. A comparison of four geophysical methods for determining the shear wave velocity of soils
Xie Applications of tomography in oil–gas industry—Part 1
Ma et al. Single borehole radar for well logging in a limestone formation: Experiments and simulations
Baker Fluid, lithology, geometry, and permeability information from ground-penetrating radar for some petroleum industry applications
Hansen et al. Use of surface and borehole geophysical surveys to determine fracture orientation and other site characteristics in crystalline bedrock terrain, Millville and Uxbridge, Massachusetts
Tsoflias et al. Three-dimensional hydrogeologic characterization of fractured carbonate aquifers using ground-penetrating radar
Davies et al. Field experimental studies of a riverbed scour measurement system
Popescu et al. Geophysical Analyses on the Geomechanical Characteristics of the Soil for Choices of the Drilling Rig, in the Area of Târgu Ocna, Bacău County, Romania
Bauman et al. Current Land and Waterborne Geophysical Methods for Guiding Horizontal Directional Drilling and Trenching Along Pipeline Right-of-Ways
DRILLING DRAFT IPC2016-64090
AG Exploration Strategy for Hydrocarbons
Evans et al. The use of seismic methods for the detection of dykes
Davies et al. Studies of a riverbed scour monitor system using a pier-interior cased borehole
Woodward The Study of Buried-drift Aquifers in Minnesota by Seismic Geophysical Methods
Luke et al. Detecting Anomalous Inclusions in Soil Profiles: Encouraging the Use of Geophysics to Solve Engineering Problems Editorial
Fu et al. Review of Investigation Methods to Determine Pile Lengths
Dobecki et al. Delineation of Shallow Gulf Coast Structure and Stratigraphy Using Seismic Shear Wave Reflections
Wengong et al. Lateral seismic prediction of 3rd member sand reservoir in Shahejie formation in Southern Bohai oil field and the prediction result

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070905

Termination date: 20160317