CN1242572C - 孤子光传输系统的色散管理系统 - Google Patents

孤子光传输系统的色散管理系统 Download PDF

Info

Publication number
CN1242572C
CN1242572C CNB961985909A CN96198590A CN1242572C CN 1242572 C CN1242572 C CN 1242572C CN B961985909 A CNB961985909 A CN B961985909A CN 96198590 A CN96198590 A CN 96198590A CN 1242572 C CN1242572 C CN 1242572C
Authority
CN
China
Prior art keywords
dispersion
communication system
optical communication
light
semistable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB961985909A
Other languages
English (en)
Other versions
CN1202994A (zh
Inventor
N·J·多兰
N·J·史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTG International Ltd
Original Assignee
British Technology Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Technology Group Ltd filed Critical British Technology Group Ltd
Publication of CN1202994A publication Critical patent/CN1202994A/zh
Application granted granted Critical
Publication of CN1242572C publication Critical patent/CN1242572C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2525Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres
    • H04B10/25253Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres with dispersion management, i.e. using a combination of different kind of fibres in the transmission system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29374Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide
    • G02B6/29376Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/25077Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion using soliton propagation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本孤子或类孤子传输系统的色散管理系统包括一个长度(L)的光纤,该光纤由很多段(1)色散符号相反的光纤(N,A)联结在一起构成。与系统其余部分的传播间隔相比色散补偿状态的持续时间是短的,并且整个程均色散为反常值。

Description

孤子光传输系统的色散管理系统
技术领域
本发明涉及光通信,特别是涉及采用孤子或类孤子脉冲传递信息的光通信系统。
背景技术
近来已经报导过孤子在沿着整个光纤色散并不总是反常,而是周期性地用反符号(正常)色散光纤作色散补偿的系统中传输实验室演示的结果。如此在再循环的环路中以20Gb/s信号可传输达9000km以上,在直线传输实验中达8100km。这一结果大大地超过以前没有采用象滑动滤波器和同步调制器这些孤子控制技术所达到的传输距离。尽管在孤子系统中采用色散管理能得到很大的好处这点是显然的,到今日为止对这种改进的机理还几乎没有理论解释。
在设计采用放大的长跨度光通信系统时正确地选择色散值是一个重要的问题。就孤子形式的的数据而言,它是受在希望将定时抖动问题降至最小(意味着低色散)与为了顺利地检测需要每个位保持适当的能量之间的折衷方案所支配。因为在均匀光纤中形成孤子所需的能量是和色散值成正比,这一制约限制了许可的色散值的较低的极限值。色散管理是非归零(NRZ)码型数据的技术,其中将色散反号的光纤串联在一起。这样在任何点局域色散值高,但是程均色散值低。我们已经发现,对孤子或类孤子传输采用适当的色散管理方法,与具有相等的程均色散值的均匀光纤相比,可以显著地提高孤子的能量。
发明内容
按照本发明的一种用于传输稳定的或半稳定的光脉冲的光通信系统,包括多个串联的光部件,其特征在于该光部件包括至少一个非光纤的分离的色散补偿器,并交替地具有相反符号的色散,所述光通信系统的程均色散是反常值,并且光脉冲在一个光部件中的至少一点是高斯型的。
根据本发明提供的孤子或类孤子传输的色散管理系统,其中色散补偿状态持续时间短于在系统剩余部分传输所用的时间间隔。
优选地系统排除这样的安排:在其色散布局图中一根光纤的色散比与它互补的光纤的色散更接近于零。
附图说明
本发明将参照下列附图来详细介绍:
图1是色散补偿的布局图;
图2示出在色散补偿系统每个补偿单元起始处的光脉冲轮廓。色散布局图包含每100km光纤的色散值交替地为-3ps2/km和+2.8ps2/km;
图3示出在一个色散补偿周期内脉冲的演化;
图4示出注入半极大值全宽度(FWHM)为20ps的孤子到100km长度交替的光纤且保持程均色散为-0.1ps2/km的色散管理系统中所需的能量;以及
图5是按照本发明的一个方面的色散管理系统的轮廓图。
具体实施方式
我们的工作是基于使用图1所示的色散布局图对非线性薛定谔方程(NLS)进行数值积分的基础之上。图5给出一般的系统的安排,它包括由长度为L的光纤联结的发射机T和接收机R。光纤分成许多单元1,每个单元含有独立的具有正常色散的光纤段N和具有反常色散的光纤段A。在一个特定的实施方案中这些段是等长度的,既使色散补偿单元的起点和终点是选定在一种光纤的中点。在提到的特例中,每个光纤是100km长,程均色散是-0.1ps2/km。非线性系数取2.65rad/W/km。为了问题简化我们已经选择了忽略损耗和高阶色散。
我们已经证明了对于此色散布局图存在准稳态孤子或孤立波解。图2和3示出当色散值在-3.0ps2/km和+2.8ps2/km之间交替变化,和峰值功率为650μW、半极大值全宽度(FWHM)是20ps的高斯脉冲注射入光纤时所观察到的行为。图2示明在每个色散补偿单元起始处强度轮廓;可以看到在色散布局图的连续周期上在这些点的脉冲轮廓不变。单个色散补偿单元内的演变情况示于图3,当色散符号交换时脉冲交替地压缩和展宽。在补偿单元内功率谱基本上保持不变。
对于周期性的色散布局图为了得到稳定解必须满足三个制约条件。首先,为了使克尔效应诱导的光谱展宽能被补偿,程均色散必须是反常的。其次,色散补偿的循环周期必须短于系统的非线性长度。当光纤长1000km时,首选色散补偿长度是100km或更短一些。最后,在色散布局图中应该避免一个光纤的色散比另一个更接近于零,否则能量将迅速地从脉冲耦合出来成为耗散波。
在孤子通信系统上加色散管理所给予的优点是源出于这样的事实,与具有等程均色散的等效均匀系统相比注射入稳定的脉冲需要更多的能量。图4证明了这一点。该图画出了稳态孤子的能量与两段光纤的色散值差的函数关系。优选光纤色散差小于12.0ps2/km,理想情况小于4.0ps2/km。在最佳状态是等于或小于0.1ps2/km。两段光纤之间的色散差愈大形成一个稳定脉冲所需的能量也就愈多;我们也发现补偿单元周期的增长(一个给定的色散值对)所需的能量也增加。该所需能量增加的机理可以根据在补偿单元内脉冲强度轮廓(见图3)来理解。由于周期性地色散展宽和压缩,一般说来脉冲的峰值功率是低于最初的注入功率。因此与等效均匀光纤相比自相位调制(SPM)率下降,所以需要更多的能量来平衡程均色散。在频域,该过程可解释为四波混频效率的下降,SPM是其中的一个特例。
这些孤子波的另一个新颖特征是脉冲形状不再是一般光纤孤子的双曲正割。我们已经显示的脉冲轮廓例几乎确实为高斯型,然而这仅是对应该特定色散布局图的一个特例。当色散的变化增加时脉冲波形从均匀光纤双曲正割孤子(时间—带宽积0.32)变为高斯型(0.44),然后变为具有更高的时间-带宽积的脉冲形状。在这一点可以有意义地与锁模光纤激光器的“展宽脉冲”结构联系在一起。它们结合了具有不同符号的色散的腔并产生高斯型脉冲。
如果在利用程均色散为零的结构的色散补偿光纤中进行孤子或类孤子传输时,在此情况下由于在再循环的回路中光纤的存在得到没有畸变的脉冲传播。该稳定脉冲是起因于SPM抵偿滤波的平衡,而不是SPM抵偿程均色散的平衡。
色散管理技术的应用前景对孤子传输系统的实现产生深远的影响。它提供良好的系统性能,以及具有仅仅需要无源器件的独特优点。尽管,在优选的实施方案中我们采用了等长度的两个不同光纤,另外的实施方案也可使用分离的由高色散材料制成的色散补偿器。采用色散管理代表了孤子和NRZ码传输所用技术间的一种会合。

Claims (9)

1.一种用于传输稳定的或半稳定的光脉冲的光通信系统,包括多个串联的光部件,其特征在于该光部件包括至少一个分离的色散补偿器,并交替地具有相反符号的色散,所述光通信系统的程均色散是反常值,并且光脉冲在一个光部件中的至少一点是高斯型的。
2.根据权利要求1的用于传输稳定的或半稳定的光脉冲的光通信系统,其特征在于光部件中的一个是一段长度的光纤。
3.根据权利要求1的用于传输稳定的或半稳定的光脉冲的光通信系统,其中光脉冲在光部件内的至少一点不是高斯型的,而是其时间-带宽积大于高斯型光脉冲的时间-带宽积。
4.根据权利要求1的用于传输稳定的或半稳定的光脉冲的光通信系统,其特征在于所述至少一个分离的色散补偿器由高色散材料构成。
5.根据权利要求1的用于传输稳定的或半稳定的光脉冲的光通信系统,其特征在于光部件的色散不同于程均色散。
6.根据权利要求1的用于传输稳定的或半稳定的光脉冲的光通信系统,其特征在于光部件具有相同的长度。
7.根据权利要求1的用于传输稳定的或半稳定的光脉冲的光通信系统,其特征在于光部件之间色散差小于12.0ps2/km。
8.根据权利要求1的用于传输稳定的或半稳定的光脉冲的光通信系统,其特征在于光部件之间色散差小于4.0ps2/km。
9.根据权利要求1的用于传输稳定的或半稳定的光脉冲的光通信系统,其特征在于光部件之间色散差小于0.1ps2/km。
CNB961985909A 1995-11-27 1996-11-27 孤子光传输系统的色散管理系统 Expired - Fee Related CN1242572C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9524203.8A GB9524203D0 (en) 1995-11-27 1995-11-27 Optical communications
GB9524203.8 1995-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2004101019711A Division CN1625085B (zh) 1995-11-27 1996-11-27 孤子光传输系统的色散管理系统

Publications (2)

Publication Number Publication Date
CN1202994A CN1202994A (zh) 1998-12-23
CN1242572C true CN1242572C (zh) 2006-02-15

Family

ID=10784498

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2004101019711A Expired - Fee Related CN1625085B (zh) 1995-11-27 1996-11-27 孤子光传输系统的色散管理系统
CNB961985909A Expired - Fee Related CN1242572C (zh) 1995-11-27 1996-11-27 孤子光传输系统的色散管理系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2004101019711A Expired - Fee Related CN1625085B (zh) 1995-11-27 1996-11-27 孤子光传输系统的色散管理系统

Country Status (8)

Country Link
US (3) US7352970B2 (zh)
EP (2) EP0864210A1 (zh)
JP (1) JP4459304B2 (zh)
CN (2) CN1625085B (zh)
AU (1) AU717319B2 (zh)
GB (1) GB9524203D0 (zh)
WO (1) WO1997020403A1 (zh)
ZA (1) ZA969955B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9524203D0 (en) 1995-11-27 1996-01-31 British Tech Group Optical communications
GB9716230D0 (en) * 1997-07-31 1997-10-08 British Tech Group Optical fibre communication system
EP1136850A4 (en) 1999-09-06 2003-01-15 Sumitomo Electric Industries OPTICAL FIBER LINE, OPTICAL TRANSMISSION LINE, MANUFACTURING METHOD OF OPTICAL CABLES AND METHOD FOR LAYING OPTICAL TRANSMISSION LINE
FR2800218B1 (fr) 1999-10-22 2002-01-11 Algety Telecom Systeme de transmission par fibre optique utilisant des impulsions rz
FR2800219B1 (fr) 1999-10-22 2006-06-30 Algety Telecom Procede d'ajustement de puissance pour un systeme de transmission optique a multiplexage en longueur d'onde
CA2340848A1 (en) * 2001-03-15 2002-09-15 John D. Mcnicol Dispersion management for long-haul high-speed optical networks
US20030007216A1 (en) * 2001-06-21 2003-01-09 Chraplyvy Andrew Roman Long haul transmission in a dispersion managed optical communication system
DE60110473T2 (de) * 2001-09-28 2006-02-23 Pirelli & C. S.P.A. Optisches übertragungssystem mit dispersionsverwaltungssystem
US9547215B1 (en) * 2015-11-05 2017-01-17 United Arab Emirates University Device for performing multiple optical operations in communication network

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000483A1 (en) 1983-07-11 1985-01-31 Nippon Telegraph And Telephone Public Corporation Method for directly transmitting images
US4778237A (en) 1984-06-07 1988-10-18 The Board Of Trustees Of The Leland Stanford Junior University Single-mode fiber optic saturable absorber
JP2798681B2 (ja) * 1988-10-03 1998-09-17 日本電信電話株式会社 光ファイバ伝送路
JP2612080B2 (ja) 1990-01-19 1997-05-21 日本電信電話株式会社 光ソリトン発生方法およびソリトン伝送方法
US5035481A (en) 1990-08-23 1991-07-30 At&T Bell Laboratories Long distance soliton lightwave communication system
US5508845A (en) 1990-10-18 1996-04-16 Telstra Corporation Limited Quasi-soliton communication system
JP2830485B2 (ja) 1991-02-19 1998-12-02 日本電気株式会社 光ファイバ分散補償装置
DE4290393C2 (de) * 1991-02-22 1998-05-20 Motorola Inc Verfahren und Vorrichtung zum Verbessern der Signalqualität eines in einem Übertragungskanal eines zellularen Nachrichtenübertragungssystems übertragenen Signals
WO1992016037A1 (en) 1991-03-01 1992-09-17 Australian And Overseas Telecommunications Corporation Limited Modelocked lasers
JP2825989B2 (ja) 1991-04-01 1998-11-18 日本電信電話株式会社 光ソリトン伝送方法
JP2825109B2 (ja) 1991-05-13 1998-11-18 日本電信電話株式会社 光ソリトン伝送方法
FR2681202B1 (fr) 1991-09-06 1993-11-12 Alcatel Cit Liaison de communication optique avec correction d'effets non lineaires, et procede de traitement d'un signal optique.
JPH05152645A (ja) 1991-11-29 1993-06-18 Hitachi Ltd 光等化増幅器及びそれを用いた光フアイバ伝送システム
FR2685835A1 (fr) * 1991-12-31 1993-07-02 France Telecom Systeme de transmission tres longue distance sur fibre optique a compensation des distorsions a la reception.
US5218662A (en) * 1992-05-06 1993-06-08 Alcatel Network Systems, Inc. Fiber-optic cable system and method for dispersion compensation at nodes between end points
JP2743972B2 (ja) 1992-06-09 1998-04-28 国際電信電話株式会社 光増幅中継伝送方法およびシステム装置
AU664449B2 (en) * 1992-06-22 1995-11-16 Nec Corporation Optical communication transmission system
JPH0618943A (ja) 1992-06-29 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> 光ソリトン伝送路
US5224183A (en) * 1992-07-23 1993-06-29 Alcatel Network Systems, Inc. Multiple wavelength division multiplexing signal compensation system and method using same
JP2701189B2 (ja) * 1992-09-25 1998-01-21 国際電信電話株式会社 光通信伝送路
JP2760233B2 (ja) * 1992-09-29 1998-05-28 住友電気工業株式会社 光通信装置
JP3419510B2 (ja) 1992-10-16 2003-06-23 富士通株式会社 波長分散を補償した光通信システム及び該システムに適用可能な位相共役光発生装置
FR2700901B1 (fr) 1993-01-28 1995-02-24 Alcatel Nv Système et procédé de transmission à solitons.
WO1994024781A1 (en) * 1993-04-19 1994-10-27 British Technology Group Limited Optical communications dispersion compensation system
FR2707442B1 (fr) 1993-07-06 1995-09-15 Pirio Francis Système de transmission sur fibre optique à compensation des distorsions en ligne.
JP3269713B2 (ja) * 1993-09-03 2002-04-02 株式会社日立製作所 光伝送システム
JPH07336301A (ja) 1994-06-06 1995-12-22 Kokusai Denshin Denwa Co Ltd <Kdd> 光波長多重通信装置
US5513194A (en) 1994-06-30 1996-04-30 Massachusetts Institute Of Technology Stretched-pulse fiber laser
JP3846918B2 (ja) * 1994-08-02 2006-11-15 富士通株式会社 光伝送システム、光多重伝送システム及びその周辺技術
JP3373333B2 (ja) 1994-09-12 2003-02-04 Kddi株式会社 光増幅中継伝送システム
JP3353803B2 (ja) 1994-09-12 2002-12-03 ケイディーディーアイ株式会社 光増幅伝送システム
US5557441A (en) * 1994-10-17 1996-09-17 At&T Soliton transmission system having plural sliding-frequency guiding filter groups
JPH08146472A (ja) 1994-11-15 1996-06-07 Nippon Telegr & Teleph Corp <Ntt> 光ソリトン通信方法
US5488620A (en) 1995-01-05 1996-01-30 Hughes Aircraft Company Passively mode locked-laser and method for generating a pseudo random optical pulse train
JPH08286219A (ja) 1995-02-13 1996-11-01 Nippon Telegr & Teleph Corp <Ntt> 光ソリトン伝送線路および光ソリトン伝送方法
GB9509938D0 (en) 1995-05-17 1995-07-12 British Tech Group Optical communication systems
US6680787B1 (en) 1995-05-17 2004-01-20 Btg International Limited Optical communication systems
FR2738431B1 (fr) 1995-09-01 1997-11-21 Thomine Jean Baptiste Systeme pour la transmission, notamment longue distance, d'impulsions rz par une ligne optique amplifiee
GB2346025B (en) 1995-09-11 2000-09-13 Univ Southampton Optical pulse propagation
GB9524203D0 (en) * 1995-11-27 1996-01-31 British Tech Group Optical communications
JP3327081B2 (ja) 1995-12-04 2002-09-24 ケイディーディーアイ株式会社 光伝送システム
JP3464867B2 (ja) 1996-02-23 2003-11-10 Kddi株式会社 光送信装置およびこれを適用した波長多重光送信装置および光伝送システム
FR2746237B1 (fr) * 1996-03-18 1998-04-17 Procede et systeme de transmission optique a solitons
US5764841A (en) 1996-04-25 1998-06-09 Nippon Telegraph And Telephone Corporation Optical fiber transmission line, optical fiber transmission system and production method thereof, and optical fiber combining method
GB2315177A (en) 1996-07-06 1998-01-21 Northern Telecom Ltd Dispersion compensating waveguide for optical transmission systems
KR100199031B1 (ko) 1996-09-23 1999-06-15 정선종 수동형 모드록킹 광섬유 레이저 구조
US6137604A (en) 1996-12-04 2000-10-24 Tyco Submarine Systems, Ltd. Chromatic dispersion compensation in wavelength division multiplexed optical transmission systems
JP3821890B2 (ja) 1996-12-09 2006-09-13 独立行政法人科学技術振興機構 ファイバー中の準ソリトンを用いた超高速光伝送方法
US6243181B1 (en) 1997-02-14 2001-06-05 University Of Maryland Baltimore County Reduction of collision induced timing jitter by periodic dispersion management in soliton WDM transmission
USH1926H (en) * 1997-04-01 2000-12-05 Carruthers; Thomas F. Actively mode-locked, single-polarization, picosecond optical fiber laser
US5887105A (en) 1997-04-28 1999-03-23 Corning Incorporated Dispersion managed optical fiber
GB9716230D0 (en) 1997-07-31 1997-10-08 British Tech Group Optical fibre communication system
JP3582356B2 (ja) 1998-05-08 2004-10-27 富士通株式会社 分散補償システム及び分散補償方法
CA2277409C (en) 1998-07-10 2003-02-11 Nippon Telegraph And Telephone Corporation Optical transmission system
US6115174A (en) * 1998-07-21 2000-09-05 Corvis Corporation Optical signal varying devices
US6442320B1 (en) 1999-04-16 2002-08-27 Lasercomm Inc. Limited mode dispersion compensating optical fiber
US6473550B1 (en) 1999-09-27 2002-10-29 Sumitomo Electric Industries, Ltd. Optical fiber transmission-line
GB2371160B (en) * 2001-01-10 2004-06-30 Univ Aston Optical pulse regenerating transmission lines
US6543181B1 (en) * 2001-06-22 2003-04-08 Iowa State University Research Foundation, Inc. Fruit fly attractant compositions
US6701050B1 (en) * 2001-10-10 2004-03-02 The Regents Of The University Of California Methods and optical fibers that decrease pulse degradation resulting from random chromatic dispersion
JP4022860B2 (ja) * 2002-03-27 2007-12-19 日本電気株式会社 波長分割多重光ファイバ伝送路

Also Published As

Publication number Publication date
JP2000501256A (ja) 2000-02-02
US20090087190A1 (en) 2009-04-02
GB9524203D0 (en) 1996-01-31
US6650452B1 (en) 2003-11-18
AU717319B2 (en) 2000-03-23
EP1507345A2 (en) 2005-02-16
CN1202994A (zh) 1998-12-23
CN1625085B (zh) 2010-12-08
AU7700996A (en) 1997-06-19
JP4459304B2 (ja) 2010-04-28
US20020076183A1 (en) 2002-06-20
EP1507345A3 (en) 2006-04-12
US7352970B2 (en) 2008-04-01
CN1625085A (zh) 2005-06-08
EP0864210A1 (en) 1998-09-16
WO1997020403A1 (en) 1997-06-05
ZA969955B (en) 1998-05-27

Similar Documents

Publication Publication Date Title
CN1242572C (zh) 孤子光传输系统的色散管理系统
Forzati et al. Reduction of intrachannel four-wave mixing using the alternate-phase RZ modulation format
CN102420661B (zh) 一种光纤非线性损伤补偿装置
CN101073210B (zh) 包括fm源和光谱整形元件的光学系统
CN1326339C (zh) 用于斜率补偿光纤的色散图
CN100384112C (zh) 用于光通信的方法
CN101652710A (zh) 光脉冲成形器、光脉冲光源、超连续光发生装置及超连续光发生方法
US6243181B1 (en) Reduction of collision induced timing jitter by periodic dispersion management in soliton WDM transmission
CN1859044A (zh) 多码型可调光发射机
CN1815928A (zh) 用于调制光信号的方法和光发射机
US6321015B1 (en) Optical fibre communication system
Nakazawa et al. Distortion-free optical transmission using time-domain optical Fourier transformation and transform-limited optical pulses
Haelterman et al. Dual-frequency wall solitary waves for nonreturn-to-zero signal transmission in W-type single-mode fibers
CN1262084C (zh) 针对具有左和右边滤波的nrz信号的调制方法和传输系统
Inoue et al. Suppression of nonlinear intrachannel interactions between return-to-zero pulses in dispersion-managed optical transmission systems
Sinkin et al. Comparative study of pulse interactions in optical fiber transmission systems with different modulation formats
Nakazawa et al. Propagation of a solitonlike nonlinear pulse in average normal group-velocity dispersion and its unsuitability for high-speed, long-distance optical transmission
CN1125024A (zh) 光通信
Striegler et al. Fiber-based compensation of IXPM-induced timing jitter
CN1447137A (zh) 一种用于长距传输的光纤连接方法
Gao et al. Analysis of power-dependent phase-matched four-wave mixing in dispersion-managed transmission systems
Chen et al. Optimal preprocessing of pulses for dispersion management
Kumar et al. Collision-Induced Impairments in Dispersion Managed Fiber Systems
Doran Dispersion managed soliton systems
Jun et al. Analysis of Optical Signal Transmission Characteristics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: JORPARIS CAPITAL CO., LTD.

Free format text: FORMER OWNER: BRITISH TECHNOLOGY GROUP INTERNATIONAL LIMITED

Effective date: 20100408

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: LONDON,ENGLAND,UK TO: DELAWARE STATE, U.S.A.

TR01 Transfer of patent right

Effective date of registration: 20100408

Address after: Delaware

Patentee after: British Tech Group

Address before: London, England, England

Patentee before: British Technology Group Ltd.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060215

Termination date: 20131127