CN1234510A - 用于搜索水中目标的装置 - Google Patents
用于搜索水中目标的装置 Download PDFInfo
- Publication number
- CN1234510A CN1234510A CN99106256A CN99106256A CN1234510A CN 1234510 A CN1234510 A CN 1234510A CN 99106256 A CN99106256 A CN 99106256A CN 99106256 A CN99106256 A CN 99106256A CN 1234510 A CN1234510 A CN 1234510A
- Authority
- CN
- China
- Prior art keywords
- data
- storage space
- write
- fish
- shoal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/06—Systems determining the position data of a target
- G01S15/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/96—Sonar systems specially adapted for specific applications for locating fish
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/56—Display arrangements
- G01S7/62—Cathode-ray tube displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/56—Display arrangements
- G01S7/62—Cathode-ray tube displays
- G01S7/6245—Stereoscopic displays; Three-dimensional displays; Pseudo-three dimensional displays
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
一种具有在船身上竖直排列的两个1D探测器阵列的鱼群搜索器。每个1D探测器阵列产生一在与沿探测器排列方向的平面平行的平面上具有窄的宽度且在一与该平面交叉的平面上呈扇形的射束。通过利用第一1D探测器阵列的扇形射束朝在第一平面上的目标发送并由其接收超声波,并通过利用第二1D探测器阵列的扇形射束由与第一平面垂直的第二平面接收超声波。在第一1D探测器阵列的射束方向逐渐变化时,第二1D探测器阵列的射束方向快速变化,得到关于水面下的3D空间的信息。对所得到的信息进行光线跟踪处理,用以在2D屏幕上显示3D图像。这种配置方案能更快地探测鱼群。
Description
本发明涉及一种适用于搜索水下目标的装置,特别是涉及一种鱼群搜索器,其由附着在船的底部的发送器向水中实体发送超声波,接收由鱼群或类以群体反射的超声波,将接收的超声波变换为电信号并进一步变换为数字数据,根据得到的数据在显示器上显示代表出现的鱼群的图像,以及如果出现,则显示其密度和规模。
鱼群搜索器以可视方式显示出现在捕鱼船的作业区内的鱼群的密度和规模,广泛应用在这类捕鱼船中和其它船舶中。然而,常规的捕鱼船存在的缺陷是,它们需要相当的时间来探测鱼群。具体地说,为了精确地探测和显示鱼群的位置和规模,必须使用具有窄的定向性的发送器。然而当使用这种具有窄的定向性的发送器时,仅可以扫描一个狭窄的区域。因此,为了定位鱼群,该船必须围绕它的作业区移动,以进行接近搜索。这就导致增加作业时间,因而增加劳动量和燃料费用。
本发明的目的消除对于在水中的目标例如鱼群的无效寻找和跟踪,例如在一作业区内移动的同时进行接近搜索。通过对于在水表面下的空间进行3D(维)扫描和对所得到的数据进行光线跟踪,用以在2D屏幕上进行3D显示,来实现本发明的这一目的。
根据本发明的鱼群搜索器包括扫描器、光线跟踪器和显示器。扫描器利用定向的超声波对于水表面下的区域进行三维扫描,以便得到揭示在水中存在还是不存在鱼群,以及鱼群的密度和规模的接收数据。该数据用按照相对于船身作为原点的3D极座标系统来表示。该光线跟踪器对利用扫描器得到的接收数据进行光线跟踪处理,使得一与当由一假想的观察点观察该空间时将会看到的图像相似的图像显示在一显示屏上。根据已经过光线跟踪处理的接收数据在显示屏上显示代表水下鱼群出现或者不出现其密度和规模的图像。因此,根据本发明,用户可以得到关于围绕船的区域的信息,无需进行无价值的尝试,例如为接近搜索同时使该船作圆运动。此外,由于在显示屏上显示的图像是便利的包含深度信息的3D图像,用户可以直觉地了解所显示的鱼群的相关的规模、状态和其它信息。
利用一能以二维方式改变其射束方向的二维(2D)发送器阵列可以构成本发明的扫描器。将包含按阵列排列的2D探测器阵列以固定的方式附着到船身上,以使每个探测器能发送或接收信号。希望对发送或接收信号进行移相,从而,使射束方向可以按二维方式变化(例如沿前/后方向和沿标杆(post)/右舷方向)。这样就能对低于水面下的区域进行3D扫描。然而,这种结构存在的问题是需要太多的探测器(和相关的移相器),这不可避免地增加装置整体的尺寸规模。
为了避免这一问题,将若干1D探测器以固定方式附着到船身上,阵列中的探测器配置方向是彼此交叉的。这里所述的1D探测器阵列是一种具有使若干探测器沿预定方向一维方式排列的结构的探测器阵列。正如公知的,在与探测器排列方向相垂直的一个平面内的探测器阵列的射束宽度与当探测器单独使用时的相同。然而,在与该平面垂直的一个平面即与探测器排列方向相平行的平面内的射束宽度明显地窄于当探测器单独使用时的射束宽度。
因此,在将本发明投入使用时,最好,第一1D探测器阵列是这样排列的,即它的探测器排列方向(即在其中该射束方向是可变的)平行于与水平面交叉的第一平面,以及第二1D探测器排列方向是这样的,即它的探测器排列方向平行于与水平面和第一平面相交叉的第二平面。此外,在第一探测器阵列按预定的时间安排向水中群体发送超声波的同时,设有一发送器/接收器,用于向射线跟踪器提供与已通过水中群体发送的和由第二探测器阵列接收的超声波相关的数据。此外,设有一射束发送方向控制器,用于对构成第一探测器阵列的每一探测器相关的信号进行移相,使得第一探测器阵列的射束在第一平面上的方位角θ在预定的角度范围内变化。此外,设有一接收射束方向控制器,用于对与构成第二探测器阵列的每一探测器相对应的信号进行移相,使得第二探测器阵列的射束在在第二平面上的方位角φ,当射束方向θ的大小变化和超声波的传播距离保持在预定数值范围内时,在一短的时间段内在预定的角度范围内反复地变化。如上所述,当将第一和第二探测器阵列分别用于发送和接收以及希望对关于发送和接收信号的相位移控制时,可以对水下区域进行二维扫描,与其中采用一用于按二维方式操纵控制窄射束的2D探测器阵列相似。此外,当射束在一与探测器排列方向交叉的平面上以扇形(扇形射束)构成时,可以增大3D扫描的区域。此外,探测器(和相关的移相器)的数目整体上可以减少,这使得能够减少装置的尺寸规模。
当将第一探测器阵列不仅用于发送而且用于接收时,将第一和第二探测器阵列接收到的输出进行结合(例如得到输出的乘积),将具有更窄得多的接收宽度的所得接收数据提供到光线跟踪器。按照这种设置,由第一探测器阵列形成的射束的宽度可以窄于在第一探测器阵列专用于发送时的情况下的对应宽度。这样就必然使该装置较少受噪声的影响(例如来自不同于鱼群的其它物体的声波)并提高了分辨率。在不增加探测器尺寸的情况下,可以实现这种设置。
在本发明中的光线跟踪器可以作为一种用于对用在将接收数据写入与显示器屏幕相对应的2D存储器空间(例如图像存储器)的写入地址进行控制或操作的装置来实现。即,当由扫描器得到的接收数据写入到与显示器屏幕相对应的2D存储器空间时,对与该存储器空间相关的存储器地址进行控制,使与该空间相关的接收数据以代表与当由假想的观察点观察水面下的空间时将会看到的图像相类似的图像的2D数据的形式写入到该存储器空间内。该显示器在其屏幕上根据在该存储器空间中存储的数据显示一指示鱼群是否出现、密度和规模的图像。如上所述,通过利用相对简单的方法例如写地址控制可以实现用于对在2D屏幕上以与3D极座标系统相一致的方式表示的接收数据进行投影的光线跟踪器。应指出,虽然,用于在光栅扫描显示器屏幕上PPI(平面位置指示器)显示的雷达装置或类似装置按常规已采用写地址控制用以进行座标变换,但这种座标变换(即扫描变换)完全不同于本发明的光线跟踪,因为前者或是由2D极座标系统向2D正交座标系统的变换(在船舰雷达或类似装置),或者是由3D极座标系统向2D正交座标系统的变换(在气象雷达或类以装置)。此外,在3D图像装置或类似装置的领域内,光线跟踪按常规方式已应用于在2D屏幕上显示与3D物体相关的信息。然而,这种光线跟踪也不同于本发明在于座标系统,表示的物体和物体数据的属性与其相一致。具体地说,在前者中关于光线跟踪的目标是与3D正交座标系统相一致的方式表示的仿真数据,而在后者是与3D极座标系统相一致的方式表示的搜索/测量数据。
当在上述存储器空间中写入数据时,最好确定在由假想的观察点观察的扫描区域内的各个位置之间的透视关系。例如,当与要写入到该存储器空间内的数据相关的位置存在于相同的方向时,当由假想的观察点观察时由于与已写入到该存储器空间的数据相关的位置处于该位置,禁止向该存储器空间写入数据,使得已写入到该存储器空间的数据保留,而不会被重写或丢失。另外,即使在正常应禁止写入数据的状态下(如上所述),如果与要写入的数据相关的位置接近于假想的观察点而不是与已写入该存储器空间内的数据相关的位置,可以允许数据写入,使得当由假想的观察点观察时的各位置之间建立和维持透视相互关系。正如再一种替换方案,当与要写入到该存储器空间内的数据相关的位置存在于相同方向时,当由该假想的观察点观察时由于与已写入存储器空间的数据相关的位置处于该位置,要写入的数据可以按照计算方式与已写入该存储器空间内的数据相结合,以使所得的数据按照与已写入该存储器空间内的数据相关的地址写入。按照这种设置,可以实现其它各种数据处理,例如沿着一由假想的观察点起的延伸线即假想的光线可以实现对接收数据的积分。
此外,上述假想观察点的位置可以响应于用户指令而改变。在这种情况下,最好设一数据库,用以存储利用扫描器得到的接收数据。即,当用户指令改变假想观察点的位置时,更新用于显示的存储器空间的存储值,同时,利用该存储在数据库中的数据增补在该存储器空间中缺少的数据,使得在显示屏幕上显示的图像可以根据指令旋转。这样就能防止当用户改变假想的观察点时显示带有局部缺陷的图像的问题出现。
再者,通过利用罗盘仪、航速表、GPS(全球定位系统)或类似仪器可以检测船的运动,在光线跟踪处理中,随着相对于通过利用扫描器得到的接收数据的极座标系统的移动,反映所得到的信息(运动速度,移动距离、倾斜度等)。这样就使得能降低由于船的移动使用于发现鱼群的显示图像受到影响的可能性。
还有,当假想观察点设在水面上方,从该点以假想方式观察扫描的目标空间时,在显示屏幕上可以显示当由船上观看水面下方时投影到水面上的图像,或者通过按照一个所需的平面对该扫描的目标空间取断面得到的图像。例如,当假想的观察点位于在一与水面垂直的直线上时,在显示屏幕上能够显示当由船上观看直接在水面之下的部分时所看到的投影到水面上的图像。这能与用户的要求接近一致。
应当指出,本发明可用于搜索出现在水中的任何目标,不仅是鱼群,并显示它的特性信息。因此,可以理解作为关于一种用于搜索水下目标的装置的本发明。被搜索的目标可以包含:单个或一群生物、沉船、水中实体底面、水下结构之类。特征信息可以包含:规模、形状、密度或者关于目标的任何相关信息。
根据对结合附图所举的优选实施例的如下介绍将会使本发明的上述和其它目的、特征和优点变得更加清楚,其中:
图1是表示根据本发明的第一优选实施例的鱼群搜索器结构的方块图;
图2是表示根据第一优选实施例的配置在船身上的探测器阵列的示意图;
图3A是表示用在第一优选实施例的关于探测器阵列的探测器配置排列的透视图;
图3B是表示与探测器排列方向相平行的一个平面上的射束形状和用于控制射束方向的结构的概念性示意图;
图3C是表示在与探测器排列方向相垂直的一个平面上的射束的形状和分布的概念性示意图;
图4和5是与在第一优选实施例中的用于对水平下的空间扫描的方法相关的概念性示意图;
图6是与在第一优选实施例中的用于光线跟踪的方法相关的概念性示意图;
图7是表示根据本发明的第二优选实施例的鱼群搜索器的主要部分的方块图;
图8是表示根据本发明的第三优选实施例的鱼群搜索器的主要部分的方块图。
在如下部分中,根据附图将对本发明的优选实施例进行介绍。对于各个实施例共同部分的介绍和附图不必重复。
(1)探测器阵列的排列和方向性
图1表示根据本发明的第一优选实施例的鱼群搜索器的结构。在这一实施例中,探测器阵列110、111分别用于发送和接收超声波。探测器阵列110以固定方式配置在带有鱼群搜索器的船S的底部,使它的探测器的排列方向平行于船S的前后连线。探测器阵列111以固定方式配置在船体上,使它的探测器的排列方向垂直于龙骨线。即探测器阵列110、111构成以固定方式附着到船S底部上的一对1D探测器阵列,使它们的探测器阵列的方向通常彼此相交,特别是直角相交。
用作探测器阵列110或探测器阵列111的1D探测器阵列是这样一种探测器阵列,它的射束在一与其探测器排列方向相交的平面上呈扇形。如在图3A中所示的。示范性的探测器阵列110即1D探测器阵列包含若干沿预定方向排列的探测器10,其中在一与探测器排列方向平行的平面上的射束宽度B1窄,如在图3B中所示;以及在与探测器排列方向垂直的平面上宽度B2宽,如在图3C中所示。
再者,如在图3B中所示,探测器阵列在一平行于探测器排列方向的平面上的射束方向在垂直于船身的方向yy1上不是固定的,而是可以改变的,例如在附图中所示的方向yy2上。设有一移相器电路121,以改变由方向yy2相对于方向yy1形成的角度(下文还称之为“射束角度θ”),如图1中所示,其包含若干移相器(未表示)和组合器/分配器(未表示)。
响应于外部提供的控制信号,每个移相器将由构成探测器阵列110的所有探测器中相关联的探测器输出的信号的相位。例如,确定各个相位移,以便与在探测器阵列110的一端配置的探测器10相关联的移相器可以对信号进行较大数量的移相,与在另一端配置的探测器10相关联的移相器可以进行较小数量的移相,以及根据在探测器阵列中相关联的探测器10的位置,按照通过比例分配确定的数量可以进行其它移相器的移相。应指出,本发明可以通过利用各种用于控制相位移量的已按常规方式在1D探测器阵列中采用的方法来实施,并不局限于一种特定的方法。该结合器/分配器将由外部提供到移相器电路121上的信号经过相关联的移相器提供到每一个探测器10。
此外,射束方位角θ最好控制在例如+/-60度的范围内。再者,设有一移相器电路131,其对应于探测器阵列110,用于对在与探测器阵列111中的探测器排列方向平行的平面上的射束力位角φ进行可变控制。移相器电路131的工作基本上与移相器电路121相同(除了移相器电路131的结合器/分配器是结合接收信号取代分配发送信号以外),因此这里不再解释。
(2)扫描方法
在这一实施例中,对处于船S作业区内的3D水下区域进行扫描,同时跟着进行在图4和5中概括表示的操作程序,以便探测鱼群是否出现,如果发现,探测它们的密度和规模。
参阅图4,字母“a”代表船身,字母“f”标注竖直位于船身下方的一点,直线af指定为由船S竖直向下延伸到水中的一条直线。如上所述,探测器阵列110、111的射束宽度在一平行于它们的探测器排列方向的平面上是窄的,在与该方向垂直的一个平面上宽,呈扇形。参阅图4,与探测器阵列110相关联的扇形射束属于将按照“abc”表示的平面,或者一射束发送平面,以及探测器阵列110属于一平面“ade”,或者一射束接收平面。由探测器阵列110向水中实体发送的超声波基本上沿着平面abc传播,以及由任何出现在该平面abc上的障碍物例如鱼群所反射。在接收器侧的探测器阵列按照较高的增益接收已沿着在水中实体中的平面ade顺序行进的超声波。即属于已由探测器阵列110发送到水中实体中和由其中的障碍物反射的超声波,探测器111主要接收在平面abc,ade彼此相交的直线ag上出现的障碍物反射的射束。这样就基本上实现射束至少窄于在相关现有技术中,其中利用具有窄的射束的探测器实现的超声波发送/接收。
平面adc和竖直线af形成一等于射束力位角θ的角度,平面ade和竖直线af形成一等于射束方位角φ的角度。在这一实施例中,射束方位角θ按照相对慢的速度变化,而射束方位角φ按照相对快的速度变化。具体地说,在将射束方位角θ置于所需的数值之后,探测器阵列110发送超声波,探测器阵列111的射束方向φ反复地变化,按照高的速度由直线ac的方向到直线ab变化,同时基本上维持相同的射束方位角θ。于是在射束方位角θ变化一微小角度和由超声波阵列110发送超声波之后,进行按照上述的相同的控制操作,特别是按高速反复变化探测器阵列111的射束方位角φ。然后,在其后重复整个过程,同时射束方位角θ在控制范围内变化。
由于由探测器阵列110发送的超声波的传播速度是有限的,当在一个明显短于该其中射束方位角θ变化的周期的周期内,射束方位角φ由直线ac变化到直线ab时,按照位置P→P1,位置Q→Q1,…位置R→R1的次序沿着图4中所示的曲线同时射束方位角θ维持在所需的数值上,可以探测在水面下是否出现鱼鲜。应指出,分别连接位置P和P1、位置Q和Q1,…位置R和R1的曲线可以按照以将船身中心用作原点的同心圆弧处理。然而该曲线严格意义上并不是圆弧,因为,当该射束方位角φ由直线ac侧向直线ab侧变化时,超声波也是均匀传播的。在射束方位角θ改变之后,重复上述控制操作。
如上所述,当两个(一般地说,为若干)1D探测器阵列以固定方式附着到船身上,它们的探测器排列方向彼此交叉以及一个专用于发送另一个用于接收时,就可以在未移动船S的情况下接收以超声波形式的各种与在水面下的3D空间相关的信息。应指出,虽然通过利用一按2D方式用窄射束对3D空间扫描的2D探测器阵列可以实现本发明,但按照上述方式使用1D探测器阵列可以简化并降低该装置的规模。
参阅图1,上述的3D扫描操作(装置)涉及:探测器阵列110、111,移相器电路121,131,发送器122,接收器132和控制器170。具体地说,包含一或多个处理器和外围电路的控制器170指令发送器122按照预定的周期产生发送的脉冲响应于该指令,发送器122周期性地产生发送的脉冲,经过移相器电路121提供到探测器阵列110。受到发送的脉冲的激励,探测器阵列110向水面下发送超声波。另一方面,探测器阵列111接收通过水中实体到达的超声波,并将接收的超声波变换为电信号,经过移相器电路131提供到接收器132。接收器132对接收信号进行检测和解码,以此检测它的幅值。控制器170以与在发送器122中产生发送脉冲同步的方式控制关于构成移相器121、131的各自移相器的移相。按照上述配置,实现在图4和5中所示的3D扫描。
应注意,用于控制移相的控制信号由控制器170提供到移相器电路121,131,或者一个关于射束方位角θ或φ的指令可以由控制器170提供到移相器电路121,131,以便移相器电路121,131将该指令变换为与移相相关的控制信号。此外,射束方位角θ和φ可以按微小角度步进式地变化,或者可以连续地变化。
(3)光线跟踪
通常,当与在水面下的某点相关连的由接收器132检测的接收超声波的幅值处在一预定的或更大的电平时,就可以确定在该点有不可忽略的反射标的物,例如鱼群。此外,由图4和5可以明显看出,由接收器132检测的幅值是以与按船身用作原点的3D极座标相一致的方式表示的。以与3D极座标相一致的方式说明鱼群是否存在,密度和规模的幅值信息,在A/D变换器140中将模拟信号变换为数字信号,并在控制器170的定时控制之下存储在缓冲存储器141中。最好,缓冲存储器141具有的容量能够存储与一弧形曲线(线段P-P1等,如图5中所示)相对应的数据。
将存储在缓冲存储器141中的数据写入到图像显示器160中,该存储器是一个用于提供与显示器180的屏幕相对应的2D存储器空间的存储器。根据存储在图像存储器160中的数据,按照光栅扫描式装置实现的例如CRT,LCD的显示器180显示图像。例如,存储在图像存储器160中的数据表明具有大的幅值,则显示红色图像。与之相似,对于表明具有小的幅值的数据以及对于表示具有小得多的幅值的数据,将分别显示黄色和蓝色的图像。换句话说,将根据幅值即代表鱼群密度的幅值显示图像。
在控制器170的控制之下由光线跟踪器150产生用于将短时存储在缓冲存储器141中的数据写入图像存储器160中的写地址。于是,通过按一写地址操作,关于3D极座标系统的3D数据可以变换为与显示器180的屏幕相适合的2D数据。在本申请中这称之为“光线跟踪”。
图6概念性地表示光线跟踪处理过程的内容。参阅图中上左部,表示要由鱼群搜索器扫描的3D空间A(或其一部分),更具体说,是由装在船S的船身a上的探测器阵列110、111扫描。通过对空间A扫描得到的接收信号可以识别为如在图的下左部所示的微小体积空间A1的集合,当各空间利用A/D变换器140数字化时被识别。每个微小体积的空间A1是由按将船身用作中心的两个弧形段(在图中为Q、Q1)限定的。即,在某一时间短时存储在缓冲存储器141中的数据是与沿着同一同心的弧形曲线Q-Q1排列的若干微小体积的空间A1相关的数据,即与3D极座标系统相一致的离散数据。
参阅附图的右侧,其表示在显示器180的屏幕中的假想位置和观看者的视点的假想位置相对于空间A的相互关系。应指出,在这里所使用的“观看者”术语意指关于光线跟踪处理的假设的使用人,其等于观看屏幕的假想的人。如在图中所示,在光线跟踪过程中,假设显示器180中的假想屏幕位于在空间A和观看者的视点的假想位置V之间。
如由位置V观看该扫描空间A,将要显示的即投影到假想的屏幕上的信息可以显示到显示器180的实际屏幕上,该实际屏幕是使用人以实像形式看见的,由假想的位置V观看的空间A的状态(例如鱼群是否存在)。在这一实施例中的光线跟踪处理是用于将作为与微小体积的空间A1相关的数据项的集合的和以与3D极坐标系统相一致的方式表示的数据变换为投影到2D假想屏幕上的图像,使得在该扫描空间A中的状态以三维方式显示在显示器180中的实际2D屏幕上。
如上所述,在这一实施例中,与出现在水面下的扫描空间A相关的信息可以按照3D扩展和深度的图像显示在2D屏幕上,即使该接收信号基本上按照与3D极座标系统(即已按常规方式用在其它技术领域的在光线跟踪处理中不能被处理的座标系统)相一致的方式表示。这样就能得到对于使用人为高可用性的装置。此外,根据本发明,有船运动有关的信息例如速度或单位时间运动距离或者装有本发明的鱼群搜索器的船S的倾斜度利用运动检测器200进行检测和输入,该检测器包含GPS、罗盘仪、航速计或其它类似装置;使得在光线跟踪处理中将该信息作为船身移动即扫描空间A的原点移动(信息)使用。具体地说,对在光线跟踪处理中使用的原点信息进行校正,或由图像存储器160读出是受控的,使得图像可以在显示器180的屏幕上滚动显示。因此,即使当船S运动时,在显示器180的屏幕上显示的图像所受扰动可以降低。
再者,在本发明中,如果提出要求,在对空间A扫描的过程中,在要在其中已写入不同数据的图像存储器160上的地址写入数据时,光线跟踪器150禁止在该地址再写入,因此防止写入的数据被重写或者损失。按照这种配置,可以显示所有得到的与沿由位置V观看时的相同方向的若干位置有关的数据中的起始得到的数据。此外,当关于存储在图像存储器160中的每一数据项的深度信息(由位置V到对应的微小体积的空间A1的距离)或者保持在光线跟踪器150或图像存储器160中,其它的处理可以利用该存储的数据进行。例如,如果在扫描该空间A的过程中,如果要在其中已写入不同数据的地址处写入,光线跟踪器150检测与在该地址的要写入数据相关的微小体积的空间A1相对于位置V比与已写入在该地址的数据相关的微小体积的空间A1是更远还是更接近,或者禁止或者允许在该地址写入,以便使与更接近微小体积的空间A1相关的数据被保留存储在图像存储器160中。应指出,倘若与较远的微小体积的空间A1相关的数据表明具有较大的幅值,光线跟踪器150禁止或者允许写入,以便关于较远空间A1的数据被保留存储在图像存储器160中。另外,如果在扫描空间A1的过程中,提出要求要在其中已写入不同数据的地址处写入数据,光线跟踪器150通过计算将在该地址要写入的数据和已写入的数结合,以便在该地址写入该结果(数据)。这样就能实现沿由位置V起的光线各接收数据的结合,因而,显示根据沿深度方向的密度调制的鱼群F的图像。
应当指出,虽然在图6所示的实例中视点V位于在空间A这一侧,但视点V可以位于在水面之上。按照后一安排,与当由船上观看水面下方时投影到水面上的图像相似的图像,或沿一所需平面的空间A的断面图像可以显示在显示器180的屏幕上。特别是,按照位于在相对于水平的竖直线上的视点,与当由船上观看直接位于水面下时可以看到的水面上的投影图像相类似的图像,或者按所需水深的相对于水平面的断面图像可以显示在显示器180的屏幕上。即,根据本发明,能够更接近与使用人的要求一致。
(4)旋转处理
图7表示根据本发明第二实施例的鱼群搜索器的主要元件。在这一实施例中,设有一数据库190,用于在至少一个扫描周期(即由对空间A扫描的一个周期的起到止的一段时间)的过程中,保存已写入到缓冲存储器141中的数据。光线跟踪器150连接到用于使用人操作的操作部分,以便使用人通过操作该操作部分191指令光线跟踪器旋转、放大或缩小显示的图像,即改变图6中的位置V。响应于这一指令,光线跟踪器150利用存储在数据库190中的数据更新图像存储器160的存储数据,因而更新在显示器180的屏幕上显示的图像。例如,当形成一旋转所显示的图像时,在由于旋转显示的图像将由其它部分掩蔽的部分上的数据由在图像存储器160中存储的数据中删除。由于旋转的结果已被掩蔽和将要出现的部分上的数据由数据库190中读出,以便写入图像存储器100中,在其它部分上的数据被指定滚动换帧处理。按照这种配置,使用人可以按要求确定视点位置V,以便由其按不同角度观看鱼群F的图像。
(5)在发送和接收时共用的探测器阵列
图8表示根据本发明的第三实施例的鱼群搜索器中的主要元件。在这一实施例中,探测器阵列110不仅用于发送而且还用于接收超声波。此外,由探测器阵列110接收的接收信号在移相器电路121中进行移相,在接收器123中进行检测和解调,并与来自接收器132的输出一起提供到处理器133。处理器133计算来自接收器123和132的输出的积并将该结果提供到A/D变换器140。
因此,在本实施例中能够得到比在第一和第二实施例中更窄的接收射束。即,由于探测器阵列110的发送定向性和接收定向性的结合导致形成比在图3中的射束宽度B1更窄的射束宽度,结合的较窄的射束宽度和探测器阵列111的接收输出之间的结合,将导致形成更窄的射束宽度。具体地说,来自位于在平面ade的和由图4中的直线位移的声源的噪声即由其发动机或推进器引起的噪声,或者由于其它船引起的航行噪声不大可能会出现在需输出到A/D变换器140的数据中。此外,较窄的接收射束宽度能实现更高的分辨率。在不扩大构成探测器阵列110、111的探测器的规模的情况下,换句话说,在不增加成本或降低航行速度的情况下,可以实现这些优点,即防止噪声和提高分辨率。另外,可以这样构成处理器133,如果不损害窄接收射束宽度的优点,可实行不同于仅用于相乘的任何处理。
Claims (17)
1、一种鱼群搜索器,包含:
--扫描器,用于利用由船身发送的定向超声波对水下区域进行扫描,以获得代表在该区域鱼群是否出现、其密度和规模的接收数据,该接收数据以与利用船身作为原点的3D极座标系统相一致的方式表示;
--光线跟踪器,用于对接收数据进行光线跟踪处理,以便在显示器的屏幕上显示一个与当由一假想视点观看该区域时将看到的图像相类似的图像;以及
显示器,根据进行了光线跟踪处理的接收处理在其2D屏幕上显示代表在该区域内的鱼群是否出现、其密度和规模的3D图像。
2、根据权利要求1所述的鱼群搜索器,其中该搜索器包含:
第一探测器阵列,以固定方式附着在船身上,在来自外侧的控制下产生一其在与水平交叉的第一平面上的力位角θ是可变的射束,该射束在与水面和第一平面交叉的第二平面上呈扇形;
第二探测器阵列,以固定方式附着在船身上,它的探测器排列方向与第一探测器的探测器排列方向交叉,在来自外侧的控制下产生一其在第二平面上的方位角φ是可变的射束,该射束在第一平面上呈扇形;
发送器/接收器,用于使第一探测器阵列按预定时间安排向水中群体发送超声波,和用于向光线跟踪器提供已通过该水中群体发送和由第二探测器阵列接收的超声波相关的作为接收数据的数据;
射束发送方向控制器,用于对与每个构成第一探测器阵列的探测器相关的信号进行移相,以此在预定的角度范围内改变该方位角;及
射束接收方向控制器,用于对与每个构成第二探测器阵列的探测器相关的信号进行移相,以此在其中改变方位角θ的大小和超声波的传播距离维持在预定微小数值变化范围内的短时间段的过程中,在预定角度范围内反复改变方位角φ。
3、根据权利要求2所述的鱼群搜索器,其中的发送器/接收器包含:
控制器,用于使第一探测器阵列按照预定的时间安排向水中群体发送超声波,及
处理器,用于按照实现较窄接收射束宽度的方式将第一探测器阵列的接收输出和第二探测器阵列的接收输出相结合,以产生接收数据提供到光线跟踪器,
以此,第一探测器阵列发送和接收超声波。
4、根据权利要求1所述的鱼群搜索器,其中
光线跟踪器将利用扫描器得到的接收数据写入与显示器的屏幕相对应的2D存储器空间,以及控制关于该存储器空间的写入地址,以便将与该空间相关的接收数据以代表与当由假想的视点观看该空间时将看到的图像相类似的图像的2D数据的形式写入到该存储空间内,及
显示器,根据在该存储器空间存储的数据在其屏幕上显示代表鱼群是否出现,其密度和规模的图像。
5、根据权利要求4所述的鱼群搜索器,其中当沿相同的方向存在一与要写入存储器空间的数据相关的位置时,当由假想的视点观看时由于与已写入该存储器空间的数据相关的位置处在该位置,禁止向该存储器空间写入,以防止已写入该存储器空间的数据被重写或丢失。
6、根据权利要求5所述的鱼群搜索器,其中即使当沿相同的方向存在与要写入存储器空间的数据相关的位置时,当由假想的观看点观看时,由于与已写入该存储器空间的数据相关的位置已处在该位置,倘若与要写入该存储器空间的数据相关的位置比该已写入该存储器空间的数据相关的位置更接近假想的视点时,允许写入该空间。
7、根据权利要求4所述的鱼群探测器,其中按计算方式将要写入该存储器空间的数据结合到该已写入该存储器空间的数据,以及当沿相同的方向存在与要写入到该存储器空间的数据相关的位置时,当由假想的视点观看时由于与已写入该存储器空间的数据相关的位置处于该位置,结合的数据按与已写入到与已写入该存储器空间的数据相关的地址写入。
8、根据权利要求4所述的鱼群搜索器,还包含
数据库,用于存储利用扫描器得到的接收数据,
一装置,用于当使用人指令改变假想的视点时,响应于该指令旋转在显示器的屏幕上显示的图像和用于当利用存储在数据库中保存的数据补充在该存储器空间中缺少的数据同时,校正该存储器空间的存储数据。
9、根据权利要求2所述的鱼群搜索器,其中
光线跟踪器将通过利用扫描器得到的接收数据写入到与显示器的屏幕相对应的2D存储器空间以及控制关于该存储器空间的写入地址,以便以代表与当由假想的视点观看该空间时将看到的图像相似的图像的2D数据的形式将与该空间相关的接收数据写入到该存储器空间中;以及
显示器,根据在该存储器空间存储的数据在其屏幕上显示代表鱼群是否出现、其密度和规模的图像。
10、根据权利要求9所述的鱼群搜索器,其中当沿相同的方向存在与要写入该存储器空间的数据相关的位置时,当由假想的视点观看时,由于与已写入该存储器空间的数据相关的位置处在该位置,禁止写入该存储器空间,以防止已写入该存储器空间的数据被重写和丢失。
11、根据权利要求10所述的鱼群搜索器,其中即使当沿相同的方向存在与要写入该存储器空间的数据相关的位置时,当由假想的视点观看时由于与已写入该存储器空间的数据相关的位置处于该位置,倘若与要写入该存储器空间的数据相关的位置比与已写入该存储器空间的数据相关的位置更接近于假想的视点,允许向该存储器空间写入。
12、根据权利要求9所述的鱼群搜索器,其中将要与入到该存储器空间的数据按计算方式结合到已写入到已写入该存储器空间内的数据以及当沿相同的方向存在与要写入该存储器空间的数据相关的位置时,当由假想的视点观看时,由于与已写入该存储器空间的数据的位置处于该位置,按与已写入存储器空间的数据相关的地址写入结合的数据。
13、根据权利要求9所述的鱼群搜索器,还包含
数据库,用于存储利用扫描器得到的接收数据,
一装置,用于当使用人指定改变假想的视点时,响应于该指令旋转显示器的屏幕上的图像和用于在利用存储在数据库中保存的数据补充在该存储器空间内缺少的数据的同时校正该存储器空间的存储参数。
14、根据权利要求1所述的鱼群搜索器,还包含:
运动探测器,用于探测船的运动,
其中
随着3D极座标系统的原点相对于利用扫描器得到的接收数据移动时,光线跟踪器反映该在光线跟踪处理过程中检测的运动。
15、根据权利要求1所述的鱼群搜索器,其中
按照其中将假想的视点设在水面上方的安排,光线跟踪器在显示器的屏幕上显示图像,即按一所需的平面通过对水面下的该空间取截面得到的图像,或与当由船上向水面下观看时投影到水面的图像相同的图像。
16、根据权利要求15所述的鱼群搜索器,其中
按照其中将假想的视点设在与水面垂直的直线上的安排,光线跟踪器在显示的屏幕上显示当由船上观看直接位于下方的水面时将看到的水面投影图像,或与通过按照所需水深处的水平面对该空间取断面得到的图像相似的图像。
17、一种用于搜索水中目标的装置,包含:
扫描器,用于利用由船身发送的定向超声波对水下区域进行扫描,以便得到包含在该区域内的目标的特征信息的接收数据,该接收数据以与利用船身作为原点的3D极座标系统相一致的方式表示;
光线跟踪器,用于根据接收数据进行光线跟踪处理,以便在显示器的屏幕上显示与当由假想的视点观看该区域时将看到的图像相类似的图像;以及
显示器,根据已进行光线跟踪处理的接收数据,在其屏幕上显示代表在该区域中的目标的特征信息的3D图像。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP86731/98 | 1998-03-31 | ||
JP8673198 | 1998-03-31 | ||
JP250584/98 | 1998-09-04 | ||
JP10250584A JPH11344566A (ja) | 1998-03-31 | 1998-09-04 | 魚群探知機 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1234510A true CN1234510A (zh) | 1999-11-10 |
CN1291239C CN1291239C (zh) | 2006-12-20 |
Family
ID=26427823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB991062566A Expired - Lifetime CN1291239C (zh) | 1998-03-31 | 1999-03-31 | 用于搜索水中目标的装置 |
Country Status (9)
Country | Link |
---|---|
US (1) | US6198692B1 (zh) |
EP (1) | EP0947854B1 (zh) |
JP (1) | JPH11344566A (zh) |
KR (1) | KR100493783B1 (zh) |
CN (1) | CN1291239C (zh) |
CA (1) | CA2266946C (zh) |
DE (1) | DE69917830T2 (zh) |
ES (1) | ES2218893T3 (zh) |
NO (1) | NO991523L (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100430694C (zh) * | 2006-12-31 | 2008-11-05 | 哈尔滨工程大学 | 多波束宽覆盖海底地形地貌探测装置 |
CN104181536A (zh) * | 2013-05-27 | 2014-12-03 | 本多电子株式会社 | 探照灯式声纳 |
CN106338734A (zh) * | 2015-07-06 | 2017-01-18 | 古野电气株式会社 | 鱼群探知机、鱼群探知系统以及鱼群探知方法 |
WO2017219470A1 (zh) * | 2016-06-22 | 2017-12-28 | 杨越 | 利用正交阵列形成无人船监控区域超声波三维图像的装置 |
WO2017219471A1 (zh) * | 2016-06-22 | 2017-12-28 | 杨越 | 利用正交阵列形成无人船监控区域超声波三维图像的方法 |
CN107544071A (zh) * | 2016-06-23 | 2018-01-05 | 古野电气株式会社 | 水中探测系统 |
CN109855575A (zh) * | 2019-01-23 | 2019-06-07 | 深圳慧安康科技有限公司 | 智能装置、室内人体三维定位方法及智慧家庭实现方法 |
CN110780286A (zh) * | 2018-07-31 | 2020-02-11 | 古野电气株式会社 | 回波信号处理装置与系统、以及回波信号处理方法 |
CN110954908A (zh) * | 2020-01-03 | 2020-04-03 | 山东科技大学 | 基于fpga的探鱼器多普勒频移快速搜索系统及方法 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010070713A (ko) * | 2001-05-31 | 2001-07-27 | 채문성 | 낚시용 해저 탐사 장치 |
KR20040041322A (ko) * | 2002-11-11 | 2004-05-17 | 엘지이노텍 주식회사 | 천해 환경에서 물체 탐지를 위한 수면 반사파 감쇄 장치 및 방법 |
JP2006162480A (ja) * | 2004-12-08 | 2006-06-22 | Furuno Electric Co Ltd | 水中探知装置 |
WO2007093002A1 (en) * | 2006-02-16 | 2007-08-23 | Ecobuoy Pty Ltd | Sonar accessory & method |
US7505363B2 (en) | 2006-04-10 | 2009-03-17 | Airmar Technology Corporation | Automatic switch for marine sounders |
US7646675B1 (en) | 2006-09-19 | 2010-01-12 | Mcgonegal Ralph | Underwater recognition system including speech output signal |
EP2023159A1 (en) * | 2007-07-23 | 2009-02-11 | Syddansk Universitet | Method and system for echo localisations of objects |
JP5054553B2 (ja) * | 2008-01-31 | 2012-10-24 | 株式会社シマノ | 釣り情報表示装置 |
FR2929784B1 (fr) * | 2008-04-04 | 2010-12-17 | Yanis Alexis Mouloud Souami | Interface d'interactions hommes/machines/mammiferes marins par emission reception de signaux aeriens et sous marins. |
KR101034550B1 (ko) | 2008-09-10 | 2011-05-12 | 양경택 | 콘크리트 구조물 해체용 건식 절단장치 및 절단방법 |
JP5395692B2 (ja) * | 2009-04-02 | 2014-01-22 | 株式会社東芝 | 気象レーダ装置及び気象観測方法 |
KR101249773B1 (ko) * | 2011-03-10 | 2013-04-01 | 한국해양과학기술원 | 수상 이동 기준점을 이용한 수중관성항법 오차보정 시스템 및 오차보정 방법 |
DE102011083724A1 (de) * | 2011-09-29 | 2013-04-04 | Siemens Ag | Verfahren und Vorrichtung zur Formung eines Ultraschallsignals |
CN103760564A (zh) * | 2013-04-23 | 2014-04-30 | 苏州爱思索电子科技有限公司 | 一种无线遥控巡游探鱼器 |
KR101493956B1 (ko) * | 2013-08-23 | 2015-02-16 | 한국해양과학기술원 | 다수의 2d 초음파 이미지를 이용한 대상물의 3d 형상모델 추출방법 및 그 추출장치 |
US20150221123A1 (en) * | 2014-02-03 | 2015-08-06 | Nvidia Corporation | System and method for computing gathers using a single-instruction multiple-thread processor |
US9812118B2 (en) | 2014-07-15 | 2017-11-07 | Garmin Switzerland Gmbh | Marine multibeam sonar device |
US9766328B2 (en) | 2014-07-15 | 2017-09-19 | Garmin Switzerland Gmbh | Sonar transducer array assembly and methods of manufacture thereof |
US10514451B2 (en) | 2014-07-15 | 2019-12-24 | Garmin Switzerland Gmbh | Marine sonar display device with three-dimensional views |
US9784826B2 (en) | 2014-07-15 | 2017-10-10 | Garmin Switzerland Gmbh | Marine multibeam sonar device |
US9784825B2 (en) * | 2014-07-15 | 2017-10-10 | Garmin Switzerland Gmbh | Marine sonar display device with cursor plane |
US9664783B2 (en) | 2014-07-15 | 2017-05-30 | Garmin Switzerland Gmbh | Marine sonar display device with operating mode determination |
KR101714868B1 (ko) * | 2015-04-13 | 2017-03-09 | 울산대학교 산학협력단 | 3d 어군 탐지기 |
JP6441735B2 (ja) * | 2015-04-20 | 2018-12-19 | 古野電気株式会社 | 水中探知装置 |
US10605913B2 (en) | 2015-10-29 | 2020-03-31 | Garmin Switzerland Gmbh | Sonar noise interference rejection |
JP6724593B2 (ja) * | 2016-06-22 | 2020-07-15 | 日本電気株式会社 | アクティブソーナーおよびアクティブソーナーの制御方法 |
FR3075974B1 (fr) * | 2017-12-22 | 2019-12-27 | Ixblue | Drone marin de surface et procede de caracterisation d'un milieu subaquatique mis en œuvre par un tel drone |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5134884A (en) | 1986-05-02 | 1992-08-04 | Forrest Anderson | Single pulse imaging device |
US5184330A (en) | 1991-06-25 | 1993-02-02 | Techsonic Industries, Inc. | Multi-beam sonar fish detection apparatus providing real-time three-dimensional wire-frame display representation |
US5540229A (en) | 1993-09-29 | 1996-07-30 | U.S. Philips Cororation | System and method for viewing three-dimensional echographic data |
US5537380A (en) | 1995-07-14 | 1996-07-16 | Lowrance Electronics, Inc. | Sonar system having an interactive sonar viewing apparatus and method of configuring same |
-
1998
- 1998-09-04 JP JP10250584A patent/JPH11344566A/ja active Pending
-
1999
- 1999-03-05 US US09/263,220 patent/US6198692B1/en not_active Expired - Lifetime
- 1999-03-10 ES ES99104773T patent/ES2218893T3/es not_active Expired - Lifetime
- 1999-03-10 DE DE69917830T patent/DE69917830T2/de not_active Expired - Lifetime
- 1999-03-10 EP EP99104773A patent/EP0947854B1/en not_active Expired - Lifetime
- 1999-03-25 CA CA002266946A patent/CA2266946C/en not_active Expired - Lifetime
- 1999-03-29 KR KR10-1999-0010748A patent/KR100493783B1/ko not_active IP Right Cessation
- 1999-03-29 NO NO19991523A patent/NO991523L/no not_active Application Discontinuation
- 1999-03-31 CN CNB991062566A patent/CN1291239C/zh not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100430694C (zh) * | 2006-12-31 | 2008-11-05 | 哈尔滨工程大学 | 多波束宽覆盖海底地形地貌探测装置 |
CN104181536A (zh) * | 2013-05-27 | 2014-12-03 | 本多电子株式会社 | 探照灯式声纳 |
CN104181536B (zh) * | 2013-05-27 | 2017-05-31 | 本多电子株式会社 | 探照灯式声纳 |
CN106338734A (zh) * | 2015-07-06 | 2017-01-18 | 古野电气株式会社 | 鱼群探知机、鱼群探知系统以及鱼群探知方法 |
WO2017219470A1 (zh) * | 2016-06-22 | 2017-12-28 | 杨越 | 利用正交阵列形成无人船监控区域超声波三维图像的装置 |
WO2017219471A1 (zh) * | 2016-06-22 | 2017-12-28 | 杨越 | 利用正交阵列形成无人船监控区域超声波三维图像的方法 |
CN107544071A (zh) * | 2016-06-23 | 2018-01-05 | 古野电气株式会社 | 水中探测系统 |
CN110780286A (zh) * | 2018-07-31 | 2020-02-11 | 古野电气株式会社 | 回波信号处理装置与系统、以及回波信号处理方法 |
CN109855575A (zh) * | 2019-01-23 | 2019-06-07 | 深圳慧安康科技有限公司 | 智能装置、室内人体三维定位方法及智慧家庭实现方法 |
CN110954908A (zh) * | 2020-01-03 | 2020-04-03 | 山东科技大学 | 基于fpga的探鱼器多普勒频移快速搜索系统及方法 |
CN110954908B (zh) * | 2020-01-03 | 2021-09-14 | 山东科技大学 | 基于fpga的探鱼器多普勒频移快速搜索系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
NO991523D0 (no) | 1999-03-29 |
KR100493783B1 (ko) | 2005-06-08 |
NO991523L (no) | 1999-10-01 |
ES2218893T3 (es) | 2004-11-16 |
EP0947854B1 (en) | 2004-06-09 |
CA2266946A1 (en) | 1999-09-30 |
CN1291239C (zh) | 2006-12-20 |
DE69917830D1 (de) | 2004-07-15 |
DE69917830T2 (de) | 2005-07-14 |
EP0947854A2 (en) | 1999-10-06 |
EP0947854A3 (en) | 2000-03-22 |
JPH11344566A (ja) | 1999-12-14 |
US6198692B1 (en) | 2001-03-06 |
CA2266946C (en) | 2003-10-28 |
KR19990078351A (ko) | 1999-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1291239C (zh) | 用于搜索水中目标的装置 | |
US10247823B2 (en) | Sonar rendering systems and associated methods | |
US11668823B2 (en) | Sonar transducer having geometric elements | |
US6438071B1 (en) | Method for producing a 3D image | |
US20100067330A1 (en) | Ship mounted underwater sonar system | |
US4815045A (en) | Seabed surveying apparatus for superimposed mapping of topographic and contour-line data | |
GB2421312A (en) | Scanning sonar with three-dimensional display | |
CN102798841A (zh) | 影像显示装置以及雷达装置 | |
US20040090864A1 (en) | Raster based system and method for target tracking and motion analysis | |
JPH0943350A (ja) | 超音波ソナー | |
JP2905370B2 (ja) | 水中探知装置 | |
US5061935A (en) | Three-dimensional display radar | |
AU2021232789B2 (en) | Sonar transducer having geometric elements | |
JPH04104079A (ja) | ソナー立体表示装置 | |
US3793619A (en) | Navigation aid and display screen | |
JP3139815B2 (ja) | 水中物体表示装置 | |
JPS6326876B2 (zh) | ||
US5367498A (en) | Lateral direction detection sonar | |
JP2859916B2 (ja) | エコー信号処理装置及び該装置を含む水中探知装置 | |
JPH0115830B2 (zh) | ||
Andrews et al. | Swathmap: Long range sidescan sonar mapping of the deep seafloor | |
NZ763333B2 (en) | Sonar transducer having geometric elements | |
JPS629869B2 (zh) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20061220 |
|
CX01 | Expiry of patent term |