WO2017219471A1 - 利用正交阵列形成无人船监控区域超声波三维图像的方法 - Google Patents

利用正交阵列形成无人船监控区域超声波三维图像的方法 Download PDF

Info

Publication number
WO2017219471A1
WO2017219471A1 PCT/CN2016/095098 CN2016095098W WO2017219471A1 WO 2017219471 A1 WO2017219471 A1 WO 2017219471A1 CN 2016095098 W CN2016095098 W CN 2016095098W WO 2017219471 A1 WO2017219471 A1 WO 2017219471A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional image
dimensional
ultrasonic
scanning
phased array
Prior art date
Application number
PCT/CN2016/095098
Other languages
English (en)
French (fr)
Inventor
杨越
Original Assignee
杨越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨越 filed Critical 杨越
Publication of WO2017219471A1 publication Critical patent/WO2017219471A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the invention relates to an unmanned ship monitoring area imaging method, in particular to an ultrasonic orthogonal array.
  • Drones and driverless cars are in the tech world, and the limelight is exhausted. In contrast, low-profile unmanned ships are less well-known. In the novel, the unmanned ship has always shrouded a mysterious atmosphere.
  • the famous "ghost ship” is the classic material of the writer's fictional nautical story. In reality, the unmanned ship is the treasure of the military field of all countries and is the important competition of science and technology. technology. At present, the unmanned ship is in a period of rapid development. However, the unmanned ship still faces many technical bottlenecks before the launch of the launch and the operation on the water.
  • Unmanned ships do not require human pilots to manipulate them. Whether the concept of "zero crew" is appropriate is appropriate. At present, there are many opinions in the industry. The journalist of "Safety” has proposed the distance between the ideal of "unmanned ship” and reality. It is suggested that if a ship suddenly fires and its position is unknown, according to the existing technology level, the unmanned ship's control will definitely make two kinds of instructions. One is the best method, that is, send the fire extinguishing robot to find the exact fire point and put out the fire. The second is that if the robot can not complete the fire-fighting task, the ship will open the high-pressure water mist fire extinguishing system to complete the fire-fighting mission.
  • an object of the present invention to provide an apparatus for performing ultrasonic three-dimensional image formation in an unmanned ship surveillance area using an orthogonal array, comprising: two linear phased arrays consisting of orthogonal arrays perpendicular to each other, two linear phased controls
  • the array is respectively an emission linear phased array for transmitting ultrasonic waves and placed in the X-axis direction, and a receiving linear phased array for receiving ultrasonic echoes and placed in the Y-axis direction, each having an internal unit, two The internal units are separated by ⁇ /2, where ⁇ represents the ultrasonic wavelength, and the two linear phased arrays share the same XY coordinate system origin sensor unit as their respective center array elements; the length of one side is slightly smaller than ⁇ /2 square a sensor; a transmitter that emits an generated electrical signal for transmitting an ultrasonic wave of the linear phased array; a receiver that receives the returning orthogonal array from the receiving linear phased array and converts the electrical signal into a signal
  • the number of sensor components constituting each phased array is preferably 64 or 128.
  • the X-axis and the Y-axis constitute a square region in which the sensor unit transmitting the linear phased array and receiving the linear phased array is placed.
  • the data storage portion is composed of a large number of semiconductor chips or a high-speed large-capacity hard disk.
  • the three-dimensional image signal processor is composed of a high-speed digital signal processor or a large-capacity high-speed ASIC for a dedicated calculation or program, or an externally connected computer.
  • the transmitter, the receiver, the parallel beam former, and the image signal processor are identical to the corresponding structures of the general two-dimensional image device.
  • Another object of the present invention is to provide a method for forming an ultrasonic three-dimensional image of an unmanned ship monitoring area by using an orthogonal array, the steps are as follows:
  • the ultrasonic echo signal received by the receiving linear phased array is processed in the receiver, and then the parallel beamformer focuses it to a signal scanning line corresponding to an azimuth angle; (2) the focused signal is passed through the image signal processor Processing and displaying on the display; (3) repeating the above operations to form a three-dimensional image plane identical to the plane formed by the existing two-dimensional image forming process; (4) determining the three-dimensional to be scanned using the above two-dimensional image mode a region; (5) locating an orthogonal array at a center of the determined three-dimensional region; (6) setting a three-dimensional image mode, and then performing a three-dimensional scanning transmission and reception stream (7) corresponding to all sensor elements of the receiving linear phased array, the output of the receiver is stored in the data storage part after each step (6) is sent; (8) after completing the above steps, that is, all the desired three-dimensional After the transmission wave plane of the area is formed and all the reflected signals from the plane are connected After the signals received by the sensor units of the linear phased array plane
  • step (9) Preferably, in the dynamic depth focusing of step (9), only one emission delay rule is used, and for the received signal, the focus law is continuously loaded so that the ultrasound beam performs the scanning for different depths of focus along the beam axis.
  • real-time four-dimensional scanning can be performed after expanding the memory capacity of the data storage portion.
  • step (9) other scanning burst scanning modes other than depth focusing are performed on all scanning lines of the three-dimensional scanning area.
  • other array sound beam scanning methods preferably include an electronic linear scan or a sector scan.
  • the phased array method using ultrasonic orthogonal array that is, using electronic method to control sound beam focusing and scanning, can perform quick and comprehensive scanning without moving the probe, improve scanning imaging speed, and have good sound beam reachability.
  • the resolution and detection range can be improved by optimally controlling the focus size, focal depth and beam direction.
  • FIG. 1 is a view showing a coordinate system for explaining a method and apparatus for forming an ultrasonic three-dimensional image of an unmanned ship monitoring area using an orthogonal array according to the present invention
  • FIG. 2 is a block diagram showing an apparatus for forming an ultrasonic three-dimensional image of an unmanned ship monitoring area using an orthogonal array in accordance with a preferred embodiment of the present invention
  • FIG. 3 is a block diagram showing an apparatus for forming an unmanned ship surveillance area ultrasonic three-dimensional image using an orthogonal array according to a preferred embodiment of the present invention, including three-dimensional image formation using a two-dimensional image forming apparatus according to the present invention. Methods.
  • the present invention provides a structure for forming an ultrasonic three-dimensional image of an unmanned ship surveillance area using an orthogonal array, including a small number of sensor units compared to a conventional two-dimensional array, and completing a three-dimensional image in a typical two-dimensional image scanning time Scanning, and a new three-dimensional image forming method and apparatus using the method.
  • an apparatus for performing an ultrasonic three-dimensional image formation of an unmanned ship surveillance area using an orthogonal array includes an orthogonal array of two linear phased arrays 11 and 12 that are perpendicular to each other. Both the transmitting linear phased array 11 and the receiving linear phased array 12 have an internal unit spaced apart from each other by ⁇ /2, where ⁇ represents the ultrasonic wavelength and includes a square sensor with a side that is slightly less than ⁇ /2.
  • the two linear phased arrays 11 and 12 share the same origin of the X-Y axis coordinate system origin sensor unit as respective center array elements.
  • the linear phased array 11 is transmitted for the transmission of ultrasonic waves and placed in the X-axis direction in FIG.
  • the linear phased array 12 is received for the reception of ultrasonic echoes and placed in the Y-axis direction in FIG. Sensors constituting each phased array 11 or 12
  • the number of parts is preferably 64 or 128.
  • the square area shown on the X-axis and the Y-axis of FIG. 2 constitutes a transmitting linear phased array 11 and a sensor unit that receives the linear phased array 12.
  • the transmitter 20 emits an electrical signal for generating an ultrasonic wave for transmitting the linear phased array 11.
  • Ultrasonic waves emitted by the transmitting linear phased array 11 in the focus position are reflected by the obstacle as they propagate through the hull.
  • the ultrasonic echoes that return to the orthogonal array 10 are converted to electrical signals by the sensor components within the receiving linear phased array 12.
  • the receiver 30 receives the electrical signal output from the receiving linear phased array 12 and converts the received analog electrical signal into a digital form by performing a plurality of signal processing procedures, the processing program receiving the received analog in a typical ultrasonic imaging device
  • the electrical signal is operated.
  • the parallel beam former 40 performs a parallel beam forming operation on the digital signal supplied from the receiver 30.
  • Image signal processor 50 receives all of the scan line signals generated in parallel beam former 40 and performs an ultrasonic phased array imaging process for the received signals to produce different forms of image signals for display on display 60.
  • the controller 70 controls the operations within the above-described block diagrams to obtain a three-dimensional image in a desired form.
  • each sensor unit in the transmitting linear phased array 11 When the transmitter 20 transmits the linear phased array 11 to provide an electrical signal under the control of the controller 70, each sensor unit in the transmitting linear phased array 11 generates ultrasonic waves.
  • the width of the transmitted wave plane in the azimuthal direction is determined by the size of the sensor component consisting of the transmitting linear phased array 11.
  • Multiple tilt angle applications are commonly used in multi-region focusing techniques or linear focusing techniques in existing two-dimensional image forming devices, in a wide area or in all desired areas An effective transmit wave plane can be formed.
  • the transmitter 20 is modified in accordance with the prior art.
  • the transmitted ultrasonic signal When the transmitted ultrasonic signal propagates in the hull, the transmitted ultrasonic signal is converted into an electrical signal by the sensor unit receiving the linear phased array 12.
  • the receiver 30 performs pre-amplification, time gain compensation, and filtering on the ultrasonic signals converted by the receiving sensor unit.
  • An analog-to-digital (A/D) converter (not shown) provided within receiver 30 converts the ultrasonic signals into a digital format.
  • the parallel beam former 40 receives the digital ultrasonic signal output from the receiver 30 and performs a parallel beam forming operation on the received digital signal.
  • a receiving wave plane parallel to the X-axis shown in Fig. 2 is formed.
  • the parallel wave former 40 performs a diffraction phase control method in the parallel wave formation process to reduce the sidelobe level.
  • the focus law is continuously loaded so that the ultrasonic beam is focused along the axis of the sound beam. Perform this scan in depth.
  • the wave width of the obtained scanning line is defined as follows: 1) The width of the oblique direction is the same as the beam width of the transmission wave width. 2) The beamwidth and resolution in the azimuthal direction are related to the corresponding parameters of the received wave plane Again, that is, the waveform in the azimuthal direction is a unidirectional wave that only receives the linear phased array 12. Therefore, the resolution in the azimuth direction of the apparatus of FIG. 2 can be controlled by the control transmitter 20, in which the resolution of the apparatus of FIG. 2 is better than that of the existing two-dimensional image forming apparatus. Moreover, since the wave plane scan lines corresponding to all azimuth angles are defined, there is no blind zone in the unmanned ship scanning range.
  • the image signal processor 50 performs different signal processing procedures, obtaining excellent image quality due to the focus signal on the scanning line required by the parallel beam former 40, and performing image processing and picture signal processing to generate all types of two-dimensional sums.
  • the three-dimensional image is displayed on the display 60, so the display 60 also uses the formed three-dimensional image data.
  • the controller controls all operations and processing flows, including the generation of transmit pulses and transmit wave formation, receivers, parallel beamformers, repeated control of transmit and receive wave formation, and control of image and signal processing.
  • the present invention uses a three-dimensional image forming method to provide a more economical and practical value three-dimensional image forming apparatus, wherein the method uses the orthogonal array of the present invention, and the structure employs the general two-dimensional image forming apparatus shown in FIG.
  • the three-dimensional image forming apparatus of FIG. 3 adds an orthogonal array, a data storage portion 180, and a three-dimensional image signal processor 190 to the existing two-dimensional image processing apparatus.
  • the data storage portion 180 is composed of a large number of semiconductor chips or a high-speed large-capacity hard disk.
  • the three-dimensional image signal processor 190 is comprised of a high speed digital signal processor (DSP) or a high capacity, high speed ASIC for dedicated computing or programming.
  • DSP digital signal processor
  • the transmitter 120, the receiver 130, the received beamformer 140, and the two-dimensional image signal processor 150 are identical to the corresponding structures of the general two-dimensional image device.
  • the transmit linear phased array 111 and the receive linear phased array 112 are each comprised of 64 or 128 sensor units respectively coupled to the transmitter 120 and the receiver 130.
  • the output of the receiver 130 is simultaneously input to the reception beam former 140 and the data storage portion 180.
  • the transmitter enables the transmission of the linear phased array 111 so that a transmission wave plane is formed each time the position is at a tilt angle of 0 degrees.
  • the ultrasonic echo signals received by the receive linear phased array 112 are processed within the receiver 130 and then focused by the receive beamformer 140 to a signal scan line corresponding to an azimuth.
  • the focused signal is processed by the two-dimensional image signal processor 150 and on the display 160 Display. The above operations are repeated to form a three-dimensional image plane identical to the plane formed by the existing two-dimensional image forming process.
  • the same array as the universal line phased array used in the existing two-dimensional image forming apparatus can also be used.
  • the three-dimensional image mode is performed using the apparatus of FIG. 3 in the following flow: 1) The three-dimensional area to be scanned is determined using the above-described two-dimensional image mode. 2) Locating the orthogonal array 100 at the center of the determined three-dimensional region. 3) setting the three-dimensional image mode after completion 2) by pressing a specific button (not shown), and then performing the transmission of the three-dimensional scan described with reference to the apparatus of Fig. 2. And receiving process. 4) Corresponding to all sensor elements receiving the linear phased array, the output of the receiver 130 is stored in the data storage portion 180 after each step 3). 5) After the above steps are completed, that is, all the constituent three-dimensional regions are transmitted. After the wave plane is formed and all the reflected signals from the plane and the signals received by the sensor units receiving the linear phased array plane are stored, the transmission and reception processes are stopped.
  • the three-dimensional image signal processor 190 reads out the data stored in the data storage portion 180. Beam focusing is performed on all of the scan lines of the three-dimensional scan area, and the required three-dimensional image processing is performed, and then information of all the two-dimensional and three-dimensional images to be displayed is supplied to the display 170.
  • the method of performing three-dimensional image formation using the apparatus of FIG. 3 described above performs a scanning operation (sending and receiving operation) on the three-dimensional image shape in real time, and when the apparatus of FIG. 2 obtains a real-time three-dimensional image, performing reception wave focusing, non-real-time three-dimensional image Processing and storage operations.
  • a scanning operation sending and receiving operation
  • the apparatus of FIG. 2 obtains a real-time three-dimensional image
  • the search for three-dimensional images of the diagnostic information is done in real time. Accordingly, the above method of the apparatus with reference to Fig. 3 is also effective. Therefore, it is not necessary to use a large parallel wave former in the apparatus of Fig. 2.
  • the three-dimensional image signal processor 190 can be replaced by an externally connected computer.
  • the data storage portion 180 has a high speed external computer interface. When such an external computer is used, the data is stored.
  • the storage portion 180 can be placed in an external computer without being placed in the three-dimensional image forming apparatus shown in FIG. In any case, the three-dimensional image forming apparatus of Fig. 3 is simpler in structure than the image forming apparatus of Fig. 2.
  • the ultrasonic three-dimensional image forming apparatus of Fig. 3 can perform real-time four-dimensional scanning while the memory capacity of the data storage portion 180 is sufficiently large. That is to say, the three-dimensional image information over time can be obtained in real time and thereafter the variation of the three-dimensional image can be checked over time by performing received wave focusing and non-real time image processing. And the direction of the phased array sound beam scanning can be electronic (linear) scanning, sector scanning and dynamic depth focusing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种使用正交阵列进行无人船监控区域超声波三维图像形成的方法,包括如下步骤:使用常规二维图像模式确定待扫描的三维区域;在确定的三维区域中心定位正交阵列(100);设定完成三维图像模式,然后执行三维扫描的发送和接收流程;将接收器(130)对应于正交阵列(100)的所有传感器元件的输出存储在数据存储部分(180);完成上述步骤后,发送和接收流程停止;三维图像信号处理器(190)读出存储在数据存储部分(180)的数据,然后对三维扫描区域的所有扫描线执行波束聚焦,并且执行要求的三维图像处理;最后向显示器(160)提供所有待显示的二维和三维图像的信息。

Description

利用正交阵列形成无人船监控区域超声波三维图像的方法 技术领域
本发明涉及无人船监控区域成像方法,特别是采用超声波正交阵列形成。
背景技术
无人机与无人驾驶汽车在科技界呼风唤雨,风头出尽,相较之下,低调的无人船知名度稍逊一筹。在小说中,无人船始终笼罩着一丝神秘气息,著名的"幽灵船"是作家虚构航海故事的经典素材,而在现实中,无人船是各国军事领域的心头宝,是科技竞争的重要技术。目前无人船处于高速发展的时期,然而无人船在下水试航之前以及水上作业的时候,仍然面临很多技术瓶颈没有解决。
无人船,顾名思义,无需人类驾驶员对其进行操控,“零船员”概念的出现到底是否恰当,目前业界众说纷纭,刊物《安全》的记者就曾提出“无人船”理想与现实的距离,其中提出,如果某船突然起火其方位不明,依照现有的科技水平,无人船的操控着肯定会做出两种指令,一种是最优方法,即派灭火机器人寻找准确着火点并进行扑灭,第二种是如果机器人无法完成灭火任务,船舶将开启高压细水雾灭火系统完成灭火任务,两套方案,一套备用,看似没有缺陷,而有一个问题无法回避,就算全船都有监控设备,然而并不能保证监控设备毫无盲区,而此时若恰好在盲区内着火或者为引起火灾的来源,则两套方法都无法实施,我们只能眼睁睁看着船烧尽沉没。
由此看来,对无人船的各个盲区都能进行有效的三维成像是正待解决的问题。
发明内容
因此本发明的目的一方面在于提供一种使用正交阵列进行无人船监控区域超声波三维图像形成的装置,包括:由互相垂直构成正交阵列的两个线性相控阵列,两个线性相控阵列分别为用于超声波的发送并且放置在X轴方向的发射线性相控阵列以及用于超声波回声的接收并且放置在Y轴方向的接收线性相控阵列,二者分别具有一个内部单元,两个内部单元相互之间相距λ/2,其中λ表示超声波波长,两个线性相控阵列公用同一个位于X-Y轴坐标系原点传感器单元作为各自的中心阵列单元;一边的长度略小于λ/2直角尺传感器;发送器,发出生成的用于发送线性相控阵列的超声波的电信号;接收器,从接收线性相控阵列接收返回正交阵列并由接收线性相控阵列内的传感器部件转换成电信号的超声波回声输出并将所接收的模拟电信号通过执行多个信号处理程序转化成为数字形式,信号处理程序在一个超声波成像装置中对所接收的模拟电信号进行操作;平行光束形成器,对接收器所提供的数字信号执行平行光束形成操作,所述平行光束形成器对φ=0并且θ=θn的平面上的所有点执行动态深度聚焦,然后对其施加一系列延迟法则,产生连续的多角度声束偏转或不同深度焦深,平行波形成器在平行波形成过程中执行衍射控相法从而减少旁瓣电平;图像信号处理器,接收所有在平行光束形成器中产生的扫描线信号并针对所接收的信号执行超声相控阵成像处理程序,从而产生不同形式的图像信号;显示器,显示图像信号;控制器,控制上述操作从而获得期望形式的三维图像;数据存储部分,接收器的输出同时输入到平行光束形成器以及数据存储部分以及三维图像信号处理器。
优选的,构成每个相控阵列的传感器部件数量优选为64或者128。
优选的,X轴和Y轴构成一个正方形区域,该区域内放置发送线性相控阵列以及接收线性相控阵列的传感器单元。
优选的,数据存储部分由大量半导体芯片或者高速大容量硬盘组成。
优选的,三维图像信号处理器由一个高速数字信号处理器或者一个用于专用计算或者程序的大容量高速ASIC组成,或者由外部连接的计算机构成。
优选的,发送器,接收器,平行光束形成器以及图像信号处理器与通用二维图像装置的相应结构是相同的。
本发明的目的还在于提供一种利用正交阵列形成无人船监控区域超声波三维图像的方法,步骤如下:
(1)以常规模式也就是二维图像模式运行该装置从而获得二维图像,其中发送线性相控阵列仅用于对固定倾斜角φ=0度的波束形成,接收线性相控阵列仅用于每次发送后对固定倾斜角φ=0度的接收波的聚焦操作,发送器使能发送线性相控阵列的动作,这样在倾斜角为0度的位置每次发送会形成一个发送波平面,接收线性相控阵列接收到的超声波回声信号在接收器内处理,然后由平行光束形成器对应一个方位角将其聚焦到一条信号扫描线;(2)将聚焦后的信号通过图像信号处理器进行处理并且在显示器上进行显示;(3)将上述操作进行重复,形成一个与现有二维图像形成流程形成的平面相同的三维图像平面;(4)使用上述二维图像模式确定待扫描的三维区域;(5)在确定的三维区域中心定位正交阵列;(6)设定完成三维图像模式,然后执行三维扫描的发送和接收流程;(7)对应接收线性相控阵列的所有传感器元件每次步骤(6)发送后接收器的输出被存储在数据存储部分;(8)完成上述步骤后,也就是,所有组成期望的三维区域的发送波平面形成后并且所有来自平面的反射信号以及接 收线性相控阵列平面的传感器单元接收的信号都被存储后,发送和接收流程停止;(9)三维图像信号处理器读出存储在数据存储部分的数据,然后对三维扫描区域的所有扫描线执行波束聚焦,并且执行要求的三维图像处理,其中平行光束形成器,对接收器所提供的数字信号执行平行光束形成操作,平行光束形成器对φ=0并且θ=θn的平面上的所有点执行动态深度聚焦,然后对其施加一系列延迟法则,产生连续的多角度声束偏转或不同深度焦深,所述平行波形成器(40)在平行波形成过程中执行衍射控相法从而减少旁瓣电平;(10)最后向显示器(170)提供所有待显示的二维和三维图像的信息。
优选的,步骤(9)的动态深度聚焦时,只使用一个发射延迟法则,对于接收信号则连续载入聚焦法则,使超声束沿声束轴线,对不同聚焦深度进行该扫描。
优选的,当扩大数据存储部分的存储器容量后可以执行实时四维扫描。
优选的,其中步骤(9)对三维扫描区域的所有扫描线执行除深度聚焦以外的其他控阵声束扫查方式。
优选的,其他控阵声束扫查方式优选包括电子线形扫查或扇形扫查。
采用超声正交阵列的相控阵方法,即使用电子方法控制声束聚焦和扫描,可以在不移动探头的情况下进行快捷和全面的扫查,提高扫描成像速度,具有良好的声束可达性,对于复杂的船体结构,通过优化控制焦点尺寸、焦区深度和声束方向,可使得分辨率和检测范围得到提高。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实 施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。本发明的目标及特征考虑到如下结合附图的描述将更加明显,附图中:
附图1为一视图,表示用于解释根据本发明的利用正交阵列形成无人船监控区域超声波三维图像的方法及装置的坐标系;
附图2为一框图,表示根据本发明的优选实施方式利用正交阵列形成无人船监控区域超声波三维图像的装置;
附图3为一框图,用于表示根据本发明的优选实施例的利用正交阵列形成无人船监控区域超声波三维图像的装置,其中包含根据本发明的使用二维图像形成装置进行三维图像形成的方法。
具体实施方式
现在参考附图,根据本发明将给出细节的描述。
本发明提供利用正交阵列形成无人船监控区域超声波三维图像的结构,其中包括相比传统的二维阵列来说数量较少的传感器单元,并且在典型的二维图像扫描时间内完成三维图像扫描,以及使用该方法的新的三维图像形成方法及装置。
参考附图2,根据本发明的优选实施例使用正交阵列进行无人船监控区域超声波三维图像形成的装置,包括由互相垂直的两个线性相控阵列11和12构成的正交阵列。发射线性相控阵列11以及接收线性相控阵列12都具有一个内部单元,相互之间相距λ/2,其中λ表示超声波波长,并且包括直角尺传感器,其一边的长度略小于λ/2。两个线性相控阵列11和12公用同一个位于X-Y轴坐标系原点传感器单元作为各自的中心阵列单元。发送线性相控阵列11用于超声波的发送,并且在图2中放置在X轴方向。接收线性相控阵列12用于超声波回声的接收,并且图2中放置在Y轴方向。构成每个相控阵列11或12的传感器 部件数量优选为64或者128。如图2的X轴和Y轴上所示的正方形区域式构成发送线性相控阵列11以及接收线性相控阵列12的传感器单元。
发送器20发出用于生成用于发送线性相控阵列11的超声波的电信号。在焦点位置以聚焦形式由发送线性相控阵列11发出的超声波在船体内传播时被障碍物反射。返回正交阵列10的超声波回声由接收线性相控阵列12内的传感器部件转换成电信号。接收器30从接收线性相控阵列12接收该电信号输出并将所接收的模拟电信号通过执行多个信号处理程序转化成为数字形式,处理程序在一个典型的超声波成像装置中对所接收的模拟电信号进行操作。平行光束形成器40对接收器30所提供的数字信号执行平行光束形成操作。图像信号处理器50接收所有在平行光束形成器40中产生的扫描线信号并针对所接收的信号执行超声相控阵成像处理程序,从而产生不同形式的图像信号在显示器60上进行显示。控制器70控制上述框图内的操作从而获得期望形式的三维图像。
当发送器20在控制器70的控制下相发送线性相控阵列11提供电信号时,发送线性相控阵列11内的每个传感器单元都会产生超声波。这种情况下,发送器20控制电信号施加到每个传感器单元上的时间,这样倾斜角为φ=φm的方向上超声波发出并且聚焦到方位角为0度以及半径为r=R的点上,具有一个倾斜角为φ=φm的扇形区域的发送波平面形成,如图2所示。方位角方向上的发送波平面宽度通过由发送线性相控阵列11组成的传感器部件的尺寸决定。由于发送过程中不能实施动态聚焦,发送波平面在倾斜方向上的波束宽度最小为r=R,并且随着与R距离的加大半径增大。因此,发送波平面内仅有有限区域是三维图像形成的有效区域。多个倾斜角应用常用于现有的二维图像形成装置中的多区域聚焦技术或者线性聚焦技术,在一个较宽区域或者所有期望的区域都 可以形成一个有效发送波平面。这种情况下,根据现有技术需要对发送器20进行改进。
当发送的超声波信号在船体内传播时,所发射的超声波信号会通过接收线性相控阵列12的传感器单元转换成电信号。接收器30会对经过接收传感器单元转换的超声波信号执行预放大,时间增益补偿以及滤波。接收器30内所提供的模拟-数字(A/D)转换器(没有示出)将超声波信号转换为数字格式。
平行光束形成器40从接收器30接收数字超声波信号输出并对所接收到的数字信号执行平行光束形成操作。更详细的说,平行光束形成器40对附图2所示的φ=0并且θ=θn的平面上的所有点执行动态聚焦,然后对其施加一系列延迟法则,产生连续的多角度声束偏转或不同深度焦深。结果,形成图2所示的与X轴平行的接收波平面。接收波平面与倾斜角φ=φm的发送波平面向垂直。考虑到发送和接收的超声波的最终波形变成发送波形和接收波形的合成产物。所以,获得用于定义具有倾斜角φ=φm的发送波平面与具有方位角为θ=θn的接收波平面分界线的一条扫描线。平行波形成器40在平行波形成过程中执行衍射控相法从而减少旁瓣电平。
如果对所有用于形成三维图像的方位执行动态聚焦,也就是说,接收波形成过程中的所有方位角θ=θn,其中n=1,2…N的情况下,平行波形成器40可以从由倾斜角φ=φm定义的发送波平面获得所有的扫描线,动态深度聚焦时,只使用一个发射延迟法则,对于接收信号则连续载入聚焦法则,使超声束沿声束轴线,对不同聚焦深度进行该扫描。
所获得扫描线上的波宽度定义如下:1)倾斜方向的宽度与发送波宽度的波束宽度相同。2)方位角方向上的波束宽度和分辨率与接收波平面的相应参数相 同,也就是说,方位角方向上的波形为仅有接收线性相控阵列12的单向波。因此,附图2设备中方位角方向上的分辨率可以通过控制发送器20进行控制,这种方式下,附图2装置的分辨率比现有的二维图像形成装置的分辨率更优良,而且由于定义了所有方位角对应的波平面扫描线,在无人船扫描范围内就不会存在盲区。
如上所述,线性相控阵列11和12组成正交阵列10,用于分别进行发送和接收以及在接收时执行平行波输形成,从而能够一次发送后对图像的一个平面执行一次扫描。也就是说,附图2装置能够在现有的二维图像形成装置获得一条扫描线的时候对三维图像的一个平面进行一次扫描。因此,将上述的发送和接收流程重复M次,超声波聚焦到点θ=0度以及对于每一次发送不同的倾斜角φ=φm,其中m=1,2,…M。接收过程中对θ=0度以及所有的方位角θ=θn,其中n=1,2…N执行平行光波形成操作,这样就完成了三维扫描。也就是说,可以在M次发送中执行三维扫描或者现有二维图象已被获取的时间内执行扫描操作。
图像信号处理器50执行不同的信号处理程序,由于平行波束形成器40所要求的扫描线上聚焦信号获得了优良的图像质量,并执行图象处理和图片信号处理从而产生所有类型的二维和三维图像在显示器60上进行显示,因此显示器60也使用了所形成的三维图像数据。控制器对所有操作和处理流程进行控制,包括发送脉冲的产生以及发送波形成,接收器,平行波束形成器,对发送和接收波形成的重复控制以及对图像和信号处理的控值。
附图2所示的三维图像形成装置中,发送阵列以及接收阵列两者或者分别的数量,发送器20以及接收器的复杂度都与现有的二维图像形成装置的对应参数 类似。然而,用于对组成一个平面的所有扫描线进行平行聚焦的平行波形成器40,考虑到电路尺寸和其中的造价,其复杂度可能是现有二维图像形成装置的数十倍。因此,本发明使用了三维图像形成方法提供了更经济更有实际实用价值的三维图像形成装置,其中的方法使用本发明的正交阵列,结构采用图3所示的通用二维图像形成装置。
附图3的三维图像形成装置在现有二维图像处理装置的基础上增加了正交阵列,数据存储部分180以及一个三维图像信号处理器190。数据存储部分180由大量半导体芯片或者高速大容量硬盘组成。三维图像信号处理器190由一个高速数字信号处理器(DSP)或者一个用于专用计算或者程序的大容量高速ASIC组成。附图3中,发送器120,接收器130,接收光束形成器140以及二维图像信号处理器150与通用二维图像装置的相应结构是相同的。发送线性相控阵列111以及接收线性相控阵列112分别由64个或者128个分别连接到发送器120和接收器130上的传感器单元组成。
接收器130的输出同时输入到接收光束形成器140以及数据存储部分180。当附图3的装置以常规模式运行时,也就是二维图像模式,发送线性相控阵列111仅用于对固定倾斜角φ=0度的波束形成,接收线性相控阵列112仅用于每次发送后对固定倾斜角φ=0度的接收波的聚焦操作。也就是说,现有的二维图像形成装置中每次发送和接收仅获得一条扫描线。为了获得二维图像,发送器使能发送线性相控阵列111的动作这样在倾斜角为0度的位置每次发送会形成一个发送波平面。接收线性相控阵列112接收到的超声波回声信号在接收器130内处理,然后由接收光束形成器140对应一个方位角将其聚焦到一条信号扫描线。聚焦后的信号通过二维图像信号处理器150进行处理并且在显示器160上 进行显示。将上述操作进行重复,形成一个与现有二维图像形成流程形成的平面相同的三维图像平面。二维图像模式下,也可以使用与现有二维图像形成装置中使用的通用线相控阵列相同的阵列。
使用图3装置以如下流程执行三维图像模式:1)使用上述二维图像模式确定待扫描的三维区域。2)在确定的三维区域中心定位正交阵列100。3)通过按下一个特定按钮(没有示出)设定完成2)之后的三维图像模式,然后执行参考图2装置描述的三维扫描的发送和接收流程。4)对应接收线性相控阵列的所有传感器元件每次步骤3)发送后接收器130的输出被存储在数据存储部分180。5)完成上述步骤后,也就是,所有组成期望的三维区域的发送波平面形成后并且所有来自平面的反射信号以及接收线性相控阵列平面的传感器单元接收的信号都被存储后,发送和接收流程停止。
三维图像信号处理器190读出存储在数据存储部分180的数据。对三维扫描区域的所有扫描线执行波束聚焦,并且执行要求的三维图像处理,然后向显示器170提供所有待显示的二维和三维图像的信息。
使用上述附图3装置进行三维图像形成的方法实时对三维图像形执行的扫描操作(发送和接收操作),并且当图2装置获得实时的三维图像时,执行接收波聚焦,非实时的三维图像处理以及存储操作。尽管所有的三维图像形成流程都可以在图2所示的装置中实时完成,但是寻找获得诊断信息的三维图像却是非实时完成的。相应的,参考附图3装置的上述方法也是有效的。因此,附图2装置内没有必要使用大型平行波形成器。
三维图像信号处理器190可以由外部连接的计算机取代。这里,数据存储部分180具有高速外部计算机界面。当这样的一台外部计算机被使用时,数据存 储部分180可以放在外部计算机内而不用放在附图3所示的三维图像形成装置内。任何情况下,附图3三维图像形成装置比起附图2图像形成装置来说结构都是简单的。
如上所述,附图3的超声波三维图像形成装置可以在数据存储部分180的存储器容量足够大的时候执行实时四维扫描。也就是说,随时间的三维图像信息可以实时获得并且此后三维图像的变动可以通过执行接收波聚焦和非实时的图像处理随时间检查出来。并且相控阵声束扫查方向可以采用电子(线形)扫查,扇形扫查和动态深度聚焦三种方式。
虽然本发明已经参考特定的说明性实施例进行了描述,但是不会受到这些实施例的限定而仅仅受到附加权利要求的限定。本领域技术人员应当理解可以在不偏离本发明的保护范围和精神的情况下对本发明的实施例能够进行改动和修改。

Claims (5)

  1. 正交阵列形成无人船监控区域超声波三维图像的方法,其特征在于:
    (1)以常规模式也就是二维图像模式运行该装置从而获得二维图像,其中发送线性相控阵列(111)仅用于对固定倾斜角φ=0度的波束形成,接收线性相控阵列(112)仅用于每次发送后对固定倾斜角φ=0度的接收波的聚焦操作,发送器使能发送线性相控阵列(111)的动作,这样在倾斜角为0度的位置每次发送会形成一个发送波平面,接收线性相控阵列(112)接收到的超声波回声信号在接收器(30)内处理,然后由平行光束形成器(40)对应一个方位角将其聚焦到一条信号扫描线;
    (2)将聚焦后的信号通过图像信号处理器(50)进行处理并且在显示器(60)上进行显示;
    (3)将上述操作进行重复,形成一个与现有二维图像形成流程形成的平面相同的三维图像平面;
    (4)使用上述二维图像模式确定待扫描的三维区域;
    (5)在确定的三维区域中心定位正交阵列(100);
    (6)设定完成三维图像模式,然后执行三维扫描的发送和接收流程;
    (7)对应接收线性相控阵列的所有传感器元件每次步骤(6)发送后接收器(30)的输出被存储在数据存储部分(180);
    (8)完成上述步骤后,也就是,所有组成期望的三维区域的发送波平面形成后并且所有来自平面的反射信号以及接收线性相控阵列平面的传感器单元接收的信号都被存储后,发送和接收流程停止;
    (9)三维图像信号处理器(190)读出存储在数据存储部分(180)的数据, 然后对三维扫描区域的所有扫描线执行波束聚焦,并且执行要求的三维图像处理,其中平行光束形成器(40),对所述接收器(30)所提供的数字信号执行平行光束形成操作,所述平行光束形成器(40)对φ=0并且θ=θn的平面上的所有点执行动态深度聚焦,然后对其施加一系列延迟法则,产生连续的多角度声束偏转或不同深度焦深,所述平行波形成器(40)在平行波形成过程中执行衍射控相法从而减少旁瓣电平;
    (10)最后向显示器(170)提供所有待显示的二维和三维图像的信息。
  2. 根据权利要求1所述的利用正交阵列形成无人船监控区域超声波三维图像的方法,其特征在于:步骤(9)的动态深度聚焦时,只使用一个发射延迟法则,对于接收信号则连续载入聚焦法则,使超声束沿声束轴线,对不同聚焦深度进行该扫描。
  3. 根据权利要求1所述的利用正交阵列形成无人船监控区域超声波三维图像的方法,其特征在于:当扩大数据存储部分(180)的存储器容量后可以执行实时四维扫描。
  4. 根据权利要求1所述的利用正交阵列形成无人船监控区域超声波三维图像的方法,其特征在于:其中步骤(9)对三维扫描区域的所有扫描线执行除深度聚焦以外的其他控阵声束扫查方式。
  5. 根据权利要求4所述的利用正交阵列形成无人船监控区域超声波三维图像的方法,其特征在于:其他控阵声束扫查方式优选包括电子线形扫查或扇形扫查。
PCT/CN2016/095098 2016-06-22 2016-08-14 利用正交阵列形成无人船监控区域超声波三维图像的方法 WO2017219471A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610460141.0A CN105974421A (zh) 2016-06-22 2016-06-22 利用正交阵列形成无人船监控区域超声波三维图像的方法
CN201610460141.0 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017219471A1 true WO2017219471A1 (zh) 2017-12-28

Family

ID=57021685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095098 WO2017219471A1 (zh) 2016-06-22 2016-08-14 利用正交阵列形成无人船监控区域超声波三维图像的方法

Country Status (2)

Country Link
CN (1) CN105974421A (zh)
WO (1) WO2017219471A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358751A (zh) * 2021-06-01 2021-09-07 中车青岛四方机车车辆股份有限公司 工件缺陷的检测方法、装置和系统
CN113777165A (zh) * 2021-09-06 2021-12-10 哈尔滨工业大学 基于合成孔径动态聚焦的r区构件缺陷与应力超声检测方法
US11366221B1 (en) 2018-10-29 2022-06-21 Amazon Technologies, Inc. Using pseudorandom signals transmitted from distributed sources in ranging operations
US11493628B1 (en) * 2018-10-29 2022-11-08 Amazon Technologies, Inc. Using perpendicular one-dimensional arrays for safe operation of aerial vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797845A (en) * 1996-11-04 1998-08-25 Barabash; Leonid S. Ultrasound apparatus for three dimensional image reconstruction
US5901708A (en) * 1996-10-01 1999-05-11 Chang; Seong-Ho Method and apparatus for forming ultrasonic three-dimensional images using cross array
CN1234510A (zh) * 1998-03-31 1999-11-10 日本无线株式会社 用于搜索水中目标的装置
CN1688897A (zh) * 2002-10-04 2005-10-26 皇家飞利浦电子股份有限公司 针对1d阵列超声波探头的方法和设备
EP2299292A1 (en) * 2009-09-15 2011-03-23 Oceanscan Limited Scanning apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694434A (en) * 1984-06-12 1987-09-15 Von Ramm Olaf T Three-dimensional imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901708A (en) * 1996-10-01 1999-05-11 Chang; Seong-Ho Method and apparatus for forming ultrasonic three-dimensional images using cross array
US5797845A (en) * 1996-11-04 1998-08-25 Barabash; Leonid S. Ultrasound apparatus for three dimensional image reconstruction
CN1234510A (zh) * 1998-03-31 1999-11-10 日本无线株式会社 用于搜索水中目标的装置
CN1688897A (zh) * 2002-10-04 2005-10-26 皇家飞利浦电子股份有限公司 针对1d阵列超声波探头的方法和设备
EP2299292A1 (en) * 2009-09-15 2011-03-23 Oceanscan Limited Scanning apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366221B1 (en) 2018-10-29 2022-06-21 Amazon Technologies, Inc. Using pseudorandom signals transmitted from distributed sources in ranging operations
US11493628B1 (en) * 2018-10-29 2022-11-08 Amazon Technologies, Inc. Using perpendicular one-dimensional arrays for safe operation of aerial vehicles
CN113358751A (zh) * 2021-06-01 2021-09-07 中车青岛四方机车车辆股份有限公司 工件缺陷的检测方法、装置和系统
CN113777165A (zh) * 2021-09-06 2021-12-10 哈尔滨工业大学 基于合成孔径动态聚焦的r区构件缺陷与应力超声检测方法
CN113777165B (zh) * 2021-09-06 2022-06-17 哈尔滨工业大学 基于合成孔径动态聚焦的r区构件缺陷与应力超声检测方法

Also Published As

Publication number Publication date
CN105974421A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2017219470A1 (zh) 利用正交阵列形成无人船监控区域超声波三维图像的装置
WO2017219471A1 (zh) 利用正交阵列形成无人船监控区域超声波三维图像的方法
US8924164B2 (en) Apparatus and method for ultrasonic testing
JP5288291B2 (ja) 超音波探傷方法とその装置
US20130083628A1 (en) Imaging system and method
US5901708A (en) Method and apparatus for forming ultrasonic three-dimensional images using cross array
US20210141071A1 (en) Video imaging using multi-ping sonar
JP6263447B2 (ja) 超音波診断装置及びプログラム
CN114295728A (zh) 一种针对复杂曲面工件内部缺陷超声波三维层析成像方法
US20170059706A1 (en) Synthetic antenna sonar and method for forming synthetic antenna beams
JP2015027346A5 (zh)
Mai et al. Acoustic image simulator based on active sonar model in underwater environment
GB2553404A (en) Underwater detection system
US5029144A (en) Synthetic aperture active underwater imaging system
JPH0943350A (ja) 超音波ソナー
CN112450973B (zh) 一种基于行列寻址环形超声换能器的成像方法及装置
JPH0679065B2 (ja) 海底探索装置
CN208969233U (zh) 一种波束数可调多波束声呐
JP3583908B2 (ja) 目標計測装置
JPS6219711B2 (zh)
JP2859916B2 (ja) エコー信号処理装置及び該装置を含む水中探知装置
Roy et al. Design and development of an acoustic sensor array for anomaly detection
Trucco et al. Image projection and composition with a front-scan sonar system: Methods and experimental results
CN117970335A (zh) 一种基于超声阵列的复合多球面波成像检测方法
CN117970336A (zh) 一种基于超声阵列的复合球面波成像检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906011

Country of ref document: EP

Kind code of ref document: A1