CN117970335A - 一种基于超声阵列的复合多球面波成像检测方法 - Google Patents
一种基于超声阵列的复合多球面波成像检测方法 Download PDFInfo
- Publication number
- CN117970335A CN117970335A CN202211273590.6A CN202211273590A CN117970335A CN 117970335 A CN117970335 A CN 117970335A CN 202211273590 A CN202211273590 A CN 202211273590A CN 117970335 A CN117970335 A CN 117970335A
- Authority
- CN
- China
- Prior art keywords
- spherical
- array
- wave
- array element
- waves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 46
- 238000001514 detection method Methods 0.000 title claims abstract description 23
- 239000002131 composite material Substances 0.000 title claims abstract description 19
- 230000005284 excitation Effects 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 22
- 235000012431 wafers Nutrition 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明提供了一种基于超声阵列的复合多球面波成像检测方法,所述方法为在介质表面采用超声换能器阵列发射和接收声波,超声换能器阵列的各阵元按照计算得到的延时规则进行激励,模拟出一个点源发出的球面波,该点源为球面波的球心;各阵元激励时的激励信号是两个脉冲;多次改变球面波的球心位置进行激励,形成多个球面波,将各阵元接收到的信号按照延时规则进行叠加得到检测图像。本发明的优势在于:本发明方法使所有不同的球面波都能在预定目标上实现聚焦,从而可极大程度地提高信号信噪比和图像分辨率。
Description
技术领域
本发明属于超声检测与成像领域,具体涉及一种基于超声阵列的复合多球面波成像检测方法。
背景技术
超声相控阵技术的基本思想来自于雷达电磁波相控阵技术。相控阵雷达是由许多辐射单元排成阵列组成,通过控制阵列天线中各单元的幅度和相位,调整电磁波的辐射方向,在一定空间范围内合成灵活快速的聚焦扫描的雷达波束。超声相控阵换能器由多个独立的压电晶片组成阵列,按一定的规则和时序用电子系统控制激发各个晶片单元,来调节控制焦点的位置和聚焦的方向。
超声相控阵是超声探头晶片的组合,由多个压电晶片按一定的规律分布排列,然后逐次按预先规定的延迟时间激发各个晶片,所有晶片发射的超声波形成一个整体波阵面,能有效地控制发射超声束(波阵面)的形状和方向,能实现超声波的波束扫描、偏转和聚焦。它为确定不连续性的形状、大小和方向提供出比单个或多个探头系统更大的能力。
超声相控阵检测技术使用不同形状的多阵元换能器产生和接收超声波束,通过控制换能器阵列中各阵元发射(或接收)脉冲的不同延迟时间,改变声波到达(或来自)物体内某点时的相位关系,实现焦点和声束方向的变化,从而实现超声波的波束扫描、偏转和聚焦。然后采用机械扫描和电子扫描相结合的方法来实现图像成像。
目前,超声相控阵成像取得了快速发展,虽然在声束控制和扫描等方面具有很好的技术优势,但在成像速度上有时还有待提高,为此,人们提出了基于超声阵列的平面波成像方法,较好地加快了成像检测的速度。然而,平面波成像方法产生的声束为平面波,其声束宽度取决于阵列孔径,而阵列孔径不可能太大。
发明内容
本发明的目的在于克服常规平面波成像检测方法受阵列孔径大小影响的缺陷。
为了实现上述目的,本发明提出了一种基于超声阵列的复合多球面波成像检测方法,所述方法为在介质表面采用超声换能器阵列发射和接收声波,超声换能器阵列的各阵元按照计算得到的延时规则进行激励,模拟出一个点源发出的球面波,该点源为球面波的球心;多次改变球面波的球心位置进行激励,形成多个球面波,将各阵元接收到的信号按照延时规则进行叠加得到检测图像。
作为上述方法的一种改进,所述方法具体包括:
步骤1:在介质表面设置超声换能器阵列;
步骤2:分别计算每个阵元激励信号的延迟时间,该激励信号是两个脉冲;
步骤3:超声换能器阵列各阵元根据步骤2计算的激励延迟时间规则发射声波;声波在介质中产生多球面波,即球面纵波和球面横波;
步骤4:换能器各阵元接收来自目标的反射回波信号并存储;
步骤5:根据待检测区域内目标点的坐标,计算目标点到每个阵元和阵列中心之间的声程差,进而得到纵波延迟时间和横波延迟时间;
步骤6:更改球面波球心偏转角;
步骤7:重复执行K次步骤2至步骤6;
步骤8:将超声换能器各阵元在每一个球心偏转角发射多球面波时接收到的信号按照每一球心偏转角时的纵波延迟时间和横波延迟时间进行叠加得到目标点的成像信号,将所有目标点的成像信号进行综合成像,得到超声波重建图像。
作为上述方法的一种改进,所述步骤2具体包括:
设定超声换能器阵列中心为坐标原点,超声换能器阵列方向为x轴,成像深度方向为z轴,球面波的球心离坐标原点的距离为foc,球心与z轴的偏转角为αm;换能器共有N个阵元,其中第n个阵元的坐标为(0,xn),第n个阵元发射信号中包含了两个脉冲,第一个脉冲的激励延迟时间为:
其中,Tc是大于零的时间常数;cp为介质中的纵波速度;超声换能器阵列每个阵元根据的延迟时间规则进行发射时,产生的纵波为球面波;
第n个阵元发射信号中第二个脉冲的激励延迟时间为:
其中,cs为介质中的横波速度;超声换能器阵列每个阵元根据的延迟时间规则进行发射时,产生的横波为球面波。
作为上述方法的一种改进,换能器各阵元激励信号中两个脉冲之间的时间间隔等于纵波和横波从虚拟点源传播到换能器对应阵元之间的时间差。
作为上述方法的一种改进,所述步骤4具体包括:
对于检测区域内的目标点P(x,z),第n个阵元和阵列中心之间的纵波延迟时间为τn1:
其中,x为目标点的x轴坐标,z为目标点的z轴坐标;
第n个阵元和阵列中心之间的横波延迟时间为τn2为:
作为上述方法的一种改进,所述步骤5具体包括:
将超声换能器各阵元接收到的信号Smn(t)按照延时规则进行叠加得到目标点的成像信号:
其中,Smn(t-τnj)为第n个阵元接收到的回波信号在t-τnj时刻的大小。
与现有技术相比,本发明的优势在于:
本发明方法采用若干个不同偏转方向的多球面波进行复合成像,对于每一偏转方向都发射多球面波,即在每一偏转方向下都发射球面纵波和球面横波,每一个球面纵波和球面横波都具有不同的球心位置和声束偏转方向,本发明方法使所有不同的球面波都能在预定目标上实现聚焦,从而可极大程度地提高信号信噪比和图像分辨率。
附图说明
图1所示为复合多球面波发射及传播示意图;
图2所示为基于超声阵列的复合多球面波成像检测方法流程图。
具体实施方式
本发明提出了一种基于超声阵列的复合多球面波成像检测方法,该方法可使介质中的纵波和横波同时实现聚焦,本发明方法采用若干个不同的球面波,每一个球面波具有不同的球心位置和声束偏转方向,从而可较好地提升分辨率和信噪比。
下面结合附图对本发明的技术方案进行详细的说明。
本发明的方法是在介质表面采用超声换能器阵列发射和接收声波,换能器各阵元按照计算出来的延时规则进行激励,每一阵元进行激励和接收,但各阵元激励时的激励信号是短时间内的两个脉冲,该两个脉冲之间的时间间隔等于纵波和横波从虚拟点源传播到换能器对应阵元之间的时间差。然后将各阵元接收到的信号按照一定的延时叠加方法得到检测图像。
换能器各阵元按照计算得到的延时规则进行激励,模拟出一个点源发出的球面波,该点源为球面波的球心;图1给出了多球面波成像的声传播模式,设定x轴为换能器阵列方向,z轴表示成像深度方向,换能器共有N个阵元,第n个阵元的坐标为(0,xn),球面波的球心离坐标原点的距离为foc,与z轴的方位角为α。在球心处设置一个虚拟点源并发射信号,根据球心到各阵元之间的几何距离,就可得到点源发射的信号到达各阵元的时间以及相邻阵元之间的延迟。由于介质中存在纵波和横波的传播,假设在球心处有一个虚拟点源发射时,介质中将产生分别以纵波速度传播和横波速度传播的两个球面波,形成多球面波发射。这时换能器每个阵元都将收到含有两个脉冲的信号,分别对应着来自虚拟点源的纵波和横波。
然后,多次改变球心的位置,即改变球面波的球心与z轴的方位角,发射出不同偏转方向的球面波,并将不同球心位置发射时换能器各阵元接收到的回波数据进行波束合成,通过相干叠加即可提升成像结果的质量,这就是复合球面波成像方法。
由于介质中同时存在纵波和横波的传播,当虚拟点源发射时,介质中将产生分别以纵波速度传播和横波速度传播的两个球面波,形成多球面波发射。这时换能器每个阵元都将收到含有两个脉冲的信号,分别对应着来自虚拟点源的纵波和横波。
在复合多球面波成像过程中,需要不断改变虚拟点源的偏转方位角,取K个偏转角度分别为αm(m=1,2,…,K)的多球面波,在每一个偏转角下,虚拟点源发出球面纵波和球面横波。
在每次虚拟点源发射时,每个阵元接收到含有两个脉冲的激励信号。显然,第n个阵元接收到第一个脉冲的延时满足如下关系
其中Tc是时间常数,以保证发射延时为非负数,cp为介质中的纵波速度。当换能器各阵元按照公式(1)的延时规则进行发射时,则在介质中可产生以纵波速度传播的球面波。
同理,第n个阵元接收到第二个脉冲的延时满足
其中cs为介质中的横波速度。当换能器各阵元按照公式(2)的延时规则进行发射时,则在介质中可产生以横波速度传播的球面波。
把含有以上两个脉冲的信号作为激励信号加载在各阵元上时,每一个脉冲在介质中又可分别激发出纵波和横波。不难发现,第一个脉冲激发的纵波和第二个脉冲激发的横波在介质中都是球面波,即形成了两个球面波,分别以纵波和横波速度传播。当换能器各阵元发射以上含有两个脉冲的激励信号时,两个球面波都向介质中传播,遇到缺陷将产生回波又被换能器各阵元接收,用Smn(t)表示各阵元接收到的回波信号。
换能器阵列在公式(1)、(2)延时规则激励下产生球面波,该球面波从虚拟点发射,到达待检测区域内任一点(称为目标点)P(x,z)处再反射到相控阵第n个阵元处传播的声程d可表示为:
因此,第n个阵元接收到的回波信号和阵列中心处的回波信号之间的延迟时间τnj为
其中cj为表示超声波的声速,j只能等于1和2,c1取纵波声速,c2取横波声速。
将换能器各阵元接收到的信号Smn(t)按照公式(4)的延时规则进行以下方式叠加
其中,Smn(t-τnj)为第n个阵元接收到的回波信号在t-τnj时刻的大小。这就是目标点P的成像信号,目标点位置不同,则叠加的延时τnj也不同。这种叠加方式实际上就是将各阵元接收的信号,先按纵波时延叠加(j=1),然后再按横波时延叠加(j=2),最后将各偏转角的多球面波进行叠加起来,这样就将每一个多球面波发射上的纵波和横波信号实现了同时聚焦,形成复合多球面成像。
依次改变目标点P的位置,对每个目标点按照公式(5)得到成像信号的幅值信息,将所有成像点的幅值信息进行成像,即可得到基于超声阵列复合多球面波发射的超声波重建图像。
实施例
如图2所示,本发明的实施例提出了一种基于超声阵列的复合多球面波成像检测方法,所述方法具体包括:
步骤1:在介质表面设置超声换能器阵列;
步骤2:分别计算每个阵元激励信号的延迟时间,该激励信号是两个脉冲;
设定超声换能器阵列中心为坐标原点,超声换能器阵列方向为x轴,成像深度方向为z轴,球面波的球心离坐标原点的距离为foc,球心与z轴的偏转角为αm;换能器共有N个阵元,其中第n个阵元的坐标为(0,xn),第n个阵元发射信号中包含了两个脉冲,第一个脉冲的激励延迟时间为:
其中,Tc是大于零的时间常数;cp为介质中的纵波速度;超声换能器阵列每个阵元根据的延迟时间规则进行发射时,产生的纵波为球面波;
第n个阵元发射信号中第二个脉冲的激励延迟时间为:
其中,cs为介质中的横波速度;超声换能器阵列每个阵元根据的延迟时间规则进行发射时,产生的横波为球面波。
步骤3:超声换能器阵列各阵元根据步骤2计算的激励延迟时间规则发射声波;声波在介质中产生多球面波,即球面纵波和球面横波;换能器各阵元激励信号中两个脉冲之间的时间间隔等于纵波和横波从虚拟点源传播到换能器对应阵元之间的时间差;
步骤4:换能器各阵元接收来自目标的反射回波信号并存储;
步骤5:根据待检测区域内目标点的坐标,计算目标点到每个阵元和阵列中心之间的声程差,进而得到纵波延迟时间和横波延迟时间;
对于检测区域内的目标点P(x,z),第n个阵元和阵列中心之间的纵波延迟时间为τn1:
其中,x为目标点的x轴坐标,z为目标点的z轴坐标;
第n个阵元和阵列中心之间的横波延迟时间为τn2为:
步骤6:更改球面波球心偏转角;
步骤7:重复执行K次步骤2至步骤6;
步骤8:将超声换能器各阵元在每一个球心偏转角发射多球面波时接收到的信号按照每一球心偏转角时的纵波延迟时间和横波延迟时间进行叠加得到目标点的成像信号,将所有目标点的成像信号进行综合成像,得到超声波重建图像;
其中,Smn(t-τnj)为第n个阵元接收到的回波信号在t-τnj时刻的大小。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (6)
1.一种基于超声阵列的复合多球面波成像检测方法,所述方法为在介质表面采用超声换能器阵列发射和接收声波,超声换能器阵列的各阵元按照计算得到的延时规则进行激励,模拟出一个点源发出的球面波,该点源为球面波的球心;多次改变球面波的球心位置进行激励,形成多个球面波,将各阵元接收到的信号按照延时规则进行叠加得到检测图像。
2.根据权利要求1所述的基于超声阵列的复合多球面波成像检测方法,其特征在于,所述方法具体包括:
步骤1:在介质表面设置超声换能器阵列;
步骤2:分别计算每个阵元激励信号的延迟时间,该激励信号是两个脉冲;
步骤3:超声换能器阵列各阵元根据步骤2计算的激励延迟时间规则发射声波;声波在介质中产生多球面波,即球面纵波和球面横波;
步骤4:换能器各阵元接收来自目标的反射回波信号并存储;
步骤5:根据待检测区域内目标点的坐标,计算目标点到每个阵元和阵列中心之间的声程差,进而得到纵波延迟时间和横波延迟时间;
步骤6:更改球面波球心偏转角;
步骤7:重复执行K次步骤2至步骤6;
步骤8:将超声换能器各阵元在每一个球心偏转角发射多球面波时接收到的信号按照每一球心偏转角时的纵波延迟时间和横波延迟时间进行叠加得到目标点的成像信号,将所有目标点的成像信号进行综合成像,得到超声波重建图像。
3.根据权利要求2所述的基于超声阵列的复合多球面波成像检测方法,其特征在于,所述步骤2具体包括:
设定超声换能器阵列中心为坐标原点,超声换能器阵列方向为x轴,成像深度方向为z轴,球面波的球心离坐标原点的距离为foc,球心与z轴的偏转角为αm;换能器共有N个阵元,其中第n个阵元的坐标为(0,xn),第n个阵元发射信号中包含了两个脉冲,第一个脉冲的激励延迟时间为:
其中,Tc是大于零的时间常数;cp为介质中的纵波速度;超声换能器阵列每个阵元根据的延迟时间规则进行发射时,产生的纵波为球面波;
第n个阵元发射信号中第二个脉冲的激励延迟时间为:
其中,cs为介质中的横波速度;超声换能器阵列每个阵元根据的延迟时间规则进行发射时,产生的横波为球面波。
4.根据权利要求2所述的基于超声阵列的复合多球面波成像检测方法,其特征在于,换能器各阵元激励信号中两个脉冲之间的时间间隔等于纵波和横波从虚拟点源传播到换能器对应阵元之间的时间差。
5.根据权利要求3所述的基于超声阵列的复合多球面波成像检测方法,其特征在于,所述步骤4具体包括:
对于检测区域内的目标点P(x,z),第n个阵元和阵列中心之间的纵波延迟时间为τn1:
其中,x为目标点的x轴坐标,z为目标点的z轴坐标;
第n个阵元和阵列中心之间的横波延迟时间为τn2为:
6.根据权利要求5所述的基于超声阵列的复合多球面波成像检测方法,其特征在于,所述步骤5具体包括:
将超声换能器各阵元接收到的信号Smn(t)按照延时规则进行叠加得到目标点的成像信号:
其中,Smn(t-τnj)为第n个阵元接收到的回波信号在t-τnj时刻的大小。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211273590.6A CN117970335A (zh) | 2022-10-18 | 2022-10-18 | 一种基于超声阵列的复合多球面波成像检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211273590.6A CN117970335A (zh) | 2022-10-18 | 2022-10-18 | 一种基于超声阵列的复合多球面波成像检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117970335A true CN117970335A (zh) | 2024-05-03 |
Family
ID=90848239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211273590.6A Pending CN117970335A (zh) | 2022-10-18 | 2022-10-18 | 一种基于超声阵列的复合多球面波成像检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117970335A (zh) |
-
2022
- 2022-10-18 CN CN202211273590.6A patent/CN117970335A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112055819B (zh) | 无线电或声波检测器、发射器、接收器及其方法 | |
CN110333293B (zh) | 一种正方网格相控超声阵列激发与检测混凝土缺陷的方法 | |
JP5279090B2 (ja) | 超音波探傷方法とその装置 | |
US5355888A (en) | High resolution phased array echo imager | |
CN111175381B (zh) | 基于全矩阵数据的复合构件界面快速成像定量检测方法 | |
CN112505710B (zh) | 一种多波束合成孔径声呐三维成像算法 | |
CN103901108A (zh) | 一种复合材料界面脱粘的相控阵超声波检测方法 | |
JPH04232888A (ja) | 台形状放射スキャンによる超音波イメージング | |
CN114910915A (zh) | 一种侧扫声呐的水下目标多模式成像方法 | |
JPH11221215A (ja) | 超音波イメージング・システムおよびそのトランスジューサ・アレイの作動方法 | |
CN108693254B (zh) | 超声波探伤装置、超声波探伤方法以及产品的制造方法 | |
US6056694A (en) | Wave receiving apparatus and ultrasonic diagnostic apparatus | |
JP3606132B2 (ja) | 超音波探傷方法およびその装置 | |
CN116429894A (zh) | 一种基于超声多波的全聚焦成像检测方法及检测装置 | |
CN115856087B (zh) | 基于纵波一发一收超声相控阵探头的全聚焦成像方法 | |
CN111580112A (zh) | 基于平面波的水下声呐传感器阵列成像方法 | |
JP2000146921A (ja) | 超音波探傷方法及び装置 | |
CN117970335A (zh) | 一种基于超声阵列的复合多球面波成像检测方法 | |
CN117970337A (zh) | 一种基于超声阵列的多球面波成像检测方法 | |
CN117970336A (zh) | 一种基于超声阵列的复合球面波成像检测方法 | |
Yu et al. | Design, implementation, and comparison of guided wave phased arrays using embedded piezoelectric wafer active sensors for structural health monitoring | |
JP2010071967A (ja) | 超音波送受波装置 | |
CN117952885A (zh) | 一种基于超声阵列的球面波成像检测方法 | |
JP3202969B2 (ja) | 波動受信装置 | |
JP2017009313A (ja) | 超音波探傷装置、データ処理装置および超音波探傷方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |