CN1226807C - 螺旋天线和通信设备 - Google Patents

螺旋天线和通信设备 Download PDF

Info

Publication number
CN1226807C
CN1226807C CNB031205895A CN03120589A CN1226807C CN 1226807 C CN1226807 C CN 1226807C CN B031205895 A CNB031205895 A CN B031205895A CN 03120589 A CN03120589 A CN 03120589A CN 1226807 C CN1226807 C CN 1226807C
Authority
CN
China
Prior art keywords
conductor
matrix
width
resonance frequency
helical antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031205895A
Other languages
English (en)
Other versions
CN1445884A (zh
Inventor
和多田一雄
村川俊一
吉崎广
佐藤昭典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Ceramic Co Ltd
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of CN1445884A publication Critical patent/CN1445884A/zh
Application granted granted Critical
Publication of CN1226807C publication Critical patent/CN1226807C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas

Abstract

一种螺旋天线,包括基体和基体上表面的螺旋形导体,基体的厚度a给定为0.3≤a≤3(mm);长度b给定为5≤b≤20(mm);和相对介电常数εr给定为3≤εr≤30,和导体的绕制匝数x给定为3≤x≤16(匝),并且,它的谐振频率f和导体宽度w满足公式(1):f=Ax+By+C(MHz)和(2):w=Dx+E(mm),这里y表示基体宽度,A至E表示根据基体的厚度a,长度b和相对介电常数εr确定的常数。

Description

螺旋天线和通信设备
技术领域
本发明涉及用在移动通信终端、局域网或类似设施中的紧凑型螺旋天线,也涉及合并有螺旋天线的通信设备。
背景技术
图18是应用在常规移动通信终端中的天线及其安装方法的一个示例的透视图。如从图中所见,一般是鞭状天线12安装在移动通信终端的外壳22中。
近年来,随着移动通信技术的进展和用户服务的多样化,便携式终端已进入广泛的应用领域。为便于携带,通信终端的外壳变得越来越小。适应这种趋势,并入或装入通信终端元件已经在缩小和减轻。与这种流行态势相反,传统的鞭状天线21的构形是从外壳22向外伸出的。为了使终端进一步小型化,要求有一种尺寸小、重量轻的天线,把它设计得不从外壳伸出来。
为满足这种要求,作为紧凑型天线,已开始发展螺旋天线,它有一个由螺旋结构形成的辐射电极。
图19是日本未审定专利公告JP-A9-121113(1997)中披露的螺旋天线的透视图。这种螺旋天线是将螺旋形导体15装在基体11中而构成的。导体15,在馈送端17连接至设置在基体11一个端面的终端电极12的连接部,并在基体11的长度方向缠绕成螺旋形状。这样,把导体15形成螺旋形状,作为辐射电极,就能达到天线小型化的目的。
在这种螺旋天线中,它的谐振频率按下列因素确定:螺旋形导体的绕制匝数(=导体长度);导体宽度;基体的尺寸(厚度,长度,和宽度);和相对介电常数。
然而,出现了下面的问题,通过把导体做成螺旋形而缩减的螺旋天线,对导体图案结构中的电容和电气连接的感应尤为敏感。结果,谐振频率受导体宽度的影响很大。
例如,按这种缩减的螺旋天线构成导体的方法,在导体宽度上可以有大约5%的尺寸偏差。这样,即使螺旋天线设计得能获得理想的谐振频率,也必然会由于在制造过程中导体宽度的偏差,而使谐振频率产生大约5%的偏差。
发明内容
针对上述传统技术的问题,已设计出本发明,本发明的一个目的是提供一种紧凑型螺旋天线,其中,即使在导体宽度上有例如5%的偏差,谐振频率的偏差也能减小至1%或以下。
本发明的另一目的是,提供一种通信设备,它在天线特性稳定性方面是突出的,其中并入紧凑型螺旋天线,即使在导体宽度上有例如5%的偏差,谐振频率的偏差也能减小至1%或以下。
注意,如果频率的偏差减小至1%或以下,螺旋天线,当它用在PDC(个人数字单元),PHS(便携式电话系统),“蓝牙”(短距离无线网络技术规范)或其他系统中时,就能满足它们的专用频率标准。
根据在螺旋天线上对导体图案结构-谐振频率关系,进行大量探索和研究的结果,本申请的发明者已发现,使用具有后面将要描述的结构的螺旋天线,能解决上述问题。从而实现本发明的目的。
本发明提供一种螺旋天线,它包括由绝缘材料或磁性材料制成的基体,和至少在基体上表面或其内部二者之一形成的螺旋形导体,
其中,在基体中,厚度a(mm)保持在0.3≤a≤3(mm)的范围内;长度b(mm)保持在5≤b≤20(mm)的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,还有,导体的绕制匝数X(匝)保持在3≤x≤16的范围内,和其中,谐振频率f(MHz)和导体宽度w(mm)分别满足下面的公式(1)和(2):
f=Ax+By+C(MHz)           …………(1)
w=Dx+E(mm)               …………(2)
这里,
y表示基体宽度(mm);和
A,B,C,D,和E各表示一个常数,它根据基体的厚度a,长度b,和相对介电常数εr或相对导磁率μr确定。
根据本发明,与处于预定条件下的基体的厚度、长度和相对介电常数,以及导体的绕制匝数一致,谐振频率和导体宽度都设置为满足预定公式。这样,就容易按照公式设计具有理想谐振频率的螺旋天线。此外,虽然螺旋形导体的宽度与谐振频率的关系还不能从理论上弄清楚,但如果辐射电极由螺旋形导体制成而后者的宽度设置满足公式,最终的关系可以说谐振频率几乎不受导体宽度偏差的什么影响。因此,即使导体宽度有大约5%的偏差,谐振频率相对于理想的谐振频率的偏差也能减小至1%或以下。
根据本发明,能实现一种具有理想天线特性的紧凑型螺旋天线,它的谐振频率、导体宽度和基体宽度很容易设计。也能提供一种螺旋天线,其中,即使在制造过程中导体宽度上出现偏差,所瞄准的谐振频率的偏差也能抑制到实用上没有问题的水平。
本发明也提供一种包括上述根据本发明的螺旋天线的通信设备。
具体地说,本发明提供一种包括螺旋天线的通信设备,其中的螺旋天线包括由绝缘材料或磁性材料制成的基准,和至少在基体上表面或其内部二者之一形成的螺旋形导体,
其中,在螺旋天线的基体方面,厚度a(mm)保持在0.3≤a≤3(mm)的范围内;长度b(mm)保持在5≤b≤20(mm)的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,还有,导体的绕制匝数X(匝)保持在3≤x≤16的范围内,和其中,谐振频率f(MHz)和导体宽度w(mm)分别满足下面的公式(1)和(2):
f=Ax+By+C(MHz)              …………(1)
w=Dx+E(mm)                  …………(2)
这里,
y表示基体宽度(mm);和
A,B,C,D,和E各表示一个常数,它根据基体的厚度a,长度b,和相对介电常数εr或相对导磁率μr确定。
根据本发明,即使螺旋天线的导体宽度上有例如5%的偏差,谐振频率相对于设计的谐振频率的偏差,也能减少至1%或以下。因此,能实现并入天线特性稳定性优良的紧凑型螺旋天线的通信设备。
在本发明中,优选基体由氧化铝陶瓷或镁橄榄石陶瓷制成。
在本发明中,优选基体由四氟乙烯或环氧玻璃钢制成。
在本发明中,优选基体由YIG(钇铁石榴石),Ni-Zr化合物或Ni-Co-Fe化合物制成。
附图说明
本发明的其他和进一步的目的、特点和优点,从下面参考附图所作的描述中,将变得更为明显,附图中:
图1A至1C是根据本发明螺旋天线的一个实施例的透视图;
图2是包括根据本发明实施例的螺旋天线的通信设备主要端口电路配置的简要方块图;
图3A至3D各表示以基体宽度为基础,在螺旋天线中观测的导体宽度-谐振频率关系曲线图;
图4A至4D各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-谐振频率关系曲线图;
图5A至5D各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-导体宽度关系曲线图;
图6A至6C各表示以基体宽度为基础,在螺旋天线中观测的导体宽度-谐振频率关系曲线图;
图7A至7C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-谐振频率关系曲线图;
图8A至8C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-导体宽度关系曲线图;
图9A至9C各表示以基体宽度为基础,在螺旋天线中观测的导体宽度-谐振频率关系曲线图;
图10A至10C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-谐振频率关系曲线图;
图11A至11C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-导体宽度关系曲线图;
图12A至12C各表示以基体宽度为基础,在螺旋天线中观测的导体宽度-谐振频率关系曲线图;
图13A至13C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-谐振频率关系曲线图;
图14A至14C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-导体宽度关系曲线图;
图15A至15C各表示以基体宽度为基础,在螺旋天线中观测的导体宽度-谐振频率关系曲线图;
图16A至16C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-谐振频率关系曲线图;
图17A至17C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数-导体宽度关系曲线图;
图18是传统设计的移动通信终端示例透视图;
图19是传统设计的片状天线透视图。
具体实施方式
下面,参考附图,描述本发明的优选实施例。
此后,将用实施例,参考附图描述本发明。
图1A至1C是根据本发明螺旋天线的一个实施例的透视图。在图1A中,实施本发明的螺旋天线1包括基体2;馈电端子3,其配置在基体2的端面上;和螺旋形导体4,其形成在基体2的上表面。
图中所示的螺旋天线1,被设计用于移动通信,LAN或诸如此类系统,其结构如下。在由例如陶瓷制成的基本上为平行管形状的基体2的上表面,安排有直线的导体4和馈电端子3。导体4螺旋地配置在基体2的长度方向。馈电端子3用来向导体4馈送高频信号功率。
注意,在本示例的结构中,导体4形成在基体2的上表面,这样,导体4的形成是容易的,螺旋天线1能被生产而不必使用分层方法,从而能减少制造成本。
另一种方式,导体4a可形成在基体2内部,如图1B中所示。这样,例如,处于导体4a的内部和外部的基体2的部分,绝缘材料的相对介电常数或磁性材料的相对导磁率可任意地设置。这可有助于简化天线特性的调整。此外,导体4a的形成,使其不暴露在基体2的上表面。所以,即使绝缘材料安排在天线周围,由绝缘材料产生的影响也可被充分抑制。
还有,如图1C所示,导体4b可同时形成在基体2的上表面和内部。这样导体4b(相对介电常数等)的环境偏差取决于它是定位在上表面还是内部。通过改变导体4b的形成位置的组合,导体4b的一部分形成在基体2的内部,这样由在天线周围的绝缘材料产生的影响被充分抑制,导体4b的一部分形成在基体2的上表面,这样,它的这个部分被微调,因而能容易地调节频率,获得具有基于单独的简单螺旋天线1的不同天线特性的多个天线。
基体2由绝缘材料或磁性材料制成,例如,制备主要由氧化铝(相对介电常数:9.6)组成的绝缘材料。这样一种粉末形式的材料经受压力-模制,烧结,形成陶瓷。使用这种陶瓷,基体2通常以基本上为平行管的形状构成。另一种方法,基体2可以由陶瓷制成的合成材料组成,即绝缘材料和树脂,或者磁性材料例如铁氧体。
在基体2由绝缘材料组成的情况下,高频信号经过导体4以较低的速度传播,引起波长变短。当基体2的相对介电常数表示为εr时,导体4的结构有效长度给定为1/εr1/2,也就是说,有效长度被减小。因此,如果结构长度保持相同,当以这种方式调节频率,即结构宽度改变,而频率变成相同时,则电流分布区域在面积上增加。这就使得导体4发射更大量的无线电波,获得天线增益提高的优点。
对比起来,在得到与常规天线相同的天线特性情况下,导体4的模式长度可设置为1/εr1/2。因此,可达到螺旋天线1的小型化。
注意,用绝缘材料制造基体2产生如下趋势。如果εr值小于3,则其近似空气(εr=1)中所观测的相对介电常数。由于前述原因,这使满足天线小型化的市场要求变得困难。相反,如果εr值超过30,虽然可达到小型化,但由于天线的增益和宽带与天线的尺寸成正比,所以天线的增益和带宽急剧地减小。结果,天线不能提供满足的天线特性。所以在用绝缘材料制造基体2的情况下,最好使用相对介电常数εr保持在从3至30范围内的绝缘材料。这种绝缘材料的例子包括陶瓷材料例如氧化铝陶瓷,镁橄榄石陶瓷,氧化锆陶瓷或诸如此类,或树脂材料例如四氟乙烯,环氧玻璃钢或诸如此类。
另一方面,在用磁性材料制造基体2的情况下,导体4具有较高的阻抗。这引起天线的低Q值,带宽因此而增加。
用磁性材料制造基体2产生下面的倾向。如果相对导磁率μr超过8,虽然能得到较宽的天线频带,但由于天线的增益和带宽与天线的尺寸成正比,所以天线的增益和带宽急剧地减小。结果,天线不能提供满意的天线特性。所以,在用磁性材料制造基体2的情况下,最好使用相对导磁率μr保持在从1至8范围内的磁性材料。这种磁性材料的例子包括YIG(钇铁石榴石),Ni-Zr化合物,或Ni-Co-Fe化合物。
为了构成螺旋天线1的辐射电极图案,螺旋形导体4和馈电端子3它们各由例如金属材料制成,该金属材料主要由任何铝,铜,镍,银,钯,铂,和金组成。为了用上述金属材料形成各种图案,具有理想图案结构的导体采用通常所知道的印刷方法,基于汽相淀积方法、溅射方法等的薄膜形成技术,金属薄片焊接方法、镀敷方法或诸如此类方法。
只要基体2的尺寸(厚度a和长度b),如图1A所示,和相对介电常数εr(或相对导磁率μr)都设置在预定范围内,则螺旋天线1的谐振频率f就与导体4的绕制匝数x和基体2的宽度y相关。基于这个事实,曾对谐振频率f与导体4的绕制匝数x和基体2的宽度y之间的关系进行过考查和研究,观察当基体2的厚度a,长度b和相对介电常数εr以及螺旋形导体4的绕制匝数都设置在预定范围内时的情形。结果发现,通过根据下面的公式设置谐振频率f和导体4的宽度w,能够实现具有所要求的天线特性的螺旋天线。
具体地说,如果设定,在基体2中,厚度a(mm)保持在0.3≤a≤3(mm)的范围内;长度b(mm)保持在5≤b≤20(mm)的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,以及螺旋形导体4的绕制匝数X(匝数)保持在3≤x≤16的范围内,则螺旋天线1的谐振频率f(MHz)满足下面公式(1)。
f=Ax+By+C(MHz)              …………(1)
这里
y表示基体宽度(mm);和
A,B,C各表示一个常数,它由基体2的厚度a,长度b和相对介电常数εr或相对导磁率μr确定。
上述公式(1)曾通过实行下面的过程确定。图3A至3D各表示螺旋形导体4的宽度w与谐振频率f之间的关系(导体宽度一谐振频率关系)偏差的曲线图,是当导体4的绕制匝数基于基体2的宽度y而偏差时观测到的。在图3A至3D的每个曲线图中,导体4的宽度w(单位:mm)沿水平轴取值,谐振频率f(单位:MHz)沿垂直轴取值。此外,特性曲线和图表各表示谐振频率f相对于导体4的宽度w的偏差,是当导体4的绕制匝数x(单位:匝数)改变时观测到的。在这个示例中,基体2的宽度y取四个不同的值:2.5mm,2.8mm,3mm,和3.2mm,导体4的绕制匝数x取四个不同的值:9,10,11和12,或三个不同的值:10,11和12。导体4的宽度w在从0.2至0.6mm范围内偏差。此外,基体2满足的条件是厚度a是0.5mm;长度b是10mm和相对介电常数εr是0.6。从这些曲线图将了解到,相对于每个导体4的绕制匝数x,有一个点,在这个点中与导体4的宽度w偏差相应的谐振频率f的偏差是特别小的(凸形特性曲线的极点)。
然后,将谐振频率f偏差小的一些点提取出来,并表示在图4A至4D中。在这些图中,导体4的绕制匝数x沿水平轴取值,谐振频率f沿垂直轴取值。于是,基于基体2的宽度,绘制绕制匝数与谐振频率之间的关系。如从这些图看到的,每条特性曲线由直线段确定,与各个直线段对应的近似等式在倾斜角上基本上互相等同的。所以,谐振频率f正比于导体4的绕制匝数x。此后,等式:f=Ax+By+C,在基体2的宽度y(单位:mm)与谐振频率f之间存在一个比值的假定条件下,被推导出来。将指示在图4A至4D的条件代入等式,得到联立等式的解,由此确定常数A,B和C。在关于基体的其他条件下,检查等式可利用性的结果证明,在任何条件下,等式是成立的。因此,得到公式(1)。
附带地,只要基体2的厚度a和长度b,各被设置在预定的范围,与理想的谐振频率f对应的导体4的宽度w,通过与导体4绕制匝数x相关,就能够得到。这是因为,当导体4的宽度w与导体4部件之间的距离(间隔)的比,达到一定程度时,导体4的宽度w对谐振频率f有最小的影响。
基于这个发现,曾对表示导体4的宽度w与导体4的绕制匝数x之间的关系进行考查。结果,如前所述,在基体2中给出:厚度a(mm)保持在0.3≤a≤3(mm)的范围内,长度b(mm)保持在5≤b≤20(mm)的范围内,和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,以及给出螺旋形导体4的绕制匝数X(匝)保持在3≤x≤16的范围内,则下面的公式成立:
w=Dx+E(mm)                      …………(2)
这里,D和E各表示一个常数,它是根据基体2的厚度a,长度b,和相对介电常数εr或相对导磁率μr确定的。
上述公式(2)曾通过实行下面的过程来确定。基于图5A至5D所示的导体宽度-谐振频率关系,导体4的宽度w,当谐振频率f的偏差保持最小时观察,可借助于近似等式得到。计算的结果表示在图5A至5D中。在这些图中,导体4的绕制匝数x沿水平轴取值,而导体4的宽度w沿垂直轴取值。接着,基于基体2的宽度,绘制绕制匝数-导体宽度的关系。如从图上看到的,每一特性曲线由直线段确定,与各个直线段对应的近似等式基本上是相互等同的。因此,发现了导体4的宽度w正比于导体4的绕制匝数x,但与基体2的宽度y有很小的相关。通过以这个方法给制导体4的绕制匝数与导体宽度之间的关系,常数D和E就能确定,所以公式(2)成立。
在实施本发明螺旋天线1中,应当实现满足公式(2)的条件如下:基体2的厚度a保持在0.3≤a≤3(mm)的范围内;基体2的长度b保持在保持在5≤b≤20(mm)的范围内;基体2的相对介电常数εr保持在3≤εr≤30的范围内或基体2的相对导磁率μr保持在1≤μr≤8的范围内;和导体4的绕制匝数x保持在3≤x≤16(匝)。只要上述条件被满足,则基于基体2的厚度a、长度b和相对介电常数εr或相对导磁率μr,常数D和E就能获得。
注意,如果导体4的绕制匝数x小于3(匝),则天线就得寻找在高频领域内的应用。这要求导体4在长度上最初要做得较短,因此消除了由螺旋结构带来的小型化优点。相反,如果导体4的绕制匝数x超过17(匝),导体4各部分之间的距离(间隔)被减小,由于这个结果,相信导体4各部分相互影响。这使得导体不可能充分地缩短电长度,引起天线缩减体积的困难。
如果基体2的厚度a小于0.3mm,天线的强度就会低得以致天线在某种用于终端或其他设备的条件下不能操作。相反,如果基体2的厚度a超过3mm,就会丧失由螺旋结构带来的小型化优点。
而且,如果基体2的长度小于5mm,天线特性就会变坏,特别是频带变窄,增益下降,由于这个结果,天线不能满足必要的要求。相反,如果基体2的长度b超过20mm,就会丧失由螺旋结构带来的小型化优点。
还有,如果基体2的相对介电常数εr小于3,如前面已描述的,其就近似空气中观察到的相对介电常数(εr=1),这使得天线的小型化困难。相反,如果基体2的相对介电常数εr超过30,天线特性就会变坏,频带和增益减小,由于这个结果,天线不能满足必要的要求。
在实施本发明的螺旋天线中,从公式(1)得到的对谐振频率f的细调,可通过调节公式(1)中基体2的宽度y进行。从公式(1)将了解到,谐振频率f也可通过改变导体4的绕制匝数x调节。但是,在这种情况下,由于导体4的绕制匝数x基本上仅能按整数取值,所以谐振频率f只能以约100MHz为基础调节。同时,基体2宽度y的值可依据产品的性能,根据基体2的尺寸精度来调节(一般,调节在约10μm基础上进行)。因此,在调节基体2宽度y的情况下,谐振频率f可在大约2至3MHz基础上调节。除此以外,由于导体4的绕制匝数x这时保持不变,所以导体4的线宽w当然保持不变。也就是说,由于具体4的线宽w与导体4线到线的间隔之比保持不变,所以在螺旋天线1中,谐振频率f受导体4的宽度w的偏差影响很小。因此,通过调节基体2的宽度y,谐振频率f可得到高精度的细调。
注意,在实施本发明的螺旋天线1中,为了正确地设置上述方法中的谐振频率f的导体4的宽度w,也能不利用基体2的宽度y,而利用基体2的厚度a(单位:mm)。在这种情况下,用公式(1)和(2)求得的常数A,B,C,D,和E必须用与根据本发明螺旋天线1实施例的示例基本上相同的方法重新确定。
还是在这种情况下,为了满足公式(1)和(2),下面的条件必须具备:导体4的绕制匝数x保持在3≤x≤16(匝)的范围内;基体2的厚度a保持在0.3≤a≤3(mm)的范围内;基体2长度b保持在5≤b≤20(mm)的范围内;和基体2的相对介电常数εr保持在3≤εr≤30的范围内。只要这些尺寸固定,公式(1)和(2)中求得的常数A,B,C,D和E就能确定,正如在上述实施例示例的情况一样。因此,理想的谐振频率f和导体4的宽度w,可借助于等式进行设计。
下面,将描述根据本发明通信设备30实施例的一个示例。图2是包括本发明实施例螺旋天线的通信设备30主要端口电路配置的简要方块图。实施本发明的通信设备30构造为装备本发明上述螺旋天线的通信设备。这种设计用于以蜂窝式移动电话,无线LAN,或诸如此类系统为代表的移动通信终端的数据通信设备。
例如,蜂窝式移动电话在它们机壳中并入通信电路的电路板31。通常,在电路板31上形成发送电路32,接收电路33和发送/接收切换电路34。发送电路32电气上与发送/接收切换电路34相连。而且,安装在电路板31表面上的本发明螺旋天线1,通过发送/接收切换电路34电气上连接至发送电路32和接收电路33。根据这个蜂窝式移动电话,通过发送/接收切换电路34的切换操作,进行从接收电路33馈送发送信号至螺旋天线1的发送操作,以及从螺旋天线1馈送接收信号至接收电路33的接收操作,从而实现电话通信。
根据本发明,通信设备并入上述本发明的螺旋天线。因此,即使由于天线制造中产生尺寸偏差,螺旋形导体的宽度发生例如5%的偏差,但是谐振频率的结果偏差相对于天线谐振频率的设计值,可减小到1%或以下。因此,能够提供优异天线特性的通信设备,确保稳定的通信质量。
(实施例)
下面,将描述运用本发明的螺旋天线实际示例。
(实施例1)
首先,作为螺旋天线的基体,制备有由氧化铝陶瓷制成的基本上为平行管形状的基体,它的厚度a为0.5mm和长度b为10mm,相对介电常数εr为0.6。就基体的表面而言,制造出基体宽度,导体宽度和导体的绕制匝数不同的螺旋天线试样。更具体地说,基体的宽度y在从2.5mm至3.2mm范围内变动;螺旋形导体的宽度w在从0.2mm至0.6mm范围内变动;和导体的绕制匝数x在从在9至12匝范围内变动。然后测量每个螺旋天线试样的谐振频率f。
注意,谐振频率f的测量进行如下。首先,制备一块环氧玻璃钢板材料,其尺寸是60mm×25mm×0.8mm。板材料具有形成在一侧的接地导体表面,和形成在另一侧的带状传输线。在这个基体中,每个螺旋天线试样的馈电端子,用焊管的方法被固定到配置在基体上的带状传输线,同轴线与带状传输线相对端连接,以获得馈电。往后,每个螺旋天线试样的谐振频率f,借助于由Agilent技术公司制造的网络分析仪进行测量。
根据获得的测量结果,导体宽度与谐振频率之间的关系(导体宽度-谐振频率关系),以基体宽度为基础,被绘制在图3A至3D中。根据曲线图中所示的近似等式,得到特性曲线的极点。用这个数据,导体的绕制匝数与谐振频率的关系(绕制匝数-谐振频率关系,以基体宽度为基础,被绘制在图4A至4D中,导体的绕制匝数与导体的宽度之间的关系(绕制匝数-谐振频率关系),以基体宽度为基础,被绘制在图5A至5D中。
下面,根据图4A至4D的结果,计算各近似等式倾斜角的平均值,以确定公式(1)中的常数(=-125.22)。然后,在图4A至4D所示的条件下,将谐振频率f的值,导体的绕制匝数x和导体宽度w各代入公式(1):f=-125.22x+By+C,以便得有关常数B和C的联立等式的解。在图5A至5D中,通过计算解的平均值,就可得到常数B(=-242.62)和C(=3679.72)。
此外,根据图5A至5D的结果,计算每个近似等式的倾斜角的平均值,以确定公式(2)的常数D(=-0.056)。然后,在图5A至5D所指示的条件下,将导体的绕制匝数x值代入公式(2):w=0.056x+E。在图5A至5D中,通过计算解的平均值,得到常数E(=1.015)。
在这个方法中,在由氧化铝陶瓷制成的,厚度为0.5mm和长度b为10mm,相对介电常数εr为9.6的基体中,谐振频率f和螺旋形导体的宽度w借助于公式(1)和(2)分别确定如下
f=-125.22x-242.62y+3679.71(MHz)
w=-0.056x+1.015(mm)
下面所到的表1和2各表示从公式(1)和(2)得到的计算结果和对螺旋天线试样的实测数据。
表1
No.  绕制匝数(匝)   基体宽度(mm)     谐振频率(MHz)     实测数据(MHz)     误差(%)
    123  101112   2.52.52.5     1821.01695.71570.5     1835.51693.91588.4     -14.51.8-17.9     -0.790.11-1.13
    4567  9101112   2.82.82.82.8     1873.41748.21623.01497.7     1858.11726.91592.61477.6     15.321.330.420.1     0.821.231.911.36
    891011  9101112   3.03.03.03.0     1824.91699.71574.41449.2     1847.91699.315791470.4     -23.00.4-4.6-21.2     -1.250.02-0.29-1.44
    12131415  9101112   3.23.23.23.2     1776.31651.11525.91400.7     1782.11644.41519.21408.9     -5.86.76.7-8.2     -0.320.410.44-0.58
表2
No.   绕制匝数(匝)   基体宽度(mm)     导体宽度(mm)     实测数据(mm)     误差(%)
    123   101112   2.52.52.5     0.4550.3990.343     0.4240.3890.310     0.0310.0100.033     7.262.6010.75
    4567   9101112   2.82.82.82.8     0.5110.4550.3990.343     0.5190.4400.3720.318     -0.0080.0150.0270.025     -1.523.417.297.93
    891011   9101112   3.03.03.03.0     0.5110.4550.3990.343     0.5280.4720.4350.387     -0.017-0.017-0.036-0.044     -3.18-3.58-8.28-11.32
    12131415   9101112   3.23.23.23.2     0.5110.4550.3990.343     0.5290.4660.4140.370     -0.018-0.011-0.015-0.027     -3.48-2.28-3.53-7.35
如从表1和2中所示的结果了解到,根据实施本发明的螺旋天线,谐振频率f的值和导体宽度w的值两者确定满足公式(1)和(2),大致地等于它们相应实际测量值。更具体地说,计算的谐振频率f和相应测量值之间的最大误差小于1.9%,计算的导体宽度w与相应测量之间的最大误差小于11%。也就是说,计算的与测量的值之间的误差认为是不重要的,因此对螺旋天线的实际应用没有影响。
此外,下面所列的表3,表示实施本发明螺旋天线每一试样的谐振频率f的偏差,是当借助公式(1)和(2)得到的导体宽度W出现5%的起伏时观察到的。
表3
No.     绕制匝数(匝)     基体宽度(mm)     导体宽度(mm)     谐振频率(MHz)     导体宽度+5%     谐振频率(MHz)    导体宽度-5%     谐振频率(MHz)     最大误差(%)
    123     101112     2.52.52.5     0.4550.3990.343     1821.01695.71570.5     0.4780.4190.360     1816.61694.71568.2     0.4320.3790.326     1823.01695.71571.9     0.240.060.15
    4567     9101112     2.82.82.82.8     0.5110.4550.3990.343     1873.41748.21623.01497.7     0.5370.4780.4190.360     1873.21745.11620.01496.6     0.4850.4320.3790.326     1872.21748.61624.41499.2     0.060.170.180.21
    891011     9101112     3.03.03.03.0     0.5110.4550.3990.343     1824.91699.71574.41449.2     0.5370.4780.4190.360     1825.21700.01576.11451.7     0.4850.4320.3790.326     1822.41697.71571.21445.5     0.130.110.200.25
    12131415     9101112     3.23.23.23.2     0.5110.4550.3990.343     1776.31651.11525.91400.7     0.5370.4780.4190.360     1776.81651.11526.21402.0     0.4850.4320.3790.326     1773.61649.11523.91398.3     0.150.120.130.17
从表3所示的结果将可以了解,根据实施本发明的螺旋天线,即使导体宽度w有5%的偏差,谐振频率f的最大偏差也被减至小于0.25%。这个数值远小于1%(即在实用中不会产生问题的水平。)
(实施例2)
基本上用与图1同样的方式,谐振频率f和导体宽度w,是如下所述按照下面关于基体的条件,按图3A至3D,4A至4D和5A至5D,并按照公式(1)和(2)而获得的。有如下一些步骤:
1)制造多个基体宽度y、导体宽度w和导体绕制匝数x不同的螺旋天线样品,然后测量每个螺旋天线的谐振频率f;
2)基于由此得到的谐振频率f测量数据,绘制以基体宽度y为基础和/或以导体绕制匝数x为基础的导体宽度w与谐振频率f之间的关系,从而建立特性曲线,然后获得与其相应的近似等式;
3)基于与特性曲线相应的近似等式,获得每一特性曲线的极点,并以此绘制以基体宽度y为基础的导体绕制匝数x与谐振频率f之间的关系,从而建立特性曲线,然后得到与其相应的近似等式,并通过计算各近似等式的倾斜角平均值,进一步确定常数A。
4)将常数A、导体绕制匝数x、基体宽度y和谐振频率f的测量值代入公式(1),并求解公式(1),从而确定常数B和C,获得平均值;
5)同时,基于与特性曲线相应的近似等式,获得每一特性曲线的极点,并以此绘制以基体宽度y为基础的导体绕制匝数x与导体宽度w之间的关系,从而建立特性曲线,然后得到与其相应的近似等式,并通过计算各近似等式的倾斜角平均值,进一步确定常数D。
6)将常数D和导体绕制匝数x代入公式(2),并求解公式(2),从而确定常数E,获得平均值。
按上述方式,按照下面的条件,画出与3A至3D,4A至4D,和5A至5D类似的曲线图,此外,将所确定的常数A,B和C代入公式(1),而所确定的常数D和E代入公式(2),以便用等式表示谐振频率f与导体宽度w的关系。然后,制造能满足由等式所得计算结果的实施本发明的螺旋天线测试样品。对于每一螺旋天线样品,测量谐振频率f和导体宽度w的值。计算结果和实测根据表示在与表1至3类似的表中。
1)在基体方面,给出厚度a为0.5mm;长度b为10mm,相对介电常数εr为3,于是有下列等式:
f=-117.4x-284.3y+3782.9(MHz)
w=-0.047x+0.967(mm)
这种情况涉及图6A至6C(导体宽度-谐振频率关系);图7A至7C(导体绕制匝数-谐振频率关系);和图8A至8C(导体绕制匝数-导体宽度关系),还有表4(谐振频率的计算结果和实测数据);表5(导体宽度的计算结果和实测数据);和表6(由导体宽度的偏差引起的谐振频率偏差)。
表4
No.  绕制匝数x(匝)    基体宽度y(mm)    谐振频率f(MHz)   实测数据(MHz)    误差(%)
    161718  101112    2.52.52.5    1898.21780.81663.4    189817791668     0.21.8-4.7     0.010.10-0.28
    192021  101112    3.03.03.0    1756.01638.61521.2    175916341521     -3.04.60.2     -0.170.280.01
    222324  101112    3.53.53.5    1613.91496.51379.1    161714941381     -3.22.4-2.0     -0.190.16-0.14
表5
No.  绕制匝数x(匝)  基体宽度y(mm)    导体宽度w(mm)     实测数据(mm)     误差(%)
    161718  101112  2.52.52.5    0.4970.4500.403     0.4610.4320.377     0.0360.0180.026     7.814.176.87
    192021  101112  3.03.03.0    0.4970.4500.403     0.5180.4720.421     -0.021-0.022-0.018     -4.05-4.66-4.28
    222324  101112  3.53.53.5    0.4970.4500.403     0.5110.4460.411     -0.0140.004-0.008     -2.740.90-1.95
表6
No.  绕制匝数x(匝)  基体宽度y(mm)    导体宽度w(mm)    谐振频率f(MHz)     导体宽度w+5%    谐振频率f(MHz)     导体宽度w-5%    谐振频率f(MHz)     最大误差(%)
    161718  101112  2.52.52.5    0.4970.4500.403    1898.21780.81663.4     0.5220.4730.423    1887.21771.31659.1     0.4720.4280.383    1898.01779.01667.6     0.580.530.26
    192021  101112  3.03.03.0    0.4970.4500.403    1756.01638.61521.2     0.5220.4730.423    1759.11634.11520.9     0.4720.4280.383    1756.01630.91518.4     0.180.470.18
    222324  101112  3.53.53.5    0.4970.4500.403    1613.91496.51379.1     0.5220.4730.423    1617.31492.41380.4     0.4720.4280.383    1615.11493.11379.4     0.210.270.10
2)在基体中,给定厚度a为0.5mm;长度b为10mm;和相对介电常数εr为30,那么,下列等式成立:
f=-116.17x-306.67y+3665.2(MHz)
w=-0.055x+0.957(mm)
这种情况涉及图9A至9C(导体宽度-谐振频率关系);图10A至10C(导体绕制匝数-谐振频率关系);和图11A至11C(导体绕制匝数-导体宽度关系),还有表7(谐振频率的计算结果和实测数据);表8(对导体宽度的计算结果和实测数据);和表9(由导体宽度的偏差引起的谐振频率偏差)。
表7
No.  绕制匝数x(匝)    基体宽度y(mm)    谐振频率f(MHz)   实测数据(MHz)     误差(%)
    252627  101112    2.52.52.5    1736.81620.71504.5   174116151504     -4.25.70.5     -0.240.350.03
    282930  101112    3.03.03.0    1583.51467.31351.2   158214641357     1.53.3-5.9     0.090.23-0.43
    313233  101112    3.53.53.5    1430.21314.01197.8   143013151195     0.2-1.02.8     0.01-0.080.24
表8
No.  绕制匝数x(匝)  基体宽度y(mm)    导体宽度w(mm)     实测数据(mm)     误差(%)
    252627  101112  2.52.52.5    0.4070.3520.297     0.4080.3520.302     -0.0010.000-0.005     -0.250.00-1.66
    282930  101112  3.03.03.0    0.4070.3520.297     0.4090.3510.314     -0.0020.001-0.017     -0.490.28-5.41
    313233  101112  3.53.53.5    0.4070.3520.297     0.4050.3550.279     0.002-0.0030.018     0.49-0.856.45
表9
No.    绕制匝数x(匝)  基体宽度y(mm)    导体宽度w(mm)    谐振频率f(MHz)     导体宽度w+5%    谐振频率f(MHz)     导体宽度w-5%    谐振频率f(MHz)     最大误差(%)
    252627    101112  2.52.52.5    0.4070.3520.297    1736.81620.71504.5     0.4270.3700.312    1739.71613.01503.6     0.3870.3340.282    1739.41613.11502.6     0.170.470.13
    282930    101112  3.03.03.0    0.4070.3520.297    1583.51467.31351.2     0.4270.3700.312    1581.41462.81357.1     0.3870.3340.282    1580.81463.21353.5     0.170.310.44
    313233    101112  3.53.53.5    0.4070.3520.297    1430.21314.01197.8     0.4270.3700.312    1428.41314.51193.0     0.3870.3340.282    1428.81313.81195.2     0.130.040.40
3)在基体中,给定厚度a为0.2mm;长度b为20mm;和相对介电常数εr为30,那么,下列等式成立:
f=-51.83x-184y+3139.45(MHz)
w=-0.102x+2.501(mm)
这种情况涉及图12A至12C,13A至13C,和14A至14C,还有表10,11,和12。
更具体地说,涉及图12A至12C(导体宽度-谐振频率关系);图13A至13C(导体绕制匝数-谐振频率关系);和图14A至14C(导体绕制匝数-导体宽度关系),还有表10(对谐振频率的计算结果和实测数据);表11(对导体宽度的计算结果和实测数据);和表12(由导体宽度的偏差引起的谐振频率偏差)。
表10
No.  绕制匝数x(匝)    基体宽度y(mm)    谐振频率f(MHz)   实测数据(MHz)     误差(%)
    343536  141516    2.52.52.5    1953.81902.01850.2   195319101855     0.8-8.0-4.8     0.04-0.42-0.26
    373839  141516    3.03.03.0    1861.81810.01758.2   186118121751     0.8-2.07.2     0.04-0.110.41
    404142  141516    3.53.53.5    1769.81718.01666.2   177517191672     -5.2-1.0-5.8     -0.29-0.06-0.35
表11
No. 绕制匝数x(匝)  基体宽度y(mm)    导体宽度w(mm)     实测数据(mm)     误差(%)
    343536 141516  2.52.52.5    1.0730.9710.869     1.0770.9930.870     -0.004-0.022-0.001     -0.37-2.22-0.11
    373839 141516  3.03.03.0    1.0730.9710.869     1.1171.0450.884     -0.044-0.074-0.015     -3.94-7.08-1.70
    404142 141516  3.53.53.5    1.0730.9710.869     1.0240.9660.854     0.0490.0050.015     4.790.521.76
表12
No.  绕制匝数x(匝)  基体宽度y(mm)    导体宽度w(mm)    谐振频率f(MHz)     导体宽度w+5%    谐振频率f(MHz)     导体宽度w-5%    谐振频率f(MHz)     最大误差(%)
    343536  141516  2.52.52.5    1.0730.9710.869    1953.81902.01850.2     1.1271.0200.912    1953.51906.01853.6     1.0190.9220.826    1948.21896.91850.3     0.290.270.19
    373839  141516  3.03.03.0    1.0730.9710.869    1861.81810.01758.2     1.1271.0200.912    1859.31811.11748.8     1.0190.9220.826    1858.71807.71748.6     0.170.130.54
    404142  141516  3.53.53.5    1.0730.9710.869    1769.81718.01666.2     1.1271.0200.912    1765.71716.31658.4     1.0190.9220.826    1775.01717.11661.9     0.290.100.47
4)在基体中,给定厚度a为3mm;长度b为5mm;和相对介电常数εr为3,那么,下列等式成立:
f=-300.33x-232.33y+3107.38(MHz)
w=-0.113x+0.681(mm)
这种情况涉及图15A至15C(导体宽度-谐振频率关系);图16A至16C(导体绕制匝数-谐振频率关系);和图17A至17C(导体绕制匝数-导体宽度关系),还有表13(对谐振频率的计算结果和实测数据);表14(对导体宽度的计算结果和实测数据);和表15(由导体宽度的偏差引起的谐振频率偏差)。
表13
No.  绕制匝数x(匝)    基体宽度y(mm)    谐振频率f(MHz)   实测数据(MHz)     误差(%)
    434445  345    2.52.52.5    1625.61325.21024.9   157713441033     48.6-18.8-8.1     3.08-1.40-0.78
    464748  345    3.03.03.0    1509.41209.1908.7   15031242899     6.4-32.99.7     0.43-2.651.08
    495051  345    3.53.53.5    1393.21092.9792.8   13981122755     -4.8-29.1-37.5     -0.34-2.594.98
表14
No. 绕制匝数x(匝)  基体宽度y(mm)    导体宽度w(mm)     实测数据(mm)     误差(%)
    434445 345  2.52.52.5    0.3420.2290.116     0.2530.2180.136     0.0900.011-0.020     35.454.9014.71
    464748 345  3.03.03.0    0.3420.2290.116     0.3490.2130.135     -0.0070.016-0.019     -2.017.51-14.07
    495051 345  3.53.53.5    0.3420.2290.116     0.3410.1990.107     0.0010.0300.009     0.2914.368.31
表15
No.    绕制匝数x(匝)  基体宽度y(mm)   导体宽度w(mm)    谐振频率f(MHz)     导体宽度w+5%    谐振频率f(MHz)    导体宽度w-5%    谐振频率f(MHz)   最大误差(%)
    434445    345  2.52.52.5   0.3420.2290.116    1625.61325.21024.9     0.3590.2400.122    1632.01322.21026.8     0.3250.2180.110    1629.61323.41025.9   0.400.230.19
    464748    345  3.03.03.0   0.3420.2290.116    1509.41209.1908.7     0.3590.2400.122    1502.91210.4908.9     0.3250.2180.110    1502.41211.7907.9   0.460.220.10
    495051    345  3.53.53.5   0.3420.2290.116    1392.21092.9792.6     0.3590.2400.122    1397.21089.4794.5     0.3250.2180.110    1397.31091.4794.8   0.290.320.28
从上述结果将会理解,在实施本发明的螺旋天线中,基体宽度a保持在0.3≤a≤3(mm)的范围内;基体长度b保持在5≤b≤20(mm)的范围内;和基体的相对介电常数εr保持在3≤εr≤30的范围,并分别以满足公式(1)和(2)确定谐振频率f(MHz)和导体宽度w(mm)。根据本发明,能容易地设计缩紧的螺旋天线,已经证实:即使导体宽度有例如大约为5%的偏差,谐振频率的偏差也能减小至1%或以下。
(实施例3)
首先,在螺旋天线中,关于基体,设置厚度a为0.5mm;长度b设置为10mm;和相对介电常数设置为9.6,并且,谐振频率设置为1575MHz(为GPS设计)。其次,螺旋天线的导体宽度w用示例1的公式作如下计算。注意,导体的绕制匝数x假定设置为11匝。
W=-0.056x+1.015
 =-0.056×11+1.015
 =0.399(mm)
通过这个计算结果,证明导体宽度w是不会有制造问题的数值。因此,导体的绕制匝数x设置为11匝,导体宽度w设置为0.399mm。
接下来,基体宽度y用示例1中的公式确定。
从等式:f=-125.22x-242.62y+3679.71,导出下列数值:
y=(-125.22×11+3679.71-f)/242.62
 3(mm)
按照这个计算结果,基体宽度y给为3mm。
(实施例4)
通过改变示例1的等式中表示的基体宽度y,调整谐振频率f。
根据在示例3中得出的条件:x=11匝,y=3mm;和f=1575MHz,考察过谐振频率的偏差,基体宽度y设置为2.8mm和3.2mm。从示例1中的公式,导出下列数值:
f=-125.22x-242.62y+3679.71
 =-125.22×11-242.62y+3679.71
 =242.62y+2302.29,
给出y=2.8mm时,f被确定为1623MHz,而给出y=3.2mm时,f被确定为1526MHz。
在所考虑的全部条件下,基体宽度y改变0.2mm,就能对谐振频率f调整约0.50MHz。换句话说,基体宽度y改变0.01mm(从生产能力的观点,这是基体宽度的正常调整值),就能对谐振频率f调整2.5MHz,即下列关系成立:2.5MHz/0.01mm。因此,已经证实:通过调整基体宽度y,谐振频率可在基础上调整2至3MHz。
(实施例5)
在螺旋天线中,关于基体,厚度a设置为0.5mm;长度b设置为10mm;和相对介电常数εr设置为9.6,此外,导体宽度w设置为3mm;导体的绕制匝数x设置为11匝;并且,谐振频率f设置为1579MHz。然后,通过改变基体宽度y,调整谐振频率f。
基体在宽度y方向被研磨处理掉0.01mm,同时,已经研磨的导体结构被重构,从而形成基体宽度y为2.99mm的螺旋天线。结果,在螺旋天线中,谐振频率f能被调整到1581MHz。
从这些结果已经证实:谐振频率f能通过调整基体宽度y而被精细调整。
应当了解,本发明的应用不局限于前面所描述的实施例,在本发明的精神和范围内,可以有许多修改和变形。例如,在基体被形成为圆柱体的情况下,通过以基体的半径r替代公式(1)中的宽度y,就能扩展本发明的应用范围。
本发明在不偏离其基本特征的情况下,可实施为其他具体形式。所以,现有的实施例被认为在所有方面都是例证性的而不是限制性的,本发明的范围不是由前面的描述,而是由后附的权利要求规定的,所有在权利要求的等效意义和范围的所有改变,都隐含权利要求中。

Claims (8)

1.一种螺旋天线,其特征在于包括:
由绝缘材料或磁性材料制成的基体;和
至少在基体的上表面或其内部二者之一形成的螺旋形导体,
其特征在于:在基体中,厚度a保持在0.3≤a≤3mm的范围内;长度b保持在5≤b≤20mm的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,还有,导体的绕制匝数X保持在3≤x≤16匝的范围内,
其中谐振频率f和导体宽度w分别满足下列的公式(1)和(2):
f=Ax+By+C              …………(1)
w=Dx+E                 …………(2)
这里,谐振频率f的单位MHz,导体宽度w的单位mm;
y表示基体宽度,单位mm;和
A、B、C、D和E各表示一个常数,它根据基体的厚度a、长度b和相对介电常数εr或相对导磁率μr确定。
2.根据权利要求1所述的螺旋天线,其特征在于:基体由氧化铝陶瓷或镁橄榄石陶瓷制成。
3.根据权利要求1所述的螺旋天线,其特征在于:基体由四氟乙烯或环氧玻璃钢制成。
4.根据权利要求1所述的螺旋天线,其特征在于:基体由YIG,Ni-Zr化合物或Ni-Co-Fe化合物制成。
5.一种包括螺旋天线的通信设备,螺旋天线包括:
由绝缘材料或磁性材料制成的基体;和
至少在基体的上表面或其内部二者之一形成的螺旋形导体,
其中:在基体中,厚度a保持在0.3≤a≤3mm的范围内;长度b保持在5≤b≤20mm的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,还有,导体的绕制匝数X保持在3≤x≤16匝的范围内,
其中谐振频率f和导体宽度w分别满足下列的公式(1)和(2):
f=Ax+By+C                 …………(1)
w=Dx+E                    …………(2)
这里,谐振频率f的单位MHz,导体宽度w的单位mm;
y表示基体宽度,单位mm;和
A、B、C、D和E各表示一个常数,它根据基体的厚度a、长度b和相对介电常数εr或相对导磁率μr确定。
6.根据权利要求5所述的通信设备,其特征在于:基体由氧化铝陶瓷或镁橄榄石陶瓷制成。
7.根据权利要求5所述的通信设备,其特征在于:基体由四氟乙烯或环氧玻璃钢制成。
8.根据权利要求5所述的通信设备,其特征在于:基体由YIG,Ni-Zr化合物或Ni-Co-Fe化合物制成。
CNB031205895A 2002-03-14 2003-03-14 螺旋天线和通信设备 Expired - Fee Related CN1226807C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002069394A JP3730926B2 (ja) 2002-03-14 2002-03-14 ヘリカル型アンテナの設計方法
JP2002069394 2002-03-14

Publications (2)

Publication Number Publication Date
CN1445884A CN1445884A (zh) 2003-10-01
CN1226807C true CN1226807C (zh) 2005-11-09

Family

ID=28035012

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031205895A Expired - Fee Related CN1226807C (zh) 2002-03-14 2003-03-14 螺旋天线和通信设备

Country Status (4)

Country Link
US (1) US6822620B2 (zh)
JP (1) JP3730926B2 (zh)
KR (1) KR20030074151A (zh)
CN (1) CN1226807C (zh)

Families Citing this family (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084825B2 (en) * 2003-01-10 2006-08-01 Matsushita Electric Industrial Co., Ltd. Antenna and electronic device using the same
JP4631288B2 (ja) * 2004-02-20 2011-02-16 パナソニック株式会社 アンテナモジュール
US7183998B2 (en) 2004-06-02 2007-02-27 Sciperio, Inc. Micro-helix antenna and methods for making same
TWI245452B (en) * 2005-03-15 2005-12-11 High Tech Comp Corp A multi-band monopole antenna with dual purpose
US7557772B2 (en) * 2006-03-21 2009-07-07 Broadcom Corporation Planer helical antenna
JP5617593B2 (ja) * 2010-12-15 2014-11-05 日本電気株式会社 アンテナ装置
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9563838B2 (en) 2015-04-28 2017-02-07 Fujitsu Limited Loop antenna and radio frequency tag
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) * 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
CN110535252A (zh) 2016-12-12 2019-12-03 艾诺格思公司 用于管理发射设备的操作的集成电路和射频发射设备
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
KR20210117283A (ko) 2019-01-28 2021-09-28 에너저스 코포레이션 무선 전력 전송을 위한 소형 안테나에 대한 시스템들 및 방법들
CN113661660B (zh) 2019-02-06 2023-01-24 艾诺格思公司 估计最佳相位的方法、无线电力发射设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962538A (en) * 1974-11-21 1976-06-08 Xerox Corporation Flying spot scanning system with virtual scanners
DE2658065A1 (de) * 1976-12-22 1978-07-06 Ibm Deutschland Maschinelles chiffrieren und dechiffrieren
US5231662A (en) * 1989-08-01 1993-07-27 Tulip Computers International B.V. Method and device for enciphering data to be transferred and for deciphering the enciphered data, and a computer system comprising such a device
US5454039A (en) * 1993-12-06 1995-09-26 International Business Machines Corporation Software-efficient pseudorandom function and the use thereof for encryption
JP3029381B2 (ja) * 1994-01-10 2000-04-04 富士通株式会社 データ変換装置
US5623549A (en) * 1995-01-30 1997-04-22 Ritter; Terry F. Cipher mechanisms with fencing and balanced block mixing
JPH0912113A (ja) 1995-06-27 1997-01-14 Toyo Kanetsu Kk ピッキング装置
US5778074A (en) * 1995-06-29 1998-07-07 Teledyne Industries, Inc. Methods for generating variable S-boxes from arbitrary keys of arbitrary length including methods which allow rapid key changes
US5606616A (en) * 1995-07-03 1997-02-25 General Instrument Corporation Of Delaware Cryptographic apparatus with double feedforward hash function
JP3011075B2 (ja) * 1995-10-24 2000-02-21 株式会社村田製作所 ヘリカルアンテナ
US5768390A (en) * 1995-10-25 1998-06-16 International Business Machines Corporation Cryptographic system with masking
US6570989B1 (en) * 1998-04-27 2003-05-27 Matsushita Electric Industrial Co., Ltd. Cryptographic processing apparatus, cryptographic processing method, and storage medium storing cryptographic processing program for realizing high-speed cryptographic processing without impairing security
JP3528737B2 (ja) 2000-02-04 2004-05-24 株式会社村田製作所 表面実装型アンテナおよびその調整方法および表面実装型アンテナを備えた通信装置
US6486853B2 (en) * 2000-05-18 2002-11-26 Matsushita Electric Industrial Co., Ltd. Chip antenna, radio communications terminal and radio communications system using the same and method for production of the same

Also Published As

Publication number Publication date
KR20030074151A (ko) 2003-09-19
CN1445884A (zh) 2003-10-01
JP3730926B2 (ja) 2006-01-05
US20030179152A1 (en) 2003-09-25
JP2003273627A (ja) 2003-09-26
US6822620B2 (en) 2004-11-23

Similar Documents

Publication Publication Date Title
CN1226807C (zh) 螺旋天线和通信设备
CN1244969C (zh) 高频电路元件及高频电路模块
CN1075252C (zh) 利用短补片天线的天线设备
CN1190006C (zh) 纵向耦合谐振器型的声表面波滤波器
CN1271746C (zh) 通信适配器和便携式电子设备
CN1855613A (zh) 带通滤波器及使用其的无线通信设备
CN1076129C (zh) 介电谐振器以及使用这种介电谐振器的介电谐振器装置
CN1040270C (zh) 天线装置
CN100336141C (zh) 铁氧体磁心及其制造方法以及使用该铁氧体磁心的共模噪声滤波器
CN1196228C (zh) 天线装置及通信系统
CN1441980A (zh) 天线和使用该天线的无线装置
CN1633766A (zh) 使用单一自互补天线的无线终端试验装置
CN1182625C (zh) 天线装置及其制造方法
CN1784811A (zh) 带有改进的短截线的高效隙缝馈电微带天线
CN1223048C (zh) 两波段传输系统及其天线
CN1401127A (zh) 电子部件用基板和电子部件
CN101079514A (zh) 汽车用高频玻璃天线
CN1433104A (zh) 天线设备,通信设备和天线设备设计方法
CN1305171C (zh) 表面声波滤波器、天线双工器和通信设备
CN1378223A (zh) 补偿半导体元件的结电容的温度依存性的电容器制造方法
CN1633735A (zh) 天线组件及包括该天线组件的便携式无线装置
CN1472842A (zh) 介质谐振器和使用介质谐振器的高频电路元件
CN1685562A (zh) 宽带天线
CN1505205A (zh) 表面安装型天线和天线装置
CN1842939A (zh) 介电体装载天线

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee