CN1226487A - 依电池充电状态配置牵引电机驱动的混合型电动车辆 - Google Patents

依电池充电状态配置牵引电机驱动的混合型电动车辆 Download PDF

Info

Publication number
CN1226487A
CN1226487A CN98125813A CN98125813A CN1226487A CN 1226487 A CN1226487 A CN 1226487A CN 98125813 A CN98125813 A CN 98125813A CN 98125813 A CN98125813 A CN 98125813A CN 1226487 A CN1226487 A CN 1226487A
Authority
CN
China
Prior art keywords
battery
traction
energy
electric machine
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98125813A
Other languages
English (en)
Other versions
CN1182985C (zh
Inventor
A·P·莱安斯
T·M·格雷维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems Controls Inc
Original Assignee
Lockheed Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lockheed Corp filed Critical Lockheed Corp
Publication of CN1226487A publication Critical patent/CN1226487A/zh
Application granted granted Critical
Publication of CN1182985C publication Critical patent/CN1182985C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/425Power storage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/428Power distribution and management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

一种电动车辆,其操纵相同于通常的内燃机车辆。其中,当电池组处于部分充电和满电充电状态之间充电状态时,由辅助电力源和动力制动向电池组充电的充电的量值线性减少,该充电量的多少与电池组的相对充电状态有关。牵引电机所需能量与辅助电力源可被利用能量的差值由电池组提供,其数量取决于电池组的状态,因此当电池组接近于满充电状态时,电池组将提供此全部差值,当电池组接近电耗尽状态时,电池组可提供的用于差值部分的能量将很少或为零。

Description

依电池充电状态配置牵引电机 驱动的混合型电动车辆
本发明涉及一种用于使混合型电动车辆的操作及操作特性简单而又有效的装置和方法。
混合型电动车辆被广泛认为是极具实用性的低污染车辆。混合型电动车辆具有向电力牵引电机供电的电力“牵引”电池,再由牵引电机驱动车轮转动。该种车辆的“混合型”取决于在车辆运行过程中给牵引电池充电的辅助或附加电力能源的使用。所述辅助电力能源可以是太阳能电池板或燃料电池,也可以是由内燃机驱动的发电机,还可以是其它的电源。当使用内燃机作为所述辅助电力能源时,通常是低油耗且低污染的小功率发动机。由此所伴随的优点在于,所述的小型内燃机可以在有限的转速范围内运转,从而发动机的排放控制得以优化。此处对电力能源的描述中所采用的“主要”及“辅助”的相关词语仅仅与车辆运行时的功率分配有关,并不表明对本发明的重要程度。只用电池来供应电力的单纯型电动车辆的缺点是,在车辆尚距电池充电站很远时,电池组的电力就消耗殆尽,车辆在一个工作日的运行后能成功地返回补给站,就必须对电池进行充电。混合型电动车辆较单纯型电动车辆的显著进步之一在于,其可以在运行过程中对自身的电池进行充电,因此一般不需要外部充电,混合型电动车辆可以像普通内燃机驱动的车辆那样运行,只需要补充燃料;混合型电动车辆的另一主要优点在于,由于采用动力再生制动,在至少部分制动过程中可将动能转化为电力并返送回电池,故具有良好的燃油经济性。已经发现:对某些城区地段运行的车辆,制动消耗在总的摩擦损耗中占了将近一半。把此消耗能量的50%回收并返回电池作进一步的利用,从而允许采用比不使用再生制动的情况下更小的靠“辅助”燃料运行的发电机。相应地,此小的辅助电力能源使单位时间或单位里程的燃油消耗减少。此外,混合型电动车辆的另一优点在于,在许多情况下,可以用来加速车辆的总功率是电池组供应的最大功率与所述辅助发电机所发出的最大功率和。当此发电机由柴油内燃机驱动时,不但具有良好的燃油经济性,且电池功率与柴油机发出的功率的结合可以产生相当大的总驱动力。
混合型电动车辆具有经济及环保优势的同时,它们必须坚固耐用且操作简便,即它们在操作及对操作者输入的响应方面必须与普通内燃机驱动的车辆相似,以此获得广泛的认可和采用。
根据本发明的一个方面,对至少部分牵引力来自于电池诸的混合电动车的操纵方法,其包括如下步骤,在车辆处于地运行状态而不是制动状态下,由一辅助动力源给一牵引电机提供能量,而当所述电池处于第一充电状态和满充电状态之间的充电状态时,所述电池还提供牵引所需的能量与辅助动力源所提供能量的差值,直到该电池的最大容量,当然所述第一充电状态小于所述满充电状态。根据本发明上述方面的方法中,在车辆处于运行状态而不是制动状态下,当所述电池处于第二充电状态,即基本处于电耗尽状态,在车辆处于运行状态而不是制动状态下,牵引电机能量只由辅助动力源提供;并且,当所述电池处于电耗尽状态与第一充电状态之间的充电状态时,在车辆处于运行状态而不是制动状态下,所述电池也以少于其全部容量的数量向所述牵引电机机提供能量。
在本发明上述方面的一变换中,对至少部分牵引力来自于诸电池的混合电动车的操纵方法,包括如下步骤,在车辆处于运行状态而不是制动状态下,由一辅助电能源给牵引电机提供能量,而当所述电池处于第一充电状态和满充电状态之间的充电状态时,所述电池还向牵引电机提供能量,直到所述电池的最大容量,并提供牵引动力所需能量与所述辅助动力源所提供能量的差值。根据本发明这方面的变型,其他步骤包括:(A)在车辆处于运行状态而不是制动状态下,当电池处于一第二充电状态,即基本电耗尽状态,牵引电机能量只由所述辅助动力源提供,并且(B)在车辆处于运行状态而不是制动状态下,由所述辅助动力源给牵引电机提供能量,所述电池也以一定数量的能量提供给牵引电机,该数量相对所述电池全部容量的比例与电池充电电量相对满充电量的比例大致相同。
图1是依据本发明所设计的电动车辆的示意框图,包括完成本发明控制逻辑的一指令控制器和一功率控制器;
图2表示图1中功率控制器所执行功能的简化框图;
图3a和3b分别表示牵引电池再生充电与牵引电池充电状态的变化关系及再生牵引与牵引电池充电量之间的变化曲线;
图4是图1及图2中的指令控制器为实现图3a及图3b的关系曲线所要求的逻辑关系的逻辑流程图;
图5是图1所示车辆的牵引电机所需牵引功率作为牵引电池充电状态的函数,其分布关系曲线;
图6是在图1及图2的指令控制器为实现图5所示关系所要求的逻辑关系的逻辑流程图;
图7a是以扭矩作参数的牵引电机或发电机功率一速度关系曲线;图7b用来说明如何控制电机/发电机的功率;
图8表示为实现对辅助动力源功率输出随电池充电状态的可控调节而设置的控制线路或配置的简化框图。
在图1中,电动车辆10至少包括一与交流电牵引电40相连的驱动轮12,在本发明的一实施例中,该电机为三相交流电机。牵引电机40最好采用可逆电机即电动机一发电机,这样,在动力制动过程中,车辆动能可以被变换成电能。一功率控制器14通过功率处理通道与牵引电机40、一牵引电池20及辅助电力系统16相连。如图所示,辅助电力系统16包括一内燃机例如柴油机18,由它驱动一发电机22,或采用燃料电池24。一指令控制器50通过信号通道与功率控制器14、辅助电力系统16以及牵引电机40相连,用以按照适当的控制逻辑来控制功率控制器14、辅助电力系统16以及电机40的工作。
硫酸铅蓄电池是目前应用最广泛价格最便宜的能储存相对较多电能的一种电池。这种电池如果给予一些保养和维护防止当电池处于满充电状态时继续施以充电电流,就可以避免电解液的汽化和不希望的发热以及避免硫酸盐化作用,从而很适合在电动车辆上使用。
在图1中,车辆10的操作者控制及显示单元用单元30表示,显示及控制单元30通过双向数据通道31与指令控制单元50相连,将驾驶指令发往指令控制器50,再由此指令控制器将驾驶指令转换成合适的指令发往各个有关的功率环节,如功率控制器14、辅助电源(电力系统)16以及牵引电机40。图中还示出显示及控制单元30通过通道32与摩擦制动36a及36b相连,用以直接控制与制动踏板相连的常规液力制动系统。
图2描述了图1中的功率控制器14中的部分器件与图1中的其它部件的连接关系。更具体一些,功率控制器14包括一组与辅助电源(电力系统)16相连的整流器配置26,以便(在需要时)将辅助电力系统16发出的交流电转变成直流电。功率控制器14还包括一套双向推进控制系统,它具有通过功率传输通道与电池20、整流器配置26和牵引电机40相连的直交流变换器28。如上文所述,变换器28、辅助电源16和牵引电机40的工作都是由指令控制器50控制的。需要提到的是,除直交流变换器28以外,所述推进控制系统还包括电压及电流传感器,以便检测所述牵引电动机/发机、电池及辅助电源的诸工作参数。
在图1及图2所示配置的基本工作状态下,指令控制器50用脉宽调制指令控制各个开关元件(未示出),以便在与牵引电机40相连的变换器28的端口28m处产生选定频率及幅值近似于交流的电压。在本发明最佳实施例中,所述变换器采用场定向控制型(FOC),牵引电机也采用类似的场导感应型电机。调定用来驱动牵引电机的可控交流电的频率和幅值,以便以选定的牵引电流及转速驱动牵引电机。通常,随着牵引电机转速的提高,电机产生的反电动势也逐步提高,从而所述变换器在指令控制器50的调节下也须产生随电压频率的提高电压幅值逐渐增大的交流电,以便维持不变的牵引电机驱动电流。牵引电机的旋转频率与变换器的电流输出频率协调一致。在图1及图2所示的电动车辆的基本工作状态下,动力制动与摩擦制动可能都在起作用,但最好动力制动,因为通过将牵引电机转为发电机模式工作,随着车辆速度的降低,车辆的动能可以被重新回收。在实施动力制动的时间段内,图2的直交流变换器28工作在第二状态或再生发电方向,将牵引电机40发出的交流电转换成直流电,并对牵引电池20充电。此外,当电动车辆属于具有辅助电源系统16的混合型电动车辆时,该辅助动力系统16可以在车辆运行时工作,以便依据指令控制器50的指令对电池补充电力并且/或者提供部分牵引功率。
已经注意到:如果当电动车辆处于通常的动力制动状态,且电池组已处于满充电状态时,动力制动势必使充电电流通过已充电的电池。而铅酸电池具有这样的特性:对已经满充的电池进一步施加充电电流,电池的电压将会显著升高,对于正常条件下12伏特的电池,满充电时的断路电动势为13伏特,而在过充电时可以升到将近16伏特,据此向指令控制器提供指示:目前正处于过充电状态。如果指令控制器为了保护电池而断开流向电池的由动力制动产生的电能,则电池的电压很快会下降到其满充电断路电压值水平。结果是:动力制动控制器反复多次向电池充电,直到过电压控制发生作用为止。这样就导致动力制动以指令控制器闭环特性产生的脉冲重复频率周期性地作用,而产生可察觉的制动振荡,而且在控制器的脉冲间隙时间内,电池仍会发生过充电。无论是过充电还是振荡都是不希望的。
图3a与图3b用来共同说明依据本发明的一个方面而采用的控制逻辑,当牵引电池的充电量低于某一特定充电值时,在这样的时间内该充电辑允许来自动力制动的能量完全再生或者返送至牵引电池,其中的特定充电值低于满充电值;当牵引电池的充电水平在该特定值与满充电值之间时,所述控制逻辑以一定方式逐渐缩小来自动力制动再生能量的比例,即:以当前充电状态相对于设定值和满充电值之间差值的函数关系进行调节。在本发明的一个实施例中,该函数关系是单调的,甚至可以是线性关系。在图3a中图线310表示按照本发明的一个方面再生制动能量作为电池充电状态函数应具有的形式。具体来说,在图线310设定的312段,再生动力制动能量是一常数,这个常数代表100%的再生制动或尽可能地接近100%动力制动。在满充电状态时,来自动力制动的再生能量值被减少到几乎是零或尽可能地接近于零。由图线310表示的控制逻辑还包括一第二段314,该段图线在设定的某一充电状态从100%的再生制动倾斜单调下降到满充电状态的零再生制动。该设定的充电状态被命名为“第一充电”状态。图3b中的图线320表示车辆再生牵引或者制动效率作为牵引电池充电状态函数的图线。图线320的第一部分322以低充电状态保持最大再生牵引的某一常量延续,直至电池达到“第一充电”状态。图线320的第二部分324表示出再生牵引,它从“第一充电”状态处的100%倾斜单调下降到满充电状态的零水平0%。图线310及320的314和324段均线性倾斜,为了控制,段314及324应是单调的。这种动力制动的单调减少不易被车辆驾驶员所察觉,这是因为牵引电池的充电状态变化缓慢,再生制动的变化量也是很慢的。由于再生制动的变化缓慢,摩擦制动是逐步弥补再生制动与所希望的制动力之间的不足的。于是减轻了简单控制逻辑下的制动振荡,当电池处于满充电状态时,只中断所述的再生制动即可完全防止牵引电池过充电。
图4是控制逻辑部分400的简化控制流程图,所述的控制逻辑用来控制图1中具图3a及图3b所示功能的控制处理器50。在图4中,逻辑流程从开始单元410开始,经过监视环节412,该环节监视牵引电池仓(图1中的20)的诸多参数,例如温度、电压、电流以及重要的时间。对这些参数的采样发生在重复频繁的采样周期内,如图4的每次整个闭路循环,从逻辑流程单元412进入流程单元414,该单元代表对电池充电状态的判断,即测算已经进入电池的充电量减去流出电池的电量,该电量的测算是以安培小时作计量单位。一旦对电池充电状态作出判断,逻辑流程进入决策单元416,在此,将当前充电状态与“第一充电”状态的预先设定值进行比较,如上文所述,该预先设定充电水平低于满充电状态时的。如果决策单元416发现当前判断的电池充电水平低于“第一充电”状态,逻辑流程给出“是”的输出并离开决策单元进入允许使用完全再生制动的下一单元418。作为举例,单元418处所执行的动作可能是调节(处于发电模式的)牵引电机的励磁电流,从而在制动过程中使牵引电机有尽可能大的电力输出。值得注意的是,某些类型的电动机/发电机没有截然不同的磁场绕组,但具有多组绕组,其中一绕组具有由另一绕组中的控制电流感应产生的所需电流,对本发明的目的而言,励磁电流的产生方式是无关紧要的,只要产生所需的量就足够了。从单元418逻辑流程将返回单元412开始另一次环路往复。如果混合型电动车辆在这种状态下运行,牵引电池常常由于充电电流的持续注入(由于辅助内燃机/发电机系统的作用)能量存储系统而出现过充电,所述能量存储系统包括牵引电池及车辆的运动能量。
最终,牵引电池的充电状态将超过图3a及图3b所示的“第一充电”水平。此时,由于逻辑流程将被决策单元416引向“否”输出,而不再是由“是”输出,图1中的控制器50围绕图4中预先编程的逻辑循环400的逻辑重复将发生变化。从决策单元的416的“否”输出,逻辑流程进入下一单元420,它表示车辆动能中可再生的动力或者能量以与当前充电量成反比例地减小,所述充电量同图3a及图3b所示的满充电状态与“第一充电”状态之间的差值有关。这样,如果当前充电状态处于“第一充电”状态与满充电状态间的差值位于70%处,如图3a及图3b中的Cc处,那么允许回收并向电池返送的能量就为30%;当前充电状态达到100%,允许回收或者再生的就为零。正如上文所提到的,对来自用作发电机的牵引电机的能量或者动力耦合的控制,通过简单地调节定向磁场控制交流电机内的指令驱动扭矩既可实现。在本发明的一个具体实施例中,所述扭矩相对于转速成比例地降低,从而控制作为发电机使用的牵引电机返送到牵引电池能量的大小。
如上所述,图4中的控制逻辑依据电池的充电状态控制所述的再生。这意味着由牵引电机作为发电机而施加于车辆的阻力在制动的过程中是减小的。采用再生制动的电动车辆的优点之一在于,摩擦制动不需要完成所有的制动减速工作,所以在设计及结构上可以利用工作负荷较轻这一优点,例如可以在结构上做得更轻。按照图4中的控制逻辑,当电池处于一定的充电状态时,动力再生制动将会削弱。当再生制动量被减少时,为了提供额外的制动作用,根据本发明的另一方面,在图4中的控制逻辑从单元420进入下级单元422,这表明作为发电机的牵引电机降低。这种效率的降低可以通过调节作为发电机的牵引电机的滑差率或励磁绕组的电流或最好同时采用这两种方法来实现。从图4中的单元422,控制逻辑流程返回单元412重新开始另一“闭环”或者整个控制逻辑400。
如上所述,制动振荡或不均匀性能是由于保护已充满的电池不会额外充电所致,当使用电力几乎耗尽的电池进行加速时也会产生类似的结果。图1所示车辆10在加速过程中,牵引电池与辅助/第二电力系统16(内燃机/发电机)都作为牵引电机40的电源。牵引电机40以某一正常值提供动力,所述正常值为牵引电池20的最大功率与辅助电力系统16最大功率之和。这一点对城市中运行的车辆非常方便,因为在城市中,车辆的急剧加速需要相当大的驱动功率。但是,在某些情况下,当牵引电池处于保护空制时,如果只是简单地停止从确已处于电力耗尽状态的牵引电池向牵引电机供电,车辆将产生一种振荡。如果车辆长时间处于上坡路段,例如进行长途跨区划运行时,这种情况就可能发生。如果车辆上坡运行时可利用能量的正常值超出辅助动力系统16所提供的正常值,所述电池将连续消耗最终达到设定为耗尽水平的充电状态。如果此时电池控制器简单地将牵引电池与牵引电机的回路切断,用于牵引电机的电流值将突然降低到辅助电力系统16所提供的电流水平,随之牵引功率急剧变化,车辆就会突然减速。然而,将耗尽的电池与牵引电机断开,容许其电压急剧升高到它的无负荷电压,如果控制器将此电压的升高理解为电池已具有可以使用的充电量,它就会重新接通电池一牵引电机回路,牵引电池再次提供附加牵引力,但会引起牵引电池电压的再次下降。本领域的技术人员将此情形称为振荡,它将使车辆在爬坡的时候频繁出现冲击和摆动现象。
应该注意的是,在该处所提及的所谓“完全耗尽”的电池,出于希望延长电池寿命的考虑,仍然含有大量的电量,这是因为对这种电池放电的程度太深的话,电池的寿命将会急剧减少,因而,在此所论述的电动车辆中的耗尽电池是这样一种电池,它处于被认为已经完全耗尽的充电状态,但仍然有相当大的电量。在混合型电动车辆中,辅助电力系统持续地提供电能,当牵引功率需求小于辅助系统的功率输出时,它就可以用来向牵引电池充电。控制逻辑允许辅助电力系统与牵引电池同时向牵引电机供电。当牵引电机的功率需求超出辅助动力系统的输出时,电流从电池流出,导致其电压下降。如果电池的充电状态接近于完全耗尽状态,由于电流的流出,而导致的电压下降将触发电池进入保护模式,即停止由电池输出电流。由控制逻辑关断电池电力输出,结果是车辆由辅助动力系统单独驱动,并使牵引电池的电压升高。当牵引电池的电压升高时,控制逻辑将不再认为电池是耗尽的,牵引电池重新被允许由其输出电流。牵引电池与牵引电机的频繁断开与闭合过程构成了控制系统的往复振荡,导致车辆牵引力以控制系统的振荡频率变化,这种变化对车辆操作者是可以感觉到的。
根据本发明的另一方面,控制器50根据牵引电池的充电状态来调节电池的供电输出量。这就避免了上述提到的振荡现象,容许电池电量以车辆平稳爬上山坡的速度减少。图5中的图线500显示的是根据本发明此方面的控制结果。在图5中图线是以车辆可得到的牵引功率对电池充电水平的变化关系而绘制的。图线500的510部分代表辅助动力系统的持续电力输出或功率输出,这是一个相对较小的数值。图线510从低于名义电力耗尽状态的某一充电水平延伸至“低充电点”,即名义牵引电池电力耗尽位置。在图线512表示的工作区间内,车辆可以应用的牵引功率处于相对较高的水平,即电池与辅助动力功率之和。由512表示的最大功率水平区间从电池的被称为“第一充电”状态延伸至满充电状态。如图线514段所示,在“低充电”状态与“第一充电”状态之间,牵引功率的多少取决于牵引电池的充电状态。这种控制逻辑允许车辆以满功率运行一段时间,直到牵引电池被部分放电到“第一充电”水平(状态),当牵引电池的电量刚降低到“第一充电”水平之下时,牵引电机所得到的牵引电池输出功率应以不显著的量略有减少。在图5中电池刚刚低于“第一充电”状态处,输出功率的轻微下降或多或少地降低牵引电池的放电率。如果坡道较长,所述电池可能进一步放电。当牵引电池在图5的“低充电”与“第一充电”状态之间的区段进一步放电时,使牵引电机从电池获得的功率相对更小,导致车辆速度进一步降低。对于很长的坡道,电池最终将达到名义上的电力耗尽位置“低充电”状态。当达到该状态时,牵引电池将不再输出电能。并且,一般来说牵引电池的充电状态不允许延伸到“低充电”状态以下而进入图线510部分,除非某些车辆或乘客面临危险情况下需要紧急突破对电池的保护性限制的情况下。用图5所示的控制逻辑,沿着整个控制曲线的任何位置处,没有驱动功率的急剧变换。当电池的充电状态刚好超出“低充电”状态,使车辆驱动状态由辅助动力系统驱变换为全动力运行时,由牵引电池所提供的牵引功率已非常小,并且这种变换对车辆驾驶员应该是不易察觉的。
图6是对图1中控制器50控制逻辑部分600的简化流程图,该部分600用来实现图5中图线500的控制。在图6中逻辑从“开始”单元610开始到达单元612,该单元表示读取与图4中的单元412相同的电池特性参数。从图6的单元612控制逻辑进入单元614,该单元与图4中的相应描述基本相同,也起到判断电池充电状态的功能。图6的决策单元616决定当前充电状态是否高于图5中的“第一充电”位置,如果充电状态高于“第一充电”位置,逻辑流程将由该单元的“是”输出发送。由单元616的“是”输出,流程将进入单元618,这表明牵引电机提供全牵引动力。这可以通过取消变换器控制软件中的功率限制来实现,如图7a及图7b所示,这是因为辅助动力系统只能作为能量来源,而电池和牵引电机/发电机即能作为动力源又能作为储能器,这取决于变换器的工作状态。从单元618逻辑流程返回单元612,以便开始图6的逻辑程序的另一次循环。一般来说,只要开始时电池的充电状态是接近于满充电,逻辑流程将环绕图6中的单元612、614、616及618重复循环,直到牵引电池的充电状态超过图5中的“第一充电”位置为止。
在一长坡道上,电池的充电状态将最终下降到等于或小于图5中“第一充电”位置,那么在图6所示逻辑的下一次循环时,逻辑流程的单元616由输出“否”退出,并进入单元620。单元620表明按一定量值减少牵引电机从牵引电池所获得的功率值,该量值取决于当前牵引电池充电状态的大小与图5中“第一充电”与“低充电”状态间的差值。例如,当前充电状态降低到图5中“第一充电”状态之下,而到达图5中“当前充电状态”的水平时,即处于“低充电状态”与“第一充电状态”之间的9/10水平处时,控制器50将把电池向牵引电机的供电功率降低到图线512所示全功率的电池所供功率分量的90%。换句话说,由于图5中所指示的“当前充电状态”是满牵引功率分量的90%是由电池输出的,电池提供给牵引电机的功率输出也减少到其功率的90%。当然,图5中的图线514部分并非必须线性倾斜,但是如果部分514至少为单调的,则控制系统可得以简化。从图6的单元620,逻辑流程进入决策单元622,在此对牵引电机的所需功率与来自辅助电力系统的功率进行比较。如果所需牵引功率超出辅助电力系统的输出,电池正在放电,那么逻辑流程由输出“是”离开决策单元622。由决策单元622的输出“是”,逻辑流程进入单元624,该单元表明将从辅助系统所得到的功率增加到其最大值。从单元624逻辑到达决策单元626,该单元626将电池当前充电状态与图5中的“低”电量位置作比较。如果充电状态低于“低”电量位置,则表明电池不应继续放电以免牵引电池损坏,逻辑流程由输出“是”离开决策单元626,进入逻辑流程的单元628,该单元表示用调节磁场定向控制(FOC)的方法将牵引电机的牵引功率限制于已知的辅助电力系统所发出的功率值,该功率值可以通过电压电流的乘积方便地得到。从单元628逻辑流程通过逻辑通路630返回单元612,以便开始另一次全部的图6所示逻辑流程的循环。如果决策单元626在判断电池的充电状态时发现当前充电值大于图5中“低”电量位置,逻辑流程由输出“否”离开单元626,并通过通路630不经过单元628直接返回单元612。这样,当牵引电池中有大量的可利用电量时,图6的逻辑控制容许对它的使用。在图6所示的整个逻辑传输过程中,如果决策单元622发现牵引功率不小于辅助动力系统发出的功率时,逻辑流程由“否”离开单元622,二通过通路630返回单元612开始另一循环;这条通路使增至最大的辅助动力系统16功率旁通。
图7a的简化图线710a、710b、710c…710n是牵引电机(或发电机)功率一速度的一组曲线。在图7a中710a、710b、710c…710n共同具有一倾斜部分712。电机或发电机的功率是扭矩与转速的乘积。相应的,在零转速时,无论扭矩为何值功率都为零。当扭矩恒定时,如图7a的712部分所示,随着速度的增加,功率在逐渐增加,直到达到转速ωbase。在ωbase之上的频率,设计上电机/发电机的功率将不能被提高,这是由于发热或其它原因。因此在最大扭矩时,电机/发电机的功率由变换器的控制逻辑所限制只能位于图线710a。如果扭矩比最大扭矩小一些,以略低于ωbase的电机转速获得最大功率,用图线710b表示。图线710c代表扭矩更小时情形,最低的图线710n代表离散量化的控制系统正常工作所允许的最小扭矩。控制系统依据转速将电机产生的扭矩限制到某一限值,以免电机以超过所希望的最大功率限制运转。所述的限制扭矩可以用最大允许功率除以当前电机转速很容易地得到,即限制扭矩=Pmax/转速。而且对扭矩的限制使得功率图线在图7a中的值不超出图线710a和712所限定的范围。如果功率被限定到低于Pmax的一更小的值,电机功率所遵循的功率图线对应于图7a中710b、710c…710n的某一条。图7b用简化单元图来说明扭矩指令与功率限定器的关系。在图7b中,扭矩控制指令被发向限制器单元714,由它来调节扭矩指令(限定的扭矩指令)的幅值,再将这些指令发往磁场定向控制(FOC)变换器58,该变换器28以一定方式将功率限制在曲线716之内。曲线716是设定或选定的功率除以电机速度所得的扭矩对应于转速的关系图线。于是,FOC变换器在考虑电机转速的前提下通过控制所需扭矩来控制电机的功率。在此讨论的扭矩可能是牵引或者驱动力矩也可能是制动或者阻力力矩。当需要对从作为发电机使用的电机输出到电池组的功率进行控制时,合适的FOC指令就会导致相应的限制条件的使用。
在图8中,所希望的扭矩值或扭矩指令从一个电气加速器(图中未示出)由通路810发往乘法器812的第一输入端口,该乘法器还从第二输入端口814获得由传感器(未示出)检测到的车速信号(或牵引电机的转速,如果车辆配备有可速传动装置)。乘法器812用电机转速与指定扭矩的乘积来生成代表应施加于牵引电机的指定功率的信号。比例环节816以常数K对所述指定功率作比例运算,如果需要的话,还可以将此信号转换成以瓦特为单位的指定牵引功率Pc的表示形式。表示所需功率的信号Pc从816环节被送往下一单元818,该单元表示将以瓦特数表示的指定功率除以牵引电池电压,从而得到牵引电机所需电流值信号(Ic=P/E)。牵引电池的电压作为牵引电机电压的指示信号是可以被接受的,因为系统中的所有电压都趋同于电池电压。代表指定电流Ic的信号由信号通道819发送到图1中指令控制器50的控制FOC变换器28及牵引电机40的部分,该部分以一定方式产生所需的电机电流。代表指定电流Ic的信号还由单元818输出口通过以单元820表示的比例环节送往误差信号发生器822单元。设置比例环节820的目的将在下文解释,但其作用结果是它将牵引电机的指令电流信号Ic转换成发电机指令电流信号IG。误差信号发生器822用发电机指令电流信号IG减去从信号通道824传来的代表检测到的内燃机/发电机系统(发电机)所输出电流的反馈值来产生误差信号。由误差信号发生器822所产生的误差信号被送往一闭环补偿滤波器,该滤波器可以是一简单积分器,产生代表辅助电力系统16指令转速,更进一步来说是柴油机转速的指令信号。柴油机18驱动发电机22来产生交变电压,由功率传输通路832输往图1中的变换器28。在图中以连线834表示的电流传感器配置连接于传功率输通路832的输出,用于检测发电机电流。由图8中的单元822、826、18、22及824一起组成了闭环反馈控制,它势必使发电机22的实际电流输出等于发送给误差发生器的由控制信号IG指定的量值。采用闭环补偿器826的目的在于,防止柴油机的转速变化过于剧烈,那样的话将出现排放及污染的增加。
如上文所述,图8中的连接关系除通过产生IC信号来控制牵引电机的电流并进而实现对车辆运动的控制之外,还通过产生信号IG来空制辅助发电机22的电流。在图8中,代表所希望的牵引电池充电状态(SOC)的信号由求和环节850的非转换输入口接收。从电池充电状态(SOC)判断单元852输出的代表当前电池充电状态的信号在求和环节850的转换输入口处被接收。输入SOC单元852的信号有电池电压、电池温度及电池电流。一般来说,电池充电状态只是电池净输出与净输入的对时间的积分和。SOC单元852将净电流以安培为量纲积分,得出以安培-小时表示的充电量。在信号通路854上求和环节850产生代表电池充电希望值与实际充电值之间差值的误差信号,以此确定电池的瞬时充电状态是不足还是过量。该误差信号被送往闭环补偿滤波器856,在此将误差信号积分得到总的误差信号,该积分后的误差信号作为时间的函数变化较慢。该误差积分信号通过限制器环节858作用于环节820。具体来说,该误差积分信号被送往比例环节820时,在此通过选择适当的比例系数,由此系数将电机指令电流IC成比例转换为发电机指令电流。限制器858的作用只在于限制从856输出的积分误差信号,使得比例环节820比例系数的范围处于零到1(整数)之内。因此,发电机指令电流IG永远不可能比牵引电机指令电流IC大,但根据限制器858对积分信号限制的比例系数,IG可以比IC小,甚至发电机指令电流IG可以小到零电流的水平。
牵引电池的理想充电状态是低于满充电状态,这样在使用动力再生制动时就不必冒由于过充电而损坏电池的危险。因此,所设定的SOC理想状态应当低于电池满充电状态。图8中的连接关系的工作原理可以这样理解:假设闭环补偿滤波器856的积分器输出的正常状态为0.5“伏特”,即处于限制器858所允许的最大1.0伏特与最小0.0伏特的中间。积分误差信号的值(由限制器858限制的)可以被看作是一个乘法因子,由它在比例环节820中对电机指令电流确定比例,于是,值为1.0的积分误差信号将允许牵引电机指令电流IC以全幅值送往误差信号发生器822,而值为0.5的积分误差信号将使得发电机指令电流IG的幅值正好是牵引电机指令电流IC的一半。在图8所示配置控制下的车辆工作过程中,当牵引电池的电量超出理想充电状态时,误差信号发生器850用代表高充电状态的一大信号值去减一相对小的设定值,由此产生一负的误差信号差值,闭环补偿滤波器856中的积分器对此信号信号差值进行积分,该信号或者差值在闭环补偿滤波器856的输出处势必使此负的净积分信号从它的“正常值” 0.5伏特“减小”或偏移,例如可能下降到0.3伏特。由于0.3伏特的积分误差信号值在限制器858的允许取值范围内,该误差信号只通过限制器858按一定方式控制比例环节820,而使牵引电机指令电流IC与0.3而不是“正常的”0.5相乘来获得发电机指令电流IG。于是,比理想设定值高的电池充电量将导致发电机平均输出的降低。同样,如果电池电量比理想设定值低,从图8中单元852由转换输入口传入误差信号发生器550的信号在量值上将小于代表理想充电状态进行积分的信号,这将导致误差信号发生器850产生一个正的瞬时误差信号。与闭环补偿滤波器856相关的积分器将此正值输入信号积分,产生一个趋于超出“正常值”0.5伏特的积分输出信号,例如是0.8伏特。由于该值仍处于限制器858可以接受的量值范围内,0.8伏的积分误差信号被不加改变地输向比例环节820,比例环节820以其作为乘法因子,与代表牵引电机电指令流IC相乘,从而使发电机指令电流IG的值比以前要大。所以牵引电池电量减低到低于设定值的某一水平时,归根结底的效果是增加了发电机22的平均功率输出,这势必提高牵引电池的充电水平。该领域技术人员理解上文中提到的积分误差信号“正常值”其实是不存在的,只是用来帮助对控制系统工作过程的理解。
根据本发明的一个方面,对至少部分牵引力来自于诸电池20的混合型电动车辆10的操纵方法(见图5和6),它包括以下步骤:在所述车辆的原形状态(加速,行驶)而不是制动状态,由一辅助动力源16给牵引电机40提供能量,而当电池20处于一第一充电状态(图5的第一充电)和满充电状态之间的充电状态时,所述电池还提供牵引动力所需能量与辅助动力源16所提供能量的差值,直到电池20的最大容量,当然所述第一充电状态小于所述满充电状态。根据本发明此方面的操作方法中,在车辆10的运行状态(加速,行驶)而不是制动状态,当电池20处于一第二充电状态(不大于图5的“低充电位置”),即基本电耗尽状态,牵引电机只由辅助动力源16提供能量。在车辆的运行状态而不是制动状态时,当所述电池处于电耗尽状态(“低充电位置”)和所述第一充电状态之间的充电状态(图5的“当前充电”)时,由辅助动力源16给牵引电机40提供能量,所述电池也以少于其全部容量的数量给牵引电机提供能量。
在本发明上述方面的一变换中,对至少部分牵引力来自于诸电池的混合型电动车辆10的操纵方法514、618,包括以下步骤:在车辆的运行状态(加速,行驶)而不是制动状态,由一辅助电力源16给牵引电机40提供能量,而当所述电池处于满充电状态与低于所述满充电状态的一第一充电状态之间的充电状态时,所述电池20提供牵引动力所需能量与辅助动力源16所提供能量的差值(“全部牵引能量”减去“发电机能量”),直到电池20的最大容量。根据本发明上述方法的其它步骤包括:(A)在车辆10的运行状态(加速,行驶)而不是制动状态,当所述电池处于一第二充电状态(不大于图5的“低充电位置”),即基本电耗尽状态,牵引电机由辅助动力源16提供能量,并且(B)在车辆的运行状态而不是制动状态,辅助动力源16提供给牵引发动机40能量,电池20也以一定数量的能量提供给牵引电机,该数量相对所述电池全部容量的比例与电池充电电量相对满充电量的比例大致相同。

Claims (2)

1、对至少部分牵引力来自于诸电池的混合型电动车辆的操纵方法,它包括以下步骤:
在所述车辆的运行状态而不是制动状态,由一辅助动力源给牵引电机提供能量,而当所述电池处于一第一充电状态与满充电状态之间的一充电状态时,所述电池也提供牵引动力所需能量与辅助动力源所提供能量的差值;
在所述车辆的运行状态而不是制动状态,当所述电池处于一第二充电状态,即基本电耗尽状态,牵引电机能量由辅助动力源提供;
在所述车辆的运行状态而不是制动状态,当所述电池处于所述电耗尽状态与所述第一充电状态之间的充电状态时,辅助动力源给牵引电机提供能量,电池也以少于其全部容量的数量给牵引电机提供能量。
2、对至少部分牵引力来自于诸电池的混合型电动车辆的操纵方法包括以下步骤:
在所述车辆的运行状态而不是制动状态,由一辅助电力源给牵引电机提供能量,而当所述电池处于满充电状态低少于所述满充电状态的一第一充电状态之间的充电状态时,所述电池也提供牵引动力所需能量与辅助动力源所提供能量的差值;
在所述车辆的运行状态而不是制动状态,当所述电池处于一第二充电状态,即基本电耗尽状态,牵引电机能量由辅助动力源提供;在所述车辆的运行状态而不是制动状态,当所述电池处于所述电耗尽状态与所述第一充电状态之间的充电状态时,辅助动力源给牵引电机提供能量,所述电池也以一定数量的能量提供给牵引电机,该数量相对所述电池全部容量的比例与电池充电电量相对满充电量的比例大致相同。
CNB981258131A 1997-11-21 1998-11-21 依电池充电状态配置牵引电机驱动的混合型电动车辆 Expired - Lifetime CN1182985C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US6673697P 1997-11-21 1997-11-21
US60/066,736 1997-11-21
US60/066736 1997-11-21
US09/044671 1998-03-20
US09/044,671 1998-03-20
US09/044,671 US5929595A (en) 1997-11-21 1998-03-20 Hybrid electric vehicle with traction motor drive allocated between battery and auxiliary source depending upon battery charge state

Publications (2)

Publication Number Publication Date
CN1226487A true CN1226487A (zh) 1999-08-25
CN1182985C CN1182985C (zh) 2005-01-05

Family

ID=26721845

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981258131A Expired - Lifetime CN1182985C (zh) 1997-11-21 1998-11-21 依电池充电状态配置牵引电机驱动的混合型电动车辆

Country Status (17)

Country Link
US (1) US5929595A (zh)
EP (1) EP0917982B1 (zh)
JP (1) JPH11243603A (zh)
KR (1) KR100568727B1 (zh)
CN (1) CN1182985C (zh)
AR (1) AR017650A1 (zh)
BR (1) BR9804725A (zh)
CA (1) CA2254028C (zh)
CZ (1) CZ378498A3 (zh)
ES (1) ES2388654T3 (zh)
ID (1) ID23060A (zh)
MY (1) MY114827A (zh)
NO (1) NO985417L (zh)
PL (1) PL329784A1 (zh)
RU (1) RU2223183C2 (zh)
TR (1) TR199802398A2 (zh)
TW (1) TW470713B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663442B (zh) * 2007-03-23 2012-02-29 株式会社小松制作所 混合动力建筑机械的发电控制方法及混合动力建筑机械
CN103358921A (zh) * 2013-07-26 2013-10-23 南车戚墅堰机车有限公司 内燃机车新型交流传动系统
CN107521488A (zh) * 2016-06-22 2017-12-29 福特全球技术公司 改善电动车辆反向驾驶能力的系统和方法
CN112172846A (zh) * 2020-10-13 2021-01-05 中车株洲电力机车有限公司 一种机车降级运行控制方法与控制装置及机车
CN114572012A (zh) * 2020-12-02 2022-06-03 通用汽车环球科技运作有限责任公司 具有使用扩展逆变器限制的最大性能模式控制策略的电气化动力总成
CN114221432B (zh) * 2021-12-16 2024-01-23 上海振华重工(集团)股份有限公司 一种起重机多能源供电系统及其控制方法

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847189B2 (en) * 1995-05-31 2005-01-25 The Regents Of The University Of California Method for controlling the operating characteristics of a hybrid electric vehicle
US6107691A (en) * 1995-11-14 2000-08-22 Grow International Corp. Methods for utilizing the electrical and non electrical outputs of fuel cell powered vehicles
KR100258043B1 (ko) * 1997-10-27 2000-06-01 에릭 발리베 복합전기자동차용 보조동력장치의 제어시스템
FR2782680B1 (fr) * 1998-08-28 2000-11-17 Alstom Technology Systeme d'alimentation d'un vehicule a traction electrique
US5998885A (en) * 1998-09-21 1999-12-07 Ford Global Technologies, Inc. Propulsion system for a motor vehicle using a bidirectional energy converter
US6766874B2 (en) * 1998-09-29 2004-07-27 Hitachi, Ltd. System for driving hybrid vehicle, method thereof and electric power supply system therefor
JP3536703B2 (ja) 1999-02-09 2004-06-14 株式会社日立製作所 ハイブリッド車両の制御方法、ハイブリッド車両の制御装置およびハイブリッド車両
US6672415B1 (en) * 1999-05-26 2004-01-06 Toyota Jidosha Kabushiki Kaisha Moving object with fuel cells incorporated therein and method of controlling the same
US6362535B1 (en) 1999-08-11 2002-03-26 Bae Systems Method and apparatus for after-treatment of hev exhaust
CA2347666C (en) * 1999-08-27 2006-03-14 Yamaha Hatsudoki Kabushiki Kaisha Hybrid-driven device
US6239502B1 (en) * 1999-11-22 2001-05-29 Bae Systems Controls Phase change assisted heat sink
US7004273B1 (en) * 2000-04-26 2006-02-28 Robert Gruenwald Hybrid electric vehicle
US7252165B1 (en) * 2000-04-26 2007-08-07 Bowling Green State University Hybrid electric vehicle
US6769240B2 (en) * 2000-05-19 2004-08-03 Fortafil Fibers, Inc. Method and apparatus for removing broken filaments
US6441574B1 (en) * 2000-10-27 2002-08-27 Ford Motor Company Energy control strategy for a hybrid electric vehicle
ATE472841T1 (de) * 2001-01-03 2010-07-15 Univ California Verfahren zur steuerung der betriebseigenschaften eines hybriden elektrischen fahrzeugs
US6580977B2 (en) * 2001-01-16 2003-06-17 Ford Global Technologies, Llc High efficiency fuel cell and battery for a hybrid powertrain
US6455947B1 (en) 2001-02-14 2002-09-24 Bae Systems Controls, Inc. Power combining apparatus for hybrid electric vehicle
US20030070850A1 (en) * 2001-02-16 2003-04-17 Cellex Power Products, Inc. Hybrid power supply apparatus for battery replacement applications
JP3876729B2 (ja) * 2001-03-08 2007-02-07 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両駆動制御装置、ハイブリッド型車両駆動装置の制御方法及びそのプログラム
US7448328B2 (en) * 2001-03-27 2008-11-11 General Electric Company Hybrid energy off highway vehicle electric power storage system and method
US20060005736A1 (en) * 2001-03-27 2006-01-12 General Electric Company Hybrid energy off highway vehicle electric power management system and method
US6612246B2 (en) 2001-03-27 2003-09-02 General Electric Company Hybrid energy locomotive system and method
US6612245B2 (en) * 2001-03-27 2003-09-02 General Electric Company Locomotive energy tender
US9193268B2 (en) 2001-03-27 2015-11-24 General Electric Company Hybrid energy power management system and method
US6615118B2 (en) * 2001-03-27 2003-09-02 General Electric Company Hybrid energy power management system and method
US9151232B2 (en) 2001-03-27 2015-10-06 General Electric Company Control system and method
US6973880B2 (en) 2001-03-27 2005-12-13 General Electric Company Hybrid energy off highway vehicle electric power storage system and method
US6591758B2 (en) 2001-03-27 2003-07-15 General Electric Company Hybrid energy locomotive electrical power storage system
US7231877B2 (en) * 2001-03-27 2007-06-19 General Electric Company Multimode hybrid energy railway vehicle system and method
US7430967B2 (en) * 2001-03-27 2008-10-07 General Electric Company Multimode hybrid energy railway vehicle system and method
US6649290B2 (en) 2001-05-11 2003-11-18 Cellex Power Products, Inc. Fuel cell thermal management system and method
US6559621B2 (en) 2001-05-21 2003-05-06 Cellex Power Products, Inc. Hybrid energy storage device charge equalization system and method
US6534950B2 (en) 2001-05-25 2003-03-18 Cellex Power Products, Inc. Hybrid power supply control system and method
US7147072B2 (en) * 2003-04-24 2006-12-12 Delphi Technologies, Inc. Method and apparatus for providing hybrid power in vehicle
US7061131B2 (en) * 2003-06-13 2006-06-13 General Electric Company Method and system for optimizing energy storage in hybrid off-highway vehicle systems and trolley connected OHV systems
DE10331084A1 (de) * 2003-07-09 2005-03-24 Aloys Wobben Kraftfahrzeug
DE10346213A1 (de) * 2003-10-06 2005-04-21 Bosch Gmbh Robert Verfahren zur Regelung des Ladezustands eines Energiespeichers bei einem Fahrzeug mit Hybridantrieb
US7190133B2 (en) * 2004-06-28 2007-03-13 General Electric Company Energy storage system and method for hybrid propulsion
KR100904258B1 (ko) 2004-07-12 2009-06-25 도요타 지도샤(주) 동력출력장치, 동력출력장치를 탑재한 차량 및 동력출력장치의 제어방법
DE102005016300A1 (de) * 2005-04-08 2006-10-12 Proton Motor Fuel Cell Gmbh Antriebssystem und Verfahren zum Betrieb eines Antriebssystems für ein elektrisch betriebenes Fahrzeug
US20070087232A1 (en) * 2005-10-18 2007-04-19 Robin Curtis M Capacitor hybrid fuel cell power generator
US20070087241A1 (en) * 2005-10-18 2007-04-19 General Hydrogen Corporation Fuel cell power pack
US20070087239A1 (en) * 2005-10-18 2007-04-19 General Hydrogen Corporation Fuel cell fluid management system
JP4539531B2 (ja) * 2005-10-26 2010-09-08 トヨタ自動車株式会社 車両の駆動装置
CN101405154B (zh) * 2006-03-22 2011-05-25 丰田自动车株式会社 车辆悬架系统
JP4491434B2 (ja) * 2006-05-29 2010-06-30 トヨタ自動車株式会社 電力制御装置およびそれを備えた車両
JP4179351B2 (ja) * 2006-07-07 2008-11-12 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、電源システムの制御方法、ならびに電源システムの制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4155321B2 (ja) 2006-09-25 2008-09-24 トヨタ自動車株式会社 ハイブリッド車両の表示装置、ハイブリッド車両、およびハイブリッド車両の表示方法
US7831343B2 (en) * 2006-11-03 2010-11-09 Gm Global Technology Operations, Inc. Efficiency optimized hybrid operation strategy
JP4251210B2 (ja) * 2006-11-07 2009-04-08 トヨタ自動車株式会社 ハイブリッド車両の表示装置
JP4208006B2 (ja) * 2006-11-08 2009-01-14 トヨタ自動車株式会社 電動車両
HU226986B1 (en) * 2006-12-07 2010-04-28 Laszlo Glocz Method and control unit for equipment using electrical energy
JP4513812B2 (ja) * 2007-01-04 2010-07-28 トヨタ自動車株式会社 車両の電源装置および車両
WO2009007879A2 (en) * 2007-07-06 2009-01-15 Liviu Grigorian Giurca Hybrid transport system
JP4527138B2 (ja) 2007-07-12 2010-08-18 本田技研工業株式会社 ハイブリッド車両の制御装置
FR2921884A1 (fr) * 2007-10-03 2009-04-10 Peugeot Citroen Automobiles Sa Procede de pilotage d'une chaine de traction hybride base sur l'etat de charge de la batterie.
RU2448329C1 (ru) * 2007-10-16 2012-04-20 Тойота Дзидося Кабусики Кайся Индикаторное устройство для гибридного транспортного средства
US8135532B2 (en) * 2007-11-04 2012-03-13 GM Global Technology Operations LLC Method for controlling output power of an energy storage device in a powertrain system
US7932633B2 (en) 2008-10-22 2011-04-26 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
US8080973B2 (en) 2008-10-22 2011-12-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
FR2941424B1 (fr) * 2009-01-28 2012-08-17 Renault Sas Systeme et procede de gestion d'un prolongateur d'autonomie d'un vehicule electrique
JP5338479B2 (ja) * 2009-05-25 2013-11-13 コベルコ建機株式会社 ハイブリッド作業機械
JP4852630B2 (ja) * 2009-06-25 2012-01-11 本田技研工業株式会社 バッテリ充放電制御装置
DE102009035139A1 (de) * 2009-07-29 2011-02-03 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Anzeige von Fahrzuständen eines Hybridfahrzeuges
CN102574456B (zh) * 2009-10-05 2015-01-28 本田技研工业株式会社 车辆用驱动装置
TWI461312B (zh) 2009-12-02 2014-11-21 Ind Tech Res Inst 充電/啟動系統與應用之電動車輛
EP2512517B1 (de) 2009-12-18 2014-01-15 Basf Se Hyperverzweigte polyester mit hydrophobem kern zur solubilisierung schwerlöslicher wirkstoffe
US8783396B2 (en) * 2010-01-21 2014-07-22 Epower Engine Systems, Llc Hydrocarbon fueled-electric series hybrid propulsion systems
US20110193518A1 (en) * 2010-02-10 2011-08-11 James Wright Battery override
US8786418B2 (en) * 2010-03-17 2014-07-22 Ford Global Technologies, Llc Ambient lighting to reflect changes in vehicle operating parameters
US8602141B2 (en) 2010-04-05 2013-12-10 Daimler Trucks North America Llc Vehicle power system with fuel cell auxiliary power unit (APU)
US8378623B2 (en) 2010-11-05 2013-02-19 General Electric Company Apparatus and method for charging an electric vehicle
US9290097B2 (en) 2010-11-05 2016-03-22 Robert Louis Steigerwald Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
JP5476327B2 (ja) * 2011-03-09 2014-04-23 株式会社日立製作所 ディーゼル動車駆動装置の制御システム
CN103858272B (zh) * 2011-07-26 2017-07-07 睿能创意公司 用于电动马达驱动车辆的组件的热管理
US8994327B2 (en) 2011-08-24 2015-03-31 General Electric Company Apparatus and method for charging an electric vehicle
WO2013084273A1 (ja) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 内燃機関
WO2013154207A1 (en) * 2012-04-11 2013-10-17 Honda Motor Co., Ltd. Electric power generation control system for hybrid automobile
JP6015910B2 (ja) * 2012-09-03 2016-10-26 スズキ株式会社 車両用充電装置
DE102013226439A1 (de) * 2013-12-18 2015-06-18 Robert Bosch Gmbh Verfahren zur Steuerung einer Endstufe eines elektrischen Verbrauchers eines Kraftfahrzeugs
JP6344345B2 (ja) * 2015-09-11 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両
JP6254139B2 (ja) * 2015-11-28 2017-12-27 本田技研工業株式会社 電力供給システム及び輸送機器、並びに、電力伝送方法
WO2019213363A1 (en) * 2018-05-04 2019-11-07 Hybrid Kinetic Motors Corporation Method for controlling range-extended electric vehicles having lithium titanate oxide (lto) battery with super high charge and discharge rates
CN109515215A (zh) * 2018-11-09 2019-03-26 广西玉柴机器股份有限公司 增程器系统
CN109435709A (zh) * 2018-11-30 2019-03-08 贵州长江汽车有限公司 一种电动汽车的增程装置及调控方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451980B (sv) * 1980-08-14 1987-11-09 Atlas Copco Ab Batteridrivet fordon med en chopperkontroll for styrning av akmotorns varvtal och laddning av battteriet fran yttre stromkella
JP3044880B2 (ja) * 1991-11-22 2000-05-22 トヨタ自動車株式会社 シリーズハイブリッド車の駆動制御装置
JP3094745B2 (ja) * 1993-09-24 2000-10-03 トヨタ自動車株式会社 ハイブリッド車の発電制御装置
US5345761A (en) * 1993-12-02 1994-09-13 Ford Motor Company Energy management system for hybrid vehicle
FR2743342B1 (fr) * 1996-01-05 1998-02-13 Smh Management Services Ag Procede et dispositif pour regler la repartition de la puissance electrique dans un vehicule automobile, notamment la propulsion hybride
JPH10227238A (ja) * 1997-02-13 1998-08-25 Nissan Motor Co Ltd 車両の電気エネルギ供給装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663442B (zh) * 2007-03-23 2012-02-29 株式会社小松制作所 混合动力建筑机械的发电控制方法及混合动力建筑机械
CN103358921A (zh) * 2013-07-26 2013-10-23 南车戚墅堰机车有限公司 内燃机车新型交流传动系统
CN107521488A (zh) * 2016-06-22 2017-12-29 福特全球技术公司 改善电动车辆反向驾驶能力的系统和方法
CN107521488B (zh) * 2016-06-22 2022-07-26 福特全球技术公司 改善电动车辆反向驾驶能力的系统和方法
CN112172846A (zh) * 2020-10-13 2021-01-05 中车株洲电力机车有限公司 一种机车降级运行控制方法与控制装置及机车
CN114572012A (zh) * 2020-12-02 2022-06-03 通用汽车环球科技运作有限责任公司 具有使用扩展逆变器限制的最大性能模式控制策略的电气化动力总成
CN114221432B (zh) * 2021-12-16 2024-01-23 上海振华重工(集团)股份有限公司 一种起重机多能源供电系统及其控制方法

Also Published As

Publication number Publication date
ES2388654T3 (es) 2012-10-17
ID23060A (id) 2000-01-20
CA2254028A1 (en) 1999-05-21
CA2254028C (en) 2006-03-28
KR100568727B1 (ko) 2006-09-20
BR9804725A (pt) 2001-03-20
KR19990045484A (ko) 1999-06-25
TR199802398A3 (tr) 1999-06-21
CN1182985C (zh) 2005-01-05
TW470713B (en) 2002-01-01
CZ378498A3 (cs) 1999-11-17
NO985417D0 (no) 1998-11-20
EP0917982A1 (en) 1999-05-26
PL329784A1 (en) 1999-05-24
NO985417L (no) 1999-05-25
TR199802398A2 (xx) 1999-06-21
MY114827A (en) 2003-01-31
AR017650A1 (es) 2001-09-12
RU2223183C2 (ru) 2004-02-10
US5929595A (en) 1999-07-27
JPH11243603A (ja) 1999-09-07
EP0917982B1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
CN1182985C (zh) 依电池充电状态配置牵引电机驱动的混合型电动车辆
CN1146510C (zh) 为混合型电动车辆中的电池在再生期间充电的方法
JP5606700B2 (ja) 回生制動時のバッテリーへの補助電力を減少させたハイブリッド電気自動車
CN1191947C (zh) 带有取决于电池充电状态的可变效率的回收制动的电动车辆
CN102015353B (zh) 多发动机混合型机车
JP2007097305A (ja) 車両及びその車両を複数有する編成車両
JPH0767394A (ja) ハイブリッドパワーユニット
MXPA98009728A (en) Hybrid electric vehicle with reduced auxiliary power to batteries during regenerative braking
MXPA98009714A (en) Electric vehicle with battery regeneration dependant on battery charge state
MXPA98009726A (en) Hybrid electric vehicle with traction motor drive allocated between battery and auxiliary source depending upon battery charge state

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BAE SYSTEMS CONTROL LTD.

Free format text: FORMER OWNER: LOCKHEAD MARTIN CO.

Effective date: 20020130

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20020130

Address after: American New York

Applicant after: BAE System Control Co., Ltd.

Address before: American Maryland

Applicant before: Lockheed Corporation

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050105