CN1215973C - 富勒烯类纳米管的电化学制备方法 - Google Patents

富勒烯类纳米管的电化学制备方法 Download PDF

Info

Publication number
CN1215973C
CN1215973C CN 02150518 CN02150518A CN1215973C CN 1215973 C CN1215973 C CN 1215973C CN 02150518 CN02150518 CN 02150518 CN 02150518 A CN02150518 A CN 02150518A CN 1215973 C CN1215973 C CN 1215973C
Authority
CN
China
Prior art keywords
fullerene
nanotube
electrode
soccerballene
electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 02150518
Other languages
English (en)
Other versions
CN1500717A (zh
Inventor
白春礼
郭玉国
万立骏
商广义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN 02150518 priority Critical patent/CN1215973C/zh
Publication of CN1500717A publication Critical patent/CN1500717A/zh
Application granted granted Critical
Publication of CN1215973C publication Critical patent/CN1215973C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

富勒烯类纳米管的电化学制备方法主要是:首先把富勒烯类物质的甲苯溶液加入到一定比例的乙腈溶液中,在恒定电场的作用下,形成带有负电荷的聚集体,然后利用电化学方法,使该聚集体沉积到多孔模板的纳米孔洞中,从而形成富勒烯类纳米管。通过调控电化学参数可得到结构可控的实壁纳米管和多孔壁纳米管。纳米结构的直径可由所用多孔模板的孔径进行调控,晶体结构可通过退火得到改善。利用本发明不仅可以制备结构和尺寸可控的富勒烯类纳米管,而且可得到高度有序的阵列。

Description

富勒烯类纳米管的电化学制备方法
技术领域
本发明涉及富勒烯类纳米管的制备,特别是涉及高度有序、直径可控的富勒烯类物质的实壁纳米管及多孔壁纳米管阵列的电化学制备方法。
背景技术
自从发现富勒烯C60及成功实现其宏观量合成以来,成千上万种富勒烯、富勒烯类衍生物、内嵌型富勒烯及内嵌型富勒烯衍生物得以合成和广泛的研究。这类物质是一类重要的功能材料,它们的光物理、导电性、光导性和光限行为都已引起科学家们的极大兴趣。不论是从基础研究还是从应用的观点来说,把它们组装成结构、尺寸及组成明确可控的有序结构是必需的。虽然目前关于碳纳米管的研究已有许多,许多制备方法也已开发出来,但合成结构完全可控的单壁或多壁碳纳米管仍然存在很多困难。因此,开发富勒烯类物质可控一维纳米结构阵列的制备技术有着重要的意义。
一维纳米材料(纳米管、纳米线及纳米带等),是指直径处于纳米尺度(1-100nm),而长度可达微米量级或更长的线性纳米材料。一维纳米材料是可用于有效的电子输运和光学激发的最小的维数结构体系。它不仅在电子、光学、磁学、力学、催化、传感器等方面有巨大的潜在应用前景,而且由于其独特的性质而对化学、物理学、电子学、光学、材料科学以及生物科学等领域的基础研究有着深远意义。近年来,该方面的研究已成为材料研究领域的一个热点。
与化学气相沉积、激光烧蚀等方法相比,电化学模板法是一种制备一维纳米结构材料的简单有效的方法。它不但具有装置简单和生长速度快的优点,而且通过选择模板及电化学因素调控可灵活地得到所希望的特定一维纳米结构材料。目前,利用该法已制备出了贵金属Au、Pt、Ag,磁性金属Ni、Fe、Co,层状磁性金属Co/Cu,半导体CdS、Se、Te、GaSb、Bi2Te3、CdSe、CdSxSe1-x、ZnxCd1-xS、GaAs、MnO2的纳米线,聚合物聚苯乙烯、聚甲基丙烯酸甲酯、聚偏氟乙烯、对聚苯氧,导电高分子聚苯胺、聚3-甲基噻吩、聚乙炔,无机单质C的纳米管和纳米线、以及同轴C/PAN/Au、Au/PPO/PPy、TiS2/Au、PPy/LiMn2O4、TiO2/PPy、PS/PPy的复合纳米管或纳米线等一维纳米结构材料。但是,利用电化学模板法制备富勒烯类纳米管及其阵列,还未见报道。
发明内容
本发明的目的在于提供一种简单易行,便于在普通实验条件下制备高度有序、尺寸可控、结构可控的富勒烯类纳米管的电化学制备方法。
为实现上述目的,本发明主要是按照下述步骤实现富勒烯类纳米管及其阵列的制备:
在非导电的纳米多孔模板一侧镀一层数百纳米厚的导电层形成电极,将该电极固定在导电基座上,模板的另一侧面暴露于电解液中,形成工作电极;
用另一导电材料为对电极;
将工作电极和对电极中间用聚四氟乙烯或玻璃隔离后放入由聚四氟乙烯或玻璃制成的电解池中;
把富勒烯类物质的甲苯溶液加入到1-15倍体积的乙腈溶液中,在恒定电场作用下,形成带有负电荷的富勒烯聚集体的电解液;调整富勒烯的最终浓度为10-50μM;
把该电解液转移到电解池中,在20-400V下进行恒电压沉积,模板电极作阳极,沉积时间为1-30min;使富勒烯聚集体沉积到多孔模板的纳米孔洞中,从而形成结构可控的实壁纳米管和多孔壁纳米管的阵列;
将工作电极从电解池中取出,用乙腈冲洗后干燥。
所述导电基座和对电极为导电的金属、无机或有机材料。
所述富勒烯类物质包括富勒烯、富勒烯类衍生物、内嵌型富勒烯或内嵌型富勒烯衍生物。
所述富勒烯类纳米管包括以富勒烯类物质为反应物之一的通过电化学方法,以多孔模板为依托而制备的实壁纳米管、多孔壁纳米管、复合纳米管、纳米结构或纳米器件。
所述多孔模板上的导电镀层为金属材料,并采用真空蒸镀或溅射的方法。
所述富勒烯类纳米管的晶体结构及性能通过退火得以改善。
本发明具有以下特点:
1、本发明利用直流电场下,富勒烯类物质在甲苯和乙腈混合溶剂中会形成带有负电荷的聚集体的特点,采用电化学方法,在室温下使这些聚集体沉积到纳米模板孔洞中,因而具有简单经济,能耗低,操作方便,可调控范围大的优点。
2、富勒烯类纳米管的类型由电化学参数决定。因此,利用本发明通过调节沉积电压、沉积时间及电解液浓度可方便地得到结构明确可控的实壁纳米管和多孔壁纳米管等。
3、富勒烯类纳米管的直径由模板的孔径决定。因此,利用本发明可制得直径在较大范围内都可调控的富勒烯类纳米管。
4、选用孔道孔径均一、规则排列的材料作模板,则可制备出直径均匀、高度有序的纳米管阵列,为构建纳米器件奠定了基础。
附图说明
下面结合附图对本发明作进一步说明,其中:
图1为本发明的装置示意图;
图2为本发明富勒烯类纳米管的生长示意图;
图3为本发明实施例所用富勒烯类物质的结构式;
图4为本发明实施例一制备的富勒烯类实壁纳米管阵列的SEM照片;
图5为本发明实施例二制备的富勒烯类多孔壁纳米管阵列的SEM照片。
具体实施方式
如图1所示,把富勒烯类物质的电解液2转移到由聚四氟乙烯制成的电解池1中,电解液的溶剂为甲苯/乙腈=1/1~15体积比;4为对电极(负极);工作电极为固定在导电基底上的模板电极6;用聚四氟乙烯隔板3隔离开两电极,恒压电源5给电极两端施加20~400V时,带负电荷的富勒烯类物质的聚集体在电场作用下沉积到纳米模板孔洞中,形成纳米管,如图2所示;沉积时间为1~30min;沉积完毕后,将工作电极从电解池中取出,用大量的乙腈冲洗数次,然后,自然干燥;即制成与模板孔道一致的一维纳米结构。
实施例一:
首先在孔径为200nm,厚为60μm的多孔阳极氧化铝模板的一面真空蒸镀上一层Ag作为电极,厚度约有300纳米;然后将该模板的镀Ag电极固定在导电玻璃表面上,模板的另一面暴露于电解液中,形成工作电极;对电极采用铂片;电解池由聚四氟乙烯或玻璃制成,容积约为10ml,中间用聚四氟乙烯或玻璃的阻隔物隔离阳极与阴极。
取一富勒烯类衍生物C60-COOH(结构式见图3)的甲苯溶液加入到4倍体积的乙腈中,调整电解液的最终浓度为26μM。沉积前,把该电解液转移到电解池中,在65V下进行恒电压沉积,模板电极作阳极,沉积时间为3min。沉积完毕后,将工作电极从电解池中取出,用大量的乙腈冲洗数次,然后,自然干燥。根据需要多孔阳极氧化铝模板可用2M的NaOH溶液除去。
图4为所得C60-COOH实壁纳米管阵列的高倍和低倍SEM照片。可以看出这些开口的纳米管直径均匀、管壁密实地排列在一起。外径约200nm,与所用模板的孔径一致。壁厚约50nm,长度达数微米以上。
实施例二:
所用模板电极及富勒烯类物质与实施例一相同。取C60-COOH的甲苯溶液加入到3倍体积的乙腈中,调整电解液的最终浓度为20μM。沉积前,把该电解液转移到电解池中,在45V下进行恒电压沉积,模板电极作阳极,沉积时间为1min。沉积完毕后,将工作电极从电解池中取出,用大量的乙腈冲洗数次,然后,自然干燥。根据需要多孔阳极氧化铝模板可用2M的NaOH溶液除去。
图5为所得C60-COOH多孔壁纳米管阵列的俯视和侧视SEM照片。从俯视图中可以看出我们得到的纳米管外径约200nm,壁厚约40nm纳米,平行地排列在一起。从侧视图中可以看出,这些纳米管的管壁是由许多C60-COOH的聚集体组成的。这些聚集体比较疏松地连在一起形成多孔的管壁。由于其独特的结构,这些多孔纳米管在气体、化学和生物传感器方面有广阔的应用前景。
需要说明的是,上述实施例只是用来说明本发明的技术特征,不是用来限定本发明的专利申请范围,比如本实施例中的多孔阳极氧化铝模板也可采用聚合物过滤膜等但其原理仍属本发明的专利申请范畴。

Claims (6)

1、富勒烯类纳米管的电化学制备方法,其步骤为:
在非导电的纳米多孔模板一侧镀一层数百纳米厚的导电层形成电极,将该电极固定在导电基座上,模板的另一侧面暴露于电解液中,形成工作电极;
用另一导电材料为对电极;
将工作电极和对电极中间用聚四氟乙烯或玻璃隔离后放入由聚四氟乙烯或玻璃制成的电解池中;
把富勒烯类物质的甲苯溶液加入到1-15倍体积的乙腈溶液中,在恒定电场作用下,形成带有负电荷的富勒烯聚集体的电解液;调整富勒烯的最终浓度为10-50μM;
把该电解液转移到电解池中,在20-400V下进行恒电压沉积,模板电极作阳极,沉积时间为1-30min;使富勒烯聚集体沉积到多孔模板的纳米孔洞中,从而形成结构可控的实壁纳米管和多孔壁纳米管的阵列;
将工作电极从电解池中取出,用乙腈冲洗后干燥。
2、根据权利要求1所述的富勒烯类纳米管的电化学制备方法,其特征在于,所述导电基座和对电极为导电的金属、无机或有机材料。
3、根据权利要求1所述的富勒烯类纳米管的电化学制备方法,其特征在于,所述富勒烯类物质包括富勒烯、富勒烯类衍生物、内嵌型富勒烯或内嵌型富勒烯衍生物。
4、根据权利要求1所述的富勒烯类纳米管的电化学制备方法,其特征在于,所述富勒烯类纳米管包括以富勒烯类物质为反应物之一的通过电化学方法,以多孔模板为依托而制备的实壁纳米管、多孔壁纳米管、复合纳米管、纳米结构或纳米器件。
5、根据权利要求1所述的富勒烯类纳米管的电化学制备方法,其特征在于,所述多孔模板上的导电镀层为金属材料,并采用真空蒸镀或溅射的方法。
6、根据权利要求1所述的富勒烯类纳米管的电化学制备方法,其特征在于,所述富勒烯类纳米管的晶体结构及性能通过退火得以改善。
CN 02150518 2002-11-12 2002-11-12 富勒烯类纳米管的电化学制备方法 Expired - Fee Related CN1215973C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02150518 CN1215973C (zh) 2002-11-12 2002-11-12 富勒烯类纳米管的电化学制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02150518 CN1215973C (zh) 2002-11-12 2002-11-12 富勒烯类纳米管的电化学制备方法

Publications (2)

Publication Number Publication Date
CN1500717A CN1500717A (zh) 2004-06-02
CN1215973C true CN1215973C (zh) 2005-08-24

Family

ID=34233981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02150518 Expired - Fee Related CN1215973C (zh) 2002-11-12 2002-11-12 富勒烯类纳米管的电化学制备方法

Country Status (1)

Country Link
CN (1) CN1215973C (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313516C (zh) * 2005-03-31 2007-05-02 上海交通大学 一种交联聚膦腈纳米管及其制备方法
CN101550591B (zh) * 2009-04-01 2012-07-25 吉林大学 单分散的c70纳米单晶材料及其制备方法
CN103382567B (zh) * 2013-06-24 2015-10-28 西安近代化学研究所 一种表面修饰叠氮基的碳纳米管及其制备方法
CN104569103B (zh) * 2014-04-10 2018-05-18 中国科学院烟台海岸带研究所 一种固体接触式聚合物膜铅离子选择性电极及其应用
CN110003492A (zh) * 2019-05-20 2019-07-12 陕西师范大学 一种利用分子模板制备富勒烯超分子框架材料的方法以及一种富勒烯超分子框架材料

Also Published As

Publication number Publication date
CN1500717A (zh) 2004-06-02

Similar Documents

Publication Publication Date Title
Yang et al. Diamond electrochemistry at the nanoscale: A review
Li et al. Conducting polymer nanomaterials: electrosynthesis and applications
US7014743B2 (en) Methods for assembly and sorting of nanostructure-containing materials and related articles
US8002958B2 (en) Deposition method for nanostructure materials
JP5663164B2 (ja) 広い表面積接触用途のための高度に接触可能なナノチューブ電極
Guo et al. Well‐Defined Fullerene Nanowire Arrays
CN101348931A (zh) 一种脉冲电沉积制备均匀透明氧化锌纳米棒阵列薄膜的方法
Pruna et al. Effect of ZnO core electrodeposition conditions on electrochemical and photocatalytic properties of polypyrrole-graphene oxide shelled nanoarrays
JP2014507551A (ja) 基板上のナノ粒子堆積方法、及び高エネルギー密度素子製作
Lipson et al. Conductive scanning probe characterization and nanopatterning of electronic and energy materials
KR100939021B1 (ko) 나노입자가 포함된 고분자 나노로드 및 그 제조방법
Wang et al. Electrochemical composite deposition of porous cactus-like manganese oxide/reduced graphene oxide–carbon nanotube hybrids for high-power asymmetric supercapacitors
Sajedi-Moghaddam et al. Inkjet printing of MnO2 nanoflowers on surface-modified A4 paper for flexible all-solid-state microsupercapacitors
CN1215973C (zh) 富勒烯类纳米管的电化学制备方法
Xie et al. High capacitance properties of electrodeposited PANI-Ag nanocable arrays
CN112481660A (zh) 一种有序金属纳米线阵列的制备方法
CN108232204A (zh) 一种硅基有序化电极及其制备方法和应用
CN1195103C (zh) 富勒烯类纳米线阵列的电化学制备技术
Ghenescu et al. Electrical properties of electrodeposited CdS nanowires
Lee et al. Density-controlled growth and field emission property of aligned ZnO nanorod arrays
Virk Fabrication and characterization of copper nanowires
KR102248780B1 (ko) 산화니켈-탄소나노튜브 나노복합체를 포함하는 태양전지용 정공수송층 조성물 및 이를 포함하는 태양전지
KR101598583B1 (ko) 다공성 금속전극의 제조방법, 이에 따라 제조되는 다공성 금속전극 및 이를 포함하는 슈퍼 커패시터
KR20160124399A (ko) 고전도성 2차원 폴리아닐린 나노시트 및 그 제조 방법
Hernández et al. Functionalized nanofibers for the photonics, optoelectronics, and microelectronic device applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050824

Termination date: 20101112