CN1212734A - 改进雾气和雾气流性质的雾化前体沉积设备和方法 - Google Patents

改进雾气和雾气流性质的雾化前体沉积设备和方法 Download PDF

Info

Publication number
CN1212734A
CN1212734A CN97192815A CN97192815A CN1212734A CN 1212734 A CN1212734 A CN 1212734A CN 97192815 A CN97192815 A CN 97192815A CN 97192815 A CN97192815 A CN 97192815A CN 1212734 A CN1212734 A CN 1212734A
Authority
CN
China
Prior art keywords
substrate
mist
deposition chamber
precursor
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97192815A
Other languages
English (en)
Inventor
林慎一郎
拉里·D·麦克米伦
吾妻正道
卡洛斯·A·帕兹德阿劳霍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industries
Symetrix Corp
Original Assignee
Panasonic Industries
Symetrix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Industries, Symetrix Corp filed Critical Panasonic Industries
Publication of CN1212734A publication Critical patent/CN1212734A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0493Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/062Pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4558Perforated rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1287Process of deposition of the inorganic material with flow inducing means, e.g. ultrasonic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemically Coating (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

一个基体(5)位于沉积室(2)中,该基体确定了基体平面。一个阻隔板(6)置于基体之上,与基体相互隔开并平行,在与所说基体平行的平面上的所说阻隔板的面积与在所说基本平面上的所说基体的面积基本相同。阻隔板的平整度的容许偏差为所说阻隔板和所说基体之间平均距离的5%。产生一种雾气(66),使其在一缓冲室(42)中沉降,通过1微米的过滤器(33)过滤,流入基体与阻隔板之间的沉积室中以在基体上沉积一液体层。该液体经干燥在基体上形成一固体物质的薄膜(1130),后者随后被加入到集成电路(1110)的一个电子元件(1112)中。

Description

改进雾气和雾气流性质的雾化前体沉积设备和方法
发明背景1、发明领域
本发明涉及制备作为集成电路中电子元件的组成部分的配位化合物薄膜的设备,更具体地,涉及从雾化液态前体形成这种薄膜的设备。2、相关技术
众所周知,集成电路中的电子元件是由被导线层相连接和被绝缘层相隔绝的多层薄膜构成的。有些简单的物质和化合物,例如硅玻璃,是采用液体沉积工艺形成的;而薄膜配位化合物,即含有两个以上成分的化合物,在现有工艺中通常是采用例如真空喷镀(即电子束,D.C.,R.F.,离子束等),激光切割,反应性化学蒸气沉积,包括金属有机化学蒸气沉积(MOCVD),以及采用溶胶-凝胶(醇盐)或羧酸盐的液态加工方法而形成的。但是,这些已知的方法都不能够制备可用于集成电路的性能优良的金属氧化物。除喷镀法外,在所有其它的现有工艺方法中所形成的薄膜均有明显的物理缺陷,如开裂、剥离等。利用现有的工艺方法,特别是喷镀法,无法可靠地重复地制备出在集成电路所要求的误差限度内的特定化学计量比的金属氧化物。有些方法还具有危险性和毒性,例如化学蒸气沉积法。大多数工艺需要在高温下实施,这对集成电路是有害的,而且使被覆基体的“逐层覆膜”的效果很差;也就是说,现有技术的工艺会在基体上的任意非连续区域的边界上造成膜沉积的相对过多的堆积。现有技术的液体沉积工艺无法精确地控制厚度以达到集成电路的制造要求。因此,到目前为止金属氧化物和其它复合物质尚未在集成电路中获得应用,除一两个特殊的成本相对较高的应用外,例如铁电性集成电路中喷镀的锆钛酸铅(PZT)的应用,但其使用寿命预期不长。
发明概述
本申请的在先申请叙述了一种雾化沉积工艺及设备,它克服了现有工艺中复合化合物薄膜沉积的许多问题和不足,通过提供一种具有生产价值的、能够方便和经济地制备从几个埃到几个微米厚度的各种复合材料尤其是金属氧化物的薄膜的工艺来满足该行业的巨大需求。
上述在先申请叙述了一种方法及设备,其中一种液态前体被雾化,然后流经位于沉积室的一个基体和一阻隔板之间,液体沉积于所述基体之上。它公开了紧邻并沿着所说基体的一侧的周边分布的,用以将雾气注射入所说沉积室的一个注射组件,和紧邻所说基体的另一侧并沿其周边分布的,用以将雾气从所说沉积室排出的一个排气组件,这种装置可实现雾气流在基体上的均匀分布。基体、阻隔板、注射喷嘴组件线以及排气组件总和起来在所说的沉积室中构成一个半封闭的空间。
本发明提供一种使雾气自身和基体之上的雾气流的性质得以提高的雾化沉积设备和方法。
本发明通过使阻隔板具有与基体基本上相同的面积的手段来改进前述的雾化沉积设备。这里,面积基本相同是指在基体的平面上阻隔板的面积与基体的面积相差仅为10%或更低。阻隔板的平整度的容许偏差为所说阻隔板和所说基体之间平均距离的5%。与采用面积和误差不在这些参数之内的阻隔板时得到的沉积膜相比。本发明的沉积膜具有更好的厚度均匀性。
本发明也通过设置一过滤装置使雾气在沉积之前经其过滤并调整方向来改进前述的设备和方法。过滤装置优选是一种滤孔大小可至1微米的钢制筛网。该过滤装置设置于注射组件中。沉积膜所表现出的逐层覆膜特征优于未采用过滤装置时的沉积膜。
本发明也通过在雾气发生器和沉积室之间设置一缓冲室使雾气流经其中来改进前述的设备和方法。缓冲室大到足以使可能引发表面形态缺陷的雾化微粒在进入沉积室之前沉降下来。如果采用不止一个雾气发生器的话,缓冲室还有助于混合雾气。缓冲室在加快薄膜沉降形成的速率的同时并不引起表面形态的缺陷。
本发明提供制造集成电路的设备,包括:沉积室;位于沉积室之中的基体,基体确定了基体平面;产生液态前体雾气的装置;以及使雾气流经沉积室,沿与基体平面平行的方向均匀地通过基体以在基体上形成液态前体的薄膜的装置,其中使雾气产生流动的装置包括置于基体之上,与基体相互隔开并基本上平行于基体的阻隔板,在与基体平行的平面上的阻隔板的面积与在基体平面上的基体的面积基本相同。阻隔板的平整度的容许偏差优选为阻隔板和基体之间平均距离的5%。该设备优选还包括使沉积室保持真空的装置,在阻隔板和基体之间形成直流电偏压的装置,和调节阻隔板以改变阻隔板与基体之间距离的装置。优选地,该设备包括紧邻基体的一侧并沿其周边分布的,用以将雾气注射入沉积室的一个注射喷嘴组件,紧邻基体的与注射喷嘴组件相对的另一侧并沿其周边分布的一个排气组件,基体、阻隔板、注射喷嘴组件以及排气组件总和起来在沉积室中构成一个半封闭的空间。该设备优选包括旋转装置,当雾气沉积于基体之上时,所述旋转装置可使基体在平行于基体平面的平面上旋转,该设备还优选包括紫外辐射装置,当雾气流经沉积室时其可对雾气进行紫外线辐射。当雾气流入沉积室之中时,沉积室的温度优选维持在环境温度的水平。
另一方面,本发明提供制造集成电路的设备,该设备包括:沉积室;位于沉积室之中的基体,基体确定了基体平面;产生液态前体雾气的装置;以及使雾气流经沉积室,沿与基体平面平行的方向均匀地通过基体以在基体上形成液态前体的薄膜的装置,其中使雾气产生流动的装置包括置于基体之上,与基体相互隔开并基本上平行的阻隔板,阻隔板的平整度的容许偏差为阻隔板和基体之间平均距离的5%。
进一步地,本发明提供制造集成电路的设备,该设备包括:沉积室;位于沉积室之中的基体,基体确定了基体平面;产生液态前体雾气的装置;过滤雾气的过滤装置;以及使雾气流经沉积室从而在基体上形成一层前体液体的装置。优选地,过滤装置含有一不锈钢筛网。优选筛网的网孔尺寸不大于1微米。使雾气产生流动的装置优选含有:紧邻基体的一侧并沿其周边分布的,用以将雾气注射入沉积室的一个注射喷嘴组件;紧邻基体的与注射喷嘴组件相对的另一侧并沿其周边分布的一个排气组件;所述的过滤装置构成注射喷嘴组件的一部分。优选地,注射喷嘴组件和排气组件都含有多个沿基体周边分布的喷嘴口,并且过滤装置含有位于至少一个喷嘴口处的过滤器。该设备优选还包括用以调节通过喷嘴口的雾气流的调节装置,该调节装置含有在注射喷嘴组件的喷嘴口中形成的螺纹和旋入螺纹之中的中空的螺栓,螺栓中的至少一个含有位于螺栓空端处的过滤器。基体优选为圆形,注射喷嘴组件优选含有在基体的一个周边形成一段圆弧线的一根导管,排气组件优选含有在基体的另一个周边形成一段圆弧线的一根导管,以及喷嘴口优选沿导管的弧线分布。优选地,使雾气产生流动的装置还包括置于基体之上,与基体相互隔开并平行的阻隔板,并且其中基体、阻隔板、注射喷嘴组件以及排气组件总和起来在沉积室中构成一个半封闭的空间。
本发明还提供制造集成电路的一种方法,该法包括下列步骤:提供一种液态前体;将一基体放入一封闭的沉积室中;产生液态前体的雾气;过滤雾气;使过滤的雾气流经沉积室以在基体上形成一层前体液体;处理沉积在基体上的液层以形成一固体物质的薄膜;以及完成集成电路的制造以使集成电路的元件中包含有固体物质薄膜的至少一部分。所述的前体优选含有一种在一种前体溶剂中的金属化合物,所述的金属化合物选自金属烷氧化物和金属羧酸盐,以及金属烷氧基羧酸盐。使雾气流动的步骤优选在使基体维持在环境温度和在沉积室中维持100至800托之间的真空条件下实施。过滤步骤优选包括使雾气通过尺寸不大于1微米的滤孔。使雾气流动的步骤优选包括在紧邻并沿着基体的一侧的周边处将前体雾气注射入沉积室中,并在紧邻基体的另一侧并沿其周边的区域将前体雾气从沉积室排出,从而使前体雾气流沿基体实现均匀的分布。优选地,基体表面确定着基体平面,而且雾气在基体和阻隔板之间流动,所述的阻隔板位于沉积室中,与基体相互隔开并平行于基体平面。优选地,该方法还包括在使雾气流动的步骤之前使雾气通过一缓冲室的步骤。使雾气通过缓冲室的步骤优选在过滤的步骤之前实施。该方法优选包括当雾气流经沉积室时对雾气实施紫外线辐射的附加步骤。处理步骤优选包括对沉积在基体之上的液层实施紫外线辐射。
本发明还有一个方面是提供制造集成电路的设备,该设备包括:沉积室;位于沉积室之中的基体,基体确定了基体平面;产生液态前体雾气的装置:使雾气流经沉积室从而在基体上形成一层前体液体的装置;以及雾气所通过的缓冲室,缓冲室位于产生雾气的装置和使雾气流动的装置之间。优选地,缓冲室含有一个大到足以使可能引发表面形态缺陷的雾化微粒在缓冲室中沉降下来的容器。优选地,使雾气流动的装置包括用于过滤雾气的过滤装置,而且过滤装置含有的网孔尺寸不大于1微米。
采用这些改进的阻隔板、过滤器和缓冲室,即使在加快沉积速率的情况下也能够获得较好的薄膜,因此提高了雾化沉积工艺的经济效率。以下更为详细的说明以及附图将对本发明其它的目的、优点以及显著的特性做进一步的阐述。
附图简要说明
图1是根据本发明的一个雾化沉积系统的沉积室的侧面剖视图;
图2是图1系统的进气和排气喷嘴组件的平面图;
图3是图1和图2系统的一个进气喷嘴的放大平面图;
图4是根据本发明的一个雾化沉积系统的雾化发生器的侧面示意图;
图5是根据本发明的一个缓冲室及相关的导入和导出口的平面示意图;
图6是根据本发明的一种集成电路的制造工艺的流程图;
图7是根据本发明的一个雾化沉积系统的优选实施方案的俯视图;
图8和图9表示的是在两种不同位置的阻隔板组件和基体,用以说明阻隔板与基体之间的可调节关系;
图10是表示根据本发明在沉积室中放置有紫外线光源的透视图;
图11是按照本发明的设备和方法所制备的集成电路片的一个部分的截面的侧视图;和
图12表示说明书中叙述的样品A、B、C和D的漏泄电流密度和介电常数与电容器样品的关系图。
优选实施方案的说明1、概述
图6是根据本发明的工艺的优选实施方案的流程图;由该工艺所制备的集成电路的一个部分如图11中所示。在步骤P1中提供了一个基体5。在本工艺中,“基体”一词从广义上讲可以是其上沉积有一个重要的1130层的任意一层或多层材料5,从狭义上讲它是指一个硅片1122,集成电路1110最终在其上形成。除非文中特别指出,否则这里所说的基体一词均是指通过采用本发明的工艺和设备可使一层物质在其上沉积的任意物体。步骤P1所提供的基体优选包含一P型硅片1122。在步骤2中,初始形成的集成电路层1124、1126和1128构成一基体5,金属氧化物层1130沉积于其上。首先,由湿法形成一个大约5000埃厚度的二氧化硅绝缘层1124。二氧化硅层一般被刻蚀成必要的形状,通过沉积适当的钛层1126、铂层1128、介电层1130和铂层1132而制成所需的集成电路器件。钛金属薄层1126优选通过原位喷镀的方法沉积在二氧化硅层1124之上,一个2000埃厚度的铂电极层优选通过原位喷镀的方法沉积在钛层1126上。“原位”的含义是指钛和铂都是在不使真空条件停顿的情况下进行喷镀的。钛层1126根据需要可有可无。当钛层存在时,它通过扩散入二氧化硅和铂中来帮助铂层1128与二氧化硅层1124的粘合。随后采用本发明后述的设备和方法沉积出一个如锆钛酸铅或BST的物质层1130。在层1130之上再沉积厚度为2000埃的另一个铂层。然后将复合片1110退火,用图案覆盖并进行光照的方法在其上形成图案,并进行深层刻蚀至电极层1128,从而得到电容器集成电路器件1112,其中之一的截面如图11所示。将测试仪器的一端引线与铂电极层1128相连,用一个精密探针将另一个电极层1132与测试仪器的另一端引线相连,这样可对所得的器件进行测试。
步骤P6是制备一种底漆。在优选的实施方案中,该步骤包括提供大量的单一溶剂,例如2-甲氧基乙醇、二甲苯或醋酸正丁酯,当然也可以包括将几种溶剂例如三种前述的溶剂进行混合的步骤。不论是单一溶剂还是几种溶剂的混合物,所优选的溶剂就是前体的最终溶剂,也就是在后面将要叙述的步骤P22中所用的前体的溶剂。可用作底漆的一些溶剂以及它们的沸点为:醇类溶剂,如1-丁醇(117℃)、1-戊醇(117℃)、2-戊醇(119℃)、1-己醇(157℃)、2-己醇(136℃)、3-己醇(135℃)、2-乙基-1-丁醇(146℃)、2-甲氧基乙醇(124℃)、2-乙氧基乙醇(135℃)和2-甲基-1-戊醇(148℃);酮类溶剂,如2-己酮(甲基丁基酮)(127℃)、4-甲基-2-戊酮(甲基异丁基酮)(118℃)、3-庚酮(丁基乙基酮)(123℃)和环己酮(156℃);酯类溶剂,如醋酸丁酯(127℃)、醋酸2-甲氧基乙酯(145℃)和醋酸2-乙氧基乙酯(156℃);醚类溶剂,如2-甲氧基乙基醚(162℃)和2-乙氧基乙基醚(190℃);以及芳香烃,如二甲苯(138℃-143℃)、甲苯(111℃)和乙基苯(136℃)。
在步骤P8中底漆被涂施到基体5上。在下面将要详述的优选的实施方案中,底漆被雾化,通过一筛网过滤器33过滤,并在沉积室2中涂施到基体5上。这里所用的“雾气”一词定义为被气体所负载的液体的微滴。“雾气”一词包括一种气溶胶,后者通常被定义为固体或液体微粒于一种气体中的胶体化悬浮体。雾气一词也包括前体溶液于一种气体中的蒸气、雾以及其它雾化的悬浮体。由于上述术语在公众中已被广为应用,它们的定义并不十分精确,内涵上互有交叠,不同的作者对它们的使用也可能有所不同。在本说明书中,气溶胶一词包括本发明所参考的《气溶胶科学与技术》(Aerosol Science andTechnology,by Parker C.Reist,McGraw-Hill,Inc.,New York,1983)一书中所述的所有的悬浮体。本文中所用的“雾气”一词其含义比气溶胶一词更为宽泛,包括那些气溶胶、蒸气或雾这些术语可能未及反映的悬浮体。当底漆雾气流入和通过沉积室2时,可以对雾气进行紫外线辐射处理,或在这之后对基体5进行紫外线处理,如虚线P11和P12分别所示的步骤。但优选的实施方案并不包含步骤P11和步骤P12。
现已发现在步骤P8中,在前体沉积之前采用一种底漆的做法与不采用底漆的做法相比较,前者会使薄膜具有较好的形态特征和较低的漏泄电流。
在步骤P20中制备了一种前体液体。前体优选是一种金属烷氧基羧酸盐,其制备方法在本文所参考的美国专利申请No.08/132,744中有叙述,并且后面将给出一个详细的实施例。步骤P20所制备的前体一般都大量制备并贮存备用。在即将使用前体之时,进行一个溶剂交换步骤或一个浓度调节步骤,或这两个步骤都进行,为实际应用提供最适宜的前体。溶剂交换步骤在本文所参考的美国专利申请No.08/165,082中有详细叙述。最终的前体溶液优选用作在应用底漆之后的整个沉积工艺中唯一的前体来源。但是,本发明也注重于采用多个平行的或连续的前体来源。特别地,可能平行地采用其它的前体源以进行改性修饰获得最终所需的化合物。
本发明所采用的前体液体是稳定化的溶液。这里,“稳定化”意味着所需的最终化合物的主要的氧一金属键在前体形成的过程中生成,而且在形成之后也是稳定的。这包含两个含义。第一,在经贮存相当长的时间后溶液未发生反应或变质。第二在前体形成的过程中所生成的化学键在整个沉积过程中保持稳定并构成最终所需化合物的化学键的至少一部分。也就是说,前体中的金属-氧键保持稳定,并经过沉积工艺后形成了最终所需的金属氧化物中的金属-氧键。
根据本发明的方法,经筛网过滤的前体液体的雾气在环境温度下均匀地流经和流在基体5上面。这里,环境温度是指周围环境的温度。也就是说,除了周围环境的传热外,没有其它的热量作用于基体。当采用紫外线辐射时,周围环境的温度要比室温稍高一些,而当无紫外线辐射并采用真空来对基体进行处理时,环境温度可能比室温稍低一些。根据前述的结果,一般环境温度可能在-50℃至100℃之间。优选环境温度在15℃至40℃之间。
如后面进一步讨论的那样,雾气流动过程中重要的一点是雾气通过多个导入口流经基体5并通过多个排气口从基体5上面的空间排出,这些导入口和排出口紧邻并沿基体5的周边分布,使雾气流沿基体5呈现均匀的分布。
在沉积过程之中、之后或同时在这两个时间段内,将前体液体进行处理以在基体5上形成一固体物质的薄膜。在本发明中,“处理”一词是指下面过程中的任意一个或任意组合:真空处理、紫外线辐射、电极化、干燥、加热和退火。在优选的实施方案中,在步骤P24中用紫外线辐射对前体溶液在沉积过程中进行处理。紫外线辐射优选也在步骤P28中在沉积之后进行实施。经过沉积之后,在基体5上所沉积的物质(在优选的实施方案中它呈液体)优选进行一段时间的真空处理,然后加热,再然后退火处理。紫外线固化过程的化学机理尚未完全弄清。据信紫外线有助于金属氧化物分子、或构成所需最终化合物的其它成分与溶剂和有机质或前体化合物的其它片段的离解。
许多复合薄膜例如铁电薄膜的一个重要的参数是它们通常都被要求非常薄(如200埃到5000埃的范围)。通过本发明的工艺和设备可容易地达到这样的薄膜厚度。如果需要的话,本发明也可用于制备较厚的薄膜。
本发明十分适用于诸如铁电物质、超导物质、高介电常数材料和玉石等化合物的高质量薄膜的沉积。例如,本发明可用于沉积以通式ABO3所示的铁电物质的薄膜,包括PbTiO3、PbxZryTiO3、PbxLayZrzTiO3和YMnO3(Y表示任意的稀土元素)。此外,本发明也可用于沉积钛酸钡锶[(Ba,Sr)TiO3]、钛酸锶[(SrTiO3)]以及其它多元素化合物的薄膜,例如在本发明所参考的美国专利申请No.965,190(申请日:1992年10月23日,题目:铁电性高介电常数的层状超晶格材料及集成电路的制造)中所叙述的那些化合物。
图1给出了根据本发明的一个示例性的实施方案的一个薄膜沉积设备,该设备通常以1表示。设备1含有一个沉积室2,它包括一个基体载体4、阻隔板6、一个进气喷嘴组件8、一个排气喷嘴组件10和一个紫外线辐射光源16。沉积室2包括主体12和保护主体12的盖子14,二者在沉积室2内形成一密闭空间。沉积室与许多后面介绍的外部的真空源相连。盖子14与主体12是用18处所示的铰链以枢轴形式相连。在操作过程中,雾气和惰性载气通过管45沿方向43导入,流经进气喷嘴组件8,雾气沉积在基体5上。多余的雾气和载气通过排气喷嘴10被排出沉积室2。
基体载体由两个导电材料例如不锈钢的圆盘3和3’组成,上面的圆盘3与下面的圆盘3’(底盘)被一绝缘材料7如delrin所隔离。在一个示例性的实施方案中,采用直径5英寸的基体5,基体载体4的直径则为6英寸,它被一个可旋转的轴20所支撑,而后者则与电动机18相连接,因此载体4和基体5在沉积过程中是可以旋转的。绝缘轴22将座落于其上的基体载体4和基体5与施加在沉积室主体12上的直流电压隔绝开来,这样在基体载体4和阻隔板6之间就产生了一个直流电偏压(通过沉积室主体12)。这种直流电偏压可以用于例如当薄膜正在基体5上沉积时对薄膜进行场极化处理。绝缘轴22通过联轴器21与轴20和轴20’相连接。电源102通过导线106在连接点108与沉积室2的主体12相连通,通过导线104经馈通23到达黄铜套管25,在底盘3’和阻隔板6之间产生一个直流电偏压。
阻隔板6由导电材料如不锈钢制成,其尺寸大到足以超过与之平行的基体5的大小,这样由导入管26和喷嘴组件8所注射进来的蒸气源或雾气就被迫在阻隔板6和基体载体4之间的空间内在基体5的上面流动。阻隔板6优选具有和基体5相同的直径。如果阻隔板6在平行于基体的平面上的面积与基体5的面积相差不超过10%,则可获得最佳的效果。也就是阻隔板6的面积大于基体5的面积不超过10%,或小于基体5的面积也不超过10%。如图1所示,阻隔板6优选通过多个棒24与盖子14相连,这样无论何时,一旦盖子被打开,阻隔板6也就与基体5分离开来。
图8和图9显示的是处于与基体载体4不同距离的阻隔板6。每个棒24均为不锈钢棒,与沉积室的盖子14相连。每个棒24上都有钻孔(图1),通过旋入其中的螺栓35将棒24与阻隔板6连接起来。每个棒24都开有孔来容纳一个固定螺丝36,以确保螺栓35旋在棒24中。在不把棒24和沉积室盖子14分离的情况下,松开固定螺丝36,调节棒24与螺栓35的相对位置,然后再旋紧螺丝36,每个棒的有效长度最大可调节1/2英寸。每个棒24都是可活动的。根据原材料、流动速度等的不同,通过调节棒24的不同长度L和L’等等来调节阻隔板6和基体载体4(和基体5)之间相应的空间S和S’等等。例如,调节棒的长度L可使空间S在0.10至2.00英寸的范围变化。一旦在适当的位置,棒24如上所述也是可调节的。这样,棒24、螺栓35和螺丝36构成了一个调节阻隔板6的调节装置。当钛酸钡锶前体液体(其制备见后述)被沉积时,基体5和阻隔板6之间的空间优选大约在0.35英寸至0.4英寸之间。阻隔板6的平整度的容许偏差优选最多达阻隔板6与基体5之间距离的5%。也就是说,在任何一个给定点上的基体5和阻隔板6之间的距离与在任何其它的点上的基体5和阻隔板6之间的距离的差值不超过基体5和阻隔板6之间平均距离的5%。例如,如果基体5和阻隔板6之间的平均距离为0.38英寸,基体上没有一点距阻隔板的距离将超过0.40英寸,或没有一点距阻隔板的距离小于0.36英寸。
如果阻隔板在上述规定的限度内,即阻隔板的面积大约与基体相同且其平整度的容许偏差不超过5%,与阻隔板超出上述限度的情形相比,前者可获得较好的厚度均匀性和较高的沉积速率。
图7是本发明一个示例性实施方案的设备的俯视图。如图7所示,一个范围为0至1000托的温度补偿型电容压力计710控制着沉积室2的压力,其信号控制着下游的控制阀(图中未标出)以精确地维持沉积室2的压力。通过打开阀713来使沉积室2中达到低于5.0×10-6托的高真空。沉积室2的高真空便于在沉积操作步骤之前将沉积室壁上和位于沉积室内的基体5所吸附的水汽除去。
在沉积操作过程中用真空泵将沉积室2的压力保持在约100托至800托之间。沉积室的排气系统包括一个通过阀726与沉积室2相通的液氮冷阱709。沉积室2通过一气动的狭缝阀703与一外室(图中未标出)相通。通过观察窗718可以在沉积操作过程中观察沉积室2内部的状况。
通过调节一来自气源736的惰性气体流如氩气流进入雾化发生器46-1的速率,并采用质量流量控制器708和VCR阀725-3来控制前体的分散速率,使前体液体流经缓冲室42进入沉积室2。其它质量流量控制器748、阀和阀7254与雾化发生器46-2相连,后者通过VCR阀725-5与缓冲室42相连,这样可以控制底漆的分散速率,通过调节一来自气源736的惰性气体流如氩气流进入雾化发生器46-2的速率,使底漆流经缓冲室42进入沉积室2。采用一个单独的质量流量控制器758将来自气源738的氧气和/或其它惰性气体或活泼气体通过VCR阀725-7导入缓冲室42。
图2更清楚地绘出了进气喷嘴组件8和排气喷嘴组件10。进气喷嘴组件8包含一个接收来自缓冲室的雾化溶液的进气管26,这还将在后面结合图5加以说明。进气管26与含有多个小孔或进气口31的弓形管28相连,进气口31对应着沿着管28的内圆周分布的圆心至圆心间隔1/4英寸的可活动的螺丝30和可活动的进气喷嘴33。
图3是一个进气喷嘴33的平面图。它包括含有放大的中空的带有边缘303的螺丝头301的一个螺丝33,中空的螺杆中心轴39(图2)和一个筛网过滤器310。筛网过滤器310优选在螺丝头301和中心轴39连接之前摩擦置入螺丝头301内,但也可以用铜锌合金焊接在边缘303的外表面上。优选地,喷嘴33的所有部分,包括筛网过滤器310都是由不锈钢制成。筛网过滤器310优选是一个不锈钢的编织的筛网过滤器,网线之间的网孔315的面积大约为1平方微米。研究发现,在其它条件相同的情况下,采用这种筛网过滤器会部分程度地降低沉积速率,但这一点可通过增加进气孔31的数目和/或增大进气孔的面积来很容易地克服。过滤器可以校准雾气的方向,使雾气在基体上面的流动更加均匀和减少湍流度,这样就降低了在雾气流中出现异常的机会,而这种异常则往往会产生非均匀性。
排气喷嘴组件10含有一个弓形排气管29,排气管29具有多个小孔或排气口31’,其上带有可活动螺丝30。排气喷嘴组件10的结构与进气喷嘴组件的结构非常相似,除了它不含有进气喷嘴33外,而且它还有一根管34通向真空/排气源(图中未标出)。管28和29的端套是可活动的以便于清洗。进气喷嘴组件的弓形管28和相应的排气喷嘴组件的弓形管29分别相对环绕在基体载体4的周边区域4-1和4-2。
在一个沉积钛酸钡锶(BST)薄膜的示例性的实施方案中,管28和29上的孔31和31’的中心主要位于基体载体4上方0.375英寸的距离处。但如图8和图9所示,这一距离是可被调节的以适应具体的沉积过程的要求。
每个管28和管29一般由外径为1/4英寸的不锈钢管制成,其内径大约为3/16英寸。每个管28和管29的内壁优选经过电抛光处理。管28和29上的多孔31和31’彼此的圆心到圆心之间的间隔大约为1/4英寸,并且都开孔可容纳4-40个(1/8英寸)带端头螺丝。
通过这种结构,并且通过有选择地用螺丝30旋入喷嘴33来调节弓形管28上喷嘴33的位置,以及通过有选择地卸去螺丝30来调节弓形管29上开通状态的排气孔31’的位置,基体5上的气化溶液流或雾气流的各种溶液组成和流动速度等就能够很好地得到控制,从而在基体5上实现薄膜的均匀沉积。
根据图1和图2,基体载体4、阻隔板6、进气喷嘴组件8和排气喷嘴组件10共同构成了一个围绕着基体5的上表面/暴露表面的相对小的半封闭的沉积区17,而且在整个沉积过程中,气化溶液被包含在该区域内。
虽然我们对基体载体4、阻隔板6、进气喷嘴组件8和排气喷嘴组件10的示例性的实施方案作了图示和文字说明,在本发明的范围内也可以采用作了某些改变的这些结构。例如,弓形进气管28和排气管29可以用其它结构的管例如V型管或U型管,或带有狭缝的管所代替,或简单地被多个分立的喷嘴或分立的排气口所代替。
图5是根据本发明的一组集合管线40的截面图。该集合管线40是用来向进气喷嘴组件8供应气化溶液(雾气或气溶胶)的,一般含有一缓冲室42,一组通过各自的阀725-2、725-5、725-7与相应的雾化发生器相连的多个入口管44,一个用于调节(气化溶液)从缓冲室42向喷嘴组件8的流动状态的沉积阀725-1,以及一个鼓风排气阀725-6。从阀725-2、725-5和725-7引出的入口管44和与沉积阀725-1相连的出口管49呈90度的角度,这是本发明的一个特征。缓冲室42大到足以使雾气在该室内需要滞留平均约1至5分钟,优选为约2.5分钟的时间。这一时间间隔以及入口管44和出口管49之间90度的夹角可使雾气中可能引起表面形态问题的任何大的液滴,即尺寸超过约2微米的液滴沉降下来。当同时采用不止一种雾气时,例如当一种底漆与前体共同被导入时(见后文),它可使雾气相混合直至形成单一的均相的雾气。在优选的实施方案中,缓冲室优选为内径约3英寸(图5中的垂直方向)和长度约4英寸(图5中的水平方向),并以不锈钢为材质的一个圆筒。
在使用过程中,一个或多个雾化发生器46-*被用来产生一种或多种不同的雾气,这些雾气随后通过阀725-*和入口管44流入到缓冲室42中。
流入到缓冲室42中的雾气被混合成单一的均匀的雾气溶液,随后通过阀725-1和入口管26以一合适的速度流入到沉积室2中。阀725-1可被选择地关闭,这样如果需要的话可使沉积室2能够被真空减压,或根据需要将集合管系统进行清洗。类似地,排气阀725-6的出口管与一真空源(未标出)相连,这样,当需要排空/清洗一个或多个雾化发生器46时,阀725-1可以被关闭,阀725-6和一个或多个阀725-*可以被打开,且缓冲室42能够被真空减压,通过真空泵(未标出)施加真空或采用标准的反吸型排气手段以对雾化发生器46和缓冲室42进行清洗。
在进入沉积室2之前,稳定化的前体溶液经超声波搅动而被气化或雾化,制成稳定化前体溶液的雾气。图4是本发明所采用的雾化发生设备的一个示例性实施方案的侧面示意图;雾化发生器46包括一封闭的容器54,一个用流体密封和真空密封固定在容器54底部的TDK TU-26B或等同的超声波传感器56,以及一个可以调节频率和振幅的电源72。容器54是一个没有内过滤筒的改进型的MilliporeWaferguard T-Line气体过滤器(目录号YY50 005 00)。如箭头420所指的气体的流动方向与过滤器正常操作下所取的方向是相反的。传感器56被安置在雾化发生器46底部的一个凹洞中。雾化发生器46还包括一个入口60和一个出口62以使载气通过容器54。电源72包括一个频率控制装置,即能够旋转调节传感器56的频率的频率控制盘73,和一个振幅控制装置75,即能够旋转调节传感器56的输出振幅的振幅控制盘75。通过调节传感器的频率和振幅,可以控制雾气的微粒大小。调节微粒的大小可使人能够调节沉积过程的表面形态、逐层覆盖特征以及沉积速率。
在实际操作之前,将预定量的前体液体64通入容器54中。在操作过程中,传感器56在电激发下制备出前体液体的雾气66。通过入口60将一种惰性载气通入雾气66中,使惰性载气变湿或被雾气所饱和。然后将湿的载气通过出口62流入到集成管线40中。载气一般为一种惰性气体如氩气、氦气或氮气,但在适当的情况下其中可以含有一种活泼气体。
由于图4所示的雾化发生器46产生的气化溶液能够在没有例如凝结的复杂情况下有效地流动或注入到沉积室2中,因此这种雾化发生器具有特别突出的优点。
图10是表示在沉积室2中放置一个紫外线光源16的透视图。在沉积工艺之中或之后通过提供紫外光来实现本工艺中的光增强。人们相信紫外线辐射能够促进溶剂和有机质与前体的离解,因此加快了干燥过程。另外,在沉积工艺之前采用紫外线辐射有助于从沉积室2中以及基体5上将湿气除去(脱附作用)。紫外线光源16在沉积室中的位置并不十分重要,因为紫外线辐射被沉积室2的不锈钢内壁反射到进气喷嘴8和排气喷嘴10之间的空间,以及反射到基体5上,这种辐射能够提供上述的光增强效果。
紫外线光源16包括至少一个位于沉积室2中的紫外灯,在那里提供一个紫外线辐射浴。可采用的光谱灯包括紫外灯和激态原子激光器。在任一情形下,调节紫外线光源16所提供的辐射浴的频率以最大限度地将所需的化合物与溶剂和有机质或其它碎片离解开来。在第一种情形下,将一个激态原子激光器所产生的辐射的频率调节到离解或打断在沉积过程中所形成的溶剂键、前体化学键合键和/或任意中间有机配位键所需的相应能量的水平,保持给定的前体液体中的所需化合物。另一个可选择的方案是,如果紫外线光源16是一个紫外灯(或多个紫外灯),那么这种频率的调节可通过用另一个(组)具有更需要的频谱的紫外灯替换这一个(组)紫外灯的方法来完成。
如果用一个气化的烷氧基羧酸盐原料来沉积一个铁电性薄膜,例如下文所述当沉积一种前体以形成钛酸钡锶(BST)时,优选使用一个Danielson Phototron PSM-275紫外线光源16,它产生的紫外线辐射波长大约为180至260纳米。该波长范围内的紫外线辐射可以非常有效地使BST与气化的烷氧基羧酸盐、溶胶-凝胶、MOD或其它液体化学原料形成的键产生共振并使其离解。
图1所示的设备包括一个在沉积操作中在沉积室2中施加一直流电偏压的电源102。电源102包括直流电入口104和出口106。施加在输入套管25和沉积室主体12之间的直流电压通常为350伏。直流电偏压使铁电性薄膜获得原位极化,提高了薄膜的质量。沿晶体C-轴(主极化轴)的偶极顺序常常是合乎需要的,而且所得的顺序减少了能够引起疲劳和保留问题的位错密度。大于或小于350伏的直流电偏压也可用来实现上述的结果。另外,在进行沉积时,紫外线辐射和直流电偏压可同时或依次地,并且重复地施加在沉积室2中。
可采用一个辅助的加热装置,例如一个加热盘(未标出)来对已沉积在基体上的一个前体的薄膜进行烘烤和/或退火。虽然烘烤/退火工艺可以在沉积室12中进行,如图6中的步骤P11和P12所说明的那样,但烘烤和退火优选在一辅助室中来实施。退火优选在氧气炉中进行。高能量密度的紫外线辐射,例如来源于一个漫射激态原子激光器光源的辐射,也是一种优选的退火手段。3、工艺实施例
下面是制备钛酸钡锶(BST)前体和利用钛酸钡锶作为电容器介电物质以制造一电容器的方法的详细实施例。在表1中,“FW”指分子量,“gram”指重量单位“克”,“mmol”指毫摩尔,以及“Equiv.”指溶液中分子的当量数。按表1所给出的各化合物的数量进行称量来开始步骤P20(图6)。将钡放入100毫升2-甲氧基乙醇中并使之反应。将第一批称量的2-乙基己酸加入到混合物中并搅拌。然后向混合物中加入锶。一旦反应结束,向混合物中加入第二批称量的2-乙基己酸。将混合物加热到最高温度为115℃并搅拌以蒸馏除去所有的水。将混合物冷却。向混合物中加入异丙氧化钛,随后将混合物用220毫升外加的2-甲氧基乙醇稀释。将混合物加热到最高温度为116℃并搅拌。蒸馏除去所有的异丙醇和水,完成步骤P20。在步骤P21中,用外加的2-甲氧基乙醇将混合物稀释到体积精确为200毫升。所得的混合物的浓度为0.490M(摩尔/升),其中钡与锶之比为0 69986:0.30014。
                        表1Ba0.7Sr0.3TiO3
化合物 分子量 毫摩尔 当量
137.327 9.4255 68.635 0.69986
2-乙基己酸 144.21 19.831 137.51 1.4022
87.62 2.5790 29.434 0.30014
2-乙基己酸 144.21 8.5005 58.945 0.60107
异丙氧化钛 284.26 27.878 98.072 1.0000
由2-乙基己酸钡、2-乙基己酸锶和2-甲氧基乙氧化钛所组成的前体溶液的合成中所涉及的化学反应如下:实施例1:2-乙基己酸钡
钡金属+2-乙基己酸→2-乙基己酸钡+氢气
实施例2:2-乙基己酸锶
锶金属+2-乙基己酸→2-乙基己酸锶+氢气
实施例3:2-甲氧基乙氧化钛异丙氧化钛+2-甲氧基乙醇→2-甲氧基乙氧化钛+异丙醇
采用2-甲氧基乙醇作为溶剂可使体系中存在的任何水通过蒸馏而除去,因为2-甲氧基乙醇较高的沸点使其在水被蒸出的过程中仍保留在体系中。因此,所得的前体是完全无水的。采用2-乙基己酸钡和2-乙基己酸锶是因为在前体中选用如这些化合物的中等链长的羧酸盐所形成的薄膜在烘烤时不发生如采用长链羧酸盐时所形成的薄膜在烘烤时发生的开裂、起泡或剥落现象。锶和钡的2-甲氧基乙氧化物经试验,但被证明是对空气和水过于敏感的。2-甲氧基乙氧化钛与对空气不敏感的2-乙基己酸钛相比,前者可得到较好的薄膜。虽然2-甲氧基乙氧化钛对空气敏感,但其敏感度比起异丙氧化钛还是较小。
将如上所述生成的钛酸钡锶前体用于图6所示的本发明的方法中,采用图1至5和图7至10所示的设备,制造出如图11所示的一个电容器。
将上述的一个钛酸钡锶前体放到雾化发生器46-1的容器54中(图7),并将2-甲氧基乙醇溶剂加入到雾化发生器46-2的容器54中。首先,把一个含有其上沉积着二氧化硅层和铂层的硅片的基体在一个大气压下的炉中(@ Colorado Springs,Colorado)在180℃预烘烤10分钟。将基体放在沉积室中的基体载体4上。沉积室被一台与阀726相连接的低级真空泵(未标出)减压至0.4托。其次,将基体旋转电动机18打开以使基体载体4旋转。然后将紫外线光源16打开以脱附沉积室中的湿气以及基体上的任何湿气。用一种惰性气体704例如氩气或氮气经阀727和707缓慢反填充沉积室,使其压力达到大约595托。然后,打开经过特殊加工的真空管线702以将沉积室的压力稳定在大约595托。关闭阀725-6,然后打开注射阀725-1和沉积阀725-4和725-5,开始让来自气源736的氩气流通到超声波雾化发生器46-2中。然后将超声波雾化发生器46-2开动一分钟,使厚度约100埃的底漆的薄膜在室温下沉积于基体上。然后关闭沉积阀725-1,打开阀725-6,关闭雾化发生器46-2之中的传感器56,用鼓风装置705向缓冲室42鼓风,直至雾化发生器46-2达到环境温度。用来自气源736的氩气通过鼓风装置705来清洗缓冲室42。然后关闭阀725-4和725-5。再次打开沉积阀725-1,也打开阀725-3和725-2,让来自气源736的氩气流通到超声波雾化发生器46-1中。然后将超声波雾化发生器46-1开动30分钟,使厚度约1500埃的薄膜在室温下沉积于基体上。该沉积工艺均采用氩气载气将底漆雾气和钛酸钡锶前体雾气带到基体5上。当足够量的钛酸钡锶前体沉积于基体上形成一薄膜后,关闭雾化发生器46-1和基体旋转电动机。关闭沉积阀725-1,然后打开阀725-6,用鼓风装置705向缓冲室42鼓风,直至雾化发生器46-1达到环境温度。用来自气源736的氩气通过鼓风装置705来清洗缓冲室42。当硅片停留在沉积室中时,沉积室的压力被缓慢减至0.4托。然后关闭紫外线光源16。再次,关闭阀713并向沉积室鼓风使其达到大气压力。然后将硅片从沉积室取出并在400℃后烘烤2分钟。然后将硅片在800℃氧气气氛中退火80分钟。然后将硅片用已熟知的光抗蚀技术进行刻蚀以制备多个电子元件1112。由这一工艺过程制成的样品在下面被称为样品A。
重复上述工艺过程以制备另一个被称为样品B的样品,除了仅在步骤P24中施加紫外线辐射。也就是说,对于样品B,当雾气正在沉积的时候将紫外线辐射施加于雾气,但不施加于前体。在制备样品C的第三个工艺中,在步骤P28中施加紫外线辐射,但在步骤P24中不施加。在制备样品D的第四个工艺中,在整个过程的任何时候都不施加紫外线辐射。
测试在四个工艺中分别制得的电容器样品A,B,C和D的泄放电流密度和介电常数。以样品为横坐标,结果列于图12中。每个样品的泄放电流密度是在一强度为430千伏/厘米的电场中测量的。泄放电流密度的标度在图的左侧,单位为安培/厘米2。介电常数的标度在图的右侧。每个样品的介电常数值基本相同。但是,对于紫外线辐射施加于雾气并也在沉积之后施加于薄膜的样品,其泄放电流密度低于10-7安培/厘米2;对于紫外线辐射施加于雾气但在沉积之后并不施加于薄膜的样品,其泄放电流密度低于10-7安培/厘米2;对于紫外线辐射施加于薄膜但不施加于雾气的样品,其泄放电流密度下降略多一些;对于未施加紫外线辐射的样品,其泄放电流密度接近于10-6安培/厘米2。第二个样品与第三个样品的结果十分相近,它们的差值可被认为是实验误差。但对新样品进行重复试验的结果表明第二个样品与第三个样品之间的这种差别还是真实存在的。这些结果表明在雾气沉积过程中对雾气和在烘烤过程中对薄膜均实施紫外线辐射,能够将泄放电流密度改进一个数量级。由于泄放电流密度在约10-5安培/厘米2至10-6安培/厘米2的电容器勉强能够用于集成电路中,而泄放电流密度低于10-7安培/厘米2的电容器对于集成电路来说则是非常好的元件,因此这二者的差别是非常明显的。
按照与上面实施例中相同的工艺来实施另一个沉积过程,除了将施加底漆步骤P8和前体沉积步骤P22同时进行外。也就是说,雾化发生器46-1和46-2都开启工作,而且阀725-1、725-2、725-3、725-4和725-5都同时打开,前体和底漆的雾气在进入沉积室12之前在缓冲室42中进行混合。然后关闭阀725-1,停止雾气发生器46-1和46-2的工作,打开阀725-6,将雾化发生器46-1和46-2都进行通风直至它们被冷却至环境温度。这一工艺过程所形成的表面形态和泄放电流虽然不如将步骤P8和步骤P22分别实施的工艺所得的结果,但还是优于没有底漆的工艺所得的结果。我们相信随着该工艺中有关沉积工艺参数方面更多的经验的获得,它将成为人们优选的一个工艺。
本发明在沉积诸如铁电物质、超导物质、高介电常数材料和玉石物质等的材料的复合的薄膜方面具有显著的优点,但并不限于仅沉积这些复合的薄膜。
虽然从目前看我们已经叙述了本发明优选的实施方案,但在不背离其主题和主要特征的情况下,本发明当然也可通过其它特殊的形式得以实施。因此现有的实施方案无论从何角度都应被看作是对本发明的说明,而不是对本发明的限制。本发明的范围在随后的权利要求中而不是在前面的叙述中得以确定。

Claims (23)

1、用于制备集成电路(1110)的设备(1),所说的设备含有:
(a)一个沉积室(2);
(b)位于所说沉积室中的一个基体(5),所说的基体确定了基体平面;
(c)用于产生液态前体(64)的雾气(66)的装置(46-1);
(d)用于使所说雾气流经所说沉积室以在所说基体上形成一层前体液体的装置(8,10);和
(e)在所说雾气流经所说沉积室之前用于降低所说雾气中微粒尺寸的装置(33,40)。
2、权利要求1的设备,其中所说的用于降低所说雾气中微粒尺寸的装置含有一个所说雾气流经其中的缓冲室(42),所说缓冲室位于所说的用于产生雾气的装置(46-1)和所说的使雾气产生流动的装置(8,10)之间。
3、权利要求1的设备,其中所说的用于降低所说雾气中微粒尺寸的装置含有一个用于过滤所说雾气的过滤器(33)。
4、一种制备集成电路(1110)的方法,所说方法包括以下步骤:
(a)提供一种液态前体(64);
(b)将一个基体(5)放入一封闭的沉积室(2)中;
(c)产生所说液态前体的一种雾气(66);
(d)降低所说雾气的微粒尺寸;
(e)使所说微粒尺寸降低的雾气流经所说沉积室以在所说基体上形成一层前体液体;
(f)处理沉积在基体上的液层以形成一固体物质的薄膜(1130);和
(g)完成所说集成电路(1110)的制备以使所说集成电路的一个元件(1112)中包含所说固体物质薄膜(1130)的至少一部分。
5、权利要求4的一种方法,其中所说的降低雾气微粒尺寸的步骤包括使所说雾气流经一个缓冲室(42)。
6、权利要求4的一种方法,其中所说的降低雾气微粒尺寸的步骤包括过滤所说的雾气。
7、权利要求2的设备或权利要求5的方法,其中所说的缓冲室含有一个大到足以使可能引发表面形态缺陷的雾化微粒在所说缓冲室中沉降下来的容器。
8、权利要求2的设备或权利要求5的方法,其中所说缓冲室大到足以使微粒尺寸大于2微米的(雾化微粒)在所说缓冲室中沉降下来。
9、权利要求3的设备或权利要求6的方法,其中所说的过滤器含有一不锈钢筛网(310)。
10、权利要求3的设备或权利要求6的方法,其中所说的筛网含有不大于1微米的滤孔(315)。
11、权利要求1的设备或权利要求6的方法,其中所说的设备包括用于在所说沉积室(2)中的一个部件(6)与所说基体(5)之间施加一直流电偏压的一组装置(102,104,106),或所说的方法包括在所说的使雾气流动的步骤中在所说沉积室内的一个部件与所说基体之间施加一直流电偏压的步骤。
12、用于制备集成电路(1110)的设备(1),所说的设备含有:
(a)一个沉积室(2);
(b)位于所说沉积室中的一个基体(5),所说的基体确定了基体平面;
(c)用于产生液态前体(64)的雾气(66)的装置(46-1);和
(d)用于使所说雾气流经所说沉积室,沿与所说基体平面基本平行的方向均匀地通过所说基体以在所说基体上形成液态前体的一层薄膜的装置(8,10),其中所说使雾气产生流动的装置包括置于所说基体之上,与所说基体相互隔开并基本平行的一个阻隔板(6),在与所说基体平行的平面上的所说阻隔板的面积与在所说基体平面上的所说基体的面积基本相同。
13、用于制备集成电路(1110)的设备(2),所说的设备包括:
(a)一个沉积室(2);
(b)位于所说沉积室中的一个基体(5),所说的基体确定了基体平面;
(c)用于产生液态前体(64)的雾气(66)的装置(46-1);和
(d)用于使所说雾气流经所说沉积室,沿与所说基体平面基本平行的方向均匀地通过所说基体以在所说基体上形成液态前体的一层薄膜的装置(8,10),其中所说使雾气产生流动的装置包括置于所说基体之上,与所说基体相互隔开并平行的一个阻隔板(6),所说阻隔板的平整度的容许偏差为所说阻隔板和所说基体之间平均距离的5%。
14、权利要求1、12或13的设备,进一步还包括用于维持所说沉积室处于真空状态的装置(726,709等)。
15、权利要求12或13的设备,进一步还包括在所说阻隔板和所说基体之间施加一直流电偏压的装置(102,104,106)。
16、权利要求12或13的设备,其中所说使雾气流动的装置进一步包括用于调节所说阻隔板的位置以改变阻隔板与所说基体之间距离的装置(24,35,36)。
17、权利要求12或13的一个设备,其中所说使雾气流动的装置进一步包括:
用以将所说雾气注射入所说沉积室,紧邻所说基体的一侧并沿其周边分布的一个注射喷嘴组件(8);
紧邻所说基体的与所说注射喷嘴组件相对的另一侧并沿其周边分布的一个排气组件(10);并且其中
所说基体(5)、所说阻隔板(6)、所说注射喷嘴组件(8)以及所说排气组件(10)总和起来在所说沉积室(2)中构成一个半封闭的空间。
18、权利要求1,12或13的设备,包括在将所说雾气沉积于基体之上时可使所说基体在平行于所说基体平面的平面上旋转的装置(18)。
19、权利要求1,12或13的设备,包括当雾气流经沉积室时可对所说雾气施加紫外线辐射的装置(16)。
20、权利要求1,12或13的设备或权利要求4的方法,其中当所说雾气流入所说沉积室中时,所说沉积室的温度基本上保持在环境温度的水平。
21、权利要求1,12或13的设备,进一步包括用于处理沉积在基体上的所说的液体层以在所说基体上形成一固体物质的薄膜的装置(16,726,709)。
22、权利要求21的设备,其中所说的处理装置包括下列装置中的一个或多个:用于对所说基体上的所说液体层施加紫外线辐射的一个光源(16);用于干燥沉积在所说基体上的所说液体层的装置;用于在所说沉积室维持低于空气压力的装置(726,709)。
23、权利要求1,12或13的设备或权利要求4的方法,其中所说前体(64)含有在一种前体溶液中的一种金属化合物,所说金属化合物选自金属氧化物、金属羧酸盐和金属烷氧基羧酸盐。
CN97192815A 1996-03-04 1997-03-04 改进雾气和雾气流性质的雾化前体沉积设备和方法 Pending CN1212734A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/610,330 US5962085A (en) 1991-02-25 1996-03-04 Misted precursor deposition apparatus and method with improved mist and mist flow
US08/610,330 1996-03-04

Publications (1)

Publication Number Publication Date
CN1212734A true CN1212734A (zh) 1999-03-31

Family

ID=24444601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97192815A Pending CN1212734A (zh) 1996-03-04 1997-03-04 改进雾气和雾气流性质的雾化前体沉积设备和方法

Country Status (8)

Country Link
US (1) US5962085A (zh)
EP (1) EP0885315B1 (zh)
JP (1) JP4010343B2 (zh)
KR (1) KR100327615B1 (zh)
CN (1) CN1212734A (zh)
DE (1) DE69702185T2 (zh)
TW (3) TW413840B (zh)
WO (1) WO1997033013A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521406A (zh) * 2013-10-23 2014-01-22 湖南源创高科工业技术有限公司 一种电子设备的涂覆方法及其使用的装置
CN112752616A (zh) * 2018-08-01 2021-05-04 株式会社尼康 雾发生装置以及雾成膜方法和雾成膜装置

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143063A (en) * 1996-03-04 2000-11-07 Symetrix Corporation Misted precursor deposition apparatus and method with improved mist and mist flow
US6387825B2 (en) 1998-11-12 2002-05-14 Advanced Micro Devices, Inc. Solution flow-in for uniform deposition of spin-on films
US6225240B1 (en) 1998-11-12 2001-05-01 Advanced Micro Devices, Inc. Rapid acceleration methods for global planarization of spin-on films
US6530340B2 (en) * 1998-11-12 2003-03-11 Advanced Micro Devices, Inc. Apparatus for manufacturing planar spin-on films
US6200913B1 (en) 1998-11-12 2001-03-13 Advanced Micro Devices, Inc. Cure process for manufacture of low dielectric constant interlevel dielectric layers
US6317642B1 (en) 1998-11-12 2001-11-13 Advanced Micro Devices, Inc. Apparatus and methods for uniform scan dispensing of spin-on materials
US6407009B1 (en) 1998-11-12 2002-06-18 Advanced Micro Devices, Inc. Methods of manufacture of uniform spin-on films
US6267820B1 (en) * 1999-02-12 2001-07-31 Applied Materials, Inc. Clog resistant injection valve
US6709523B1 (en) * 1999-11-18 2004-03-23 Tokyo Electron Limited Silylation treatment unit and method
US6623865B1 (en) 2000-03-04 2003-09-23 Energenius, Inc. Lead zirconate titanate dielectric thin film composites on metallic foils
JP3596416B2 (ja) * 2000-03-29 2004-12-02 セイコーエプソン株式会社 セラミックスの製造方法およびその製造装置
US6481447B1 (en) * 2000-09-27 2002-11-19 Lam Research Corporation Fluid delivery ring and methods for making and implementing the same
US6641673B2 (en) * 2000-12-20 2003-11-04 General Electric Company Fluid injector for and method of prolonged delivery and distribution of reagents into plasma
US6607597B2 (en) * 2001-01-30 2003-08-19 Msp Corporation Method and apparatus for deposition of particles on surfaces
JP3859543B2 (ja) * 2002-05-22 2006-12-20 レーザーフロントテクノロジーズ株式会社 レーザ加工装置
KR100536797B1 (ko) * 2002-12-17 2005-12-14 동부아남반도체 주식회사 화학 기상 증착 장치
US20040175585A1 (en) * 2003-03-05 2004-09-09 Qin Zou Barium strontium titanate containing multilayer structures on metal foils
CN101068950A (zh) * 2003-05-30 2007-11-07 阿维扎技术公司 气体分配系统
US20050098106A1 (en) * 2003-11-12 2005-05-12 Tokyo Electron Limited Method and apparatus for improved electrode plate
KR101033123B1 (ko) * 2004-06-30 2011-05-11 엘지디스플레이 주식회사 액정표시장치의 제조를 위한 챔버형 장치
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
US7824466B2 (en) 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
US20060189113A1 (en) 2005-01-14 2006-08-24 Cabot Corporation Metal nanoparticle compositions
US8167393B2 (en) 2005-01-14 2012-05-01 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
US8454750B1 (en) 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8137465B1 (en) 2005-04-26 2012-03-20 Novellus Systems, Inc. Single-chamber sequential curing of semiconductor wafers
US8282768B1 (en) 2005-04-26 2012-10-09 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US7718030B2 (en) * 2005-09-23 2010-05-18 Tokyo Electron Limited Method and system for controlling radical distribution
US8398816B1 (en) 2006-03-28 2013-03-19 Novellus Systems, Inc. Method and apparatuses for reducing porogen accumulation from a UV-cure chamber
TWI336901B (en) * 2006-03-10 2011-02-01 Au Optronics Corp Low-pressure process apparatus
JP2008047869A (ja) * 2006-06-13 2008-02-28 Hokuriku Seikei Kogyo Kk シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
US20100183818A1 (en) * 2006-09-06 2010-07-22 Seoul National University Industry Foundation Apparatus and method of depositing films using bias and charging behavior of nanoparticles formed during chemical vapor deposition
JP5010234B2 (ja) 2006-10-23 2012-08-29 北陸成型工業株式会社 ガス放出孔部材を一体焼結したシャワープレートおよびその製造方法
US8426778B1 (en) 2007-12-10 2013-04-23 Novellus Systems, Inc. Tunable-illumination reflector optics for UV cure system
JP5075793B2 (ja) * 2008-11-06 2012-11-21 東京エレクトロン株式会社 可動ガス導入構造物及び基板処理装置
US20120270384A1 (en) * 2011-04-22 2012-10-25 Applied Materials, Inc. Apparatus for deposition of materials on a substrate
TWI517905B (zh) * 2012-09-08 2016-01-21 西凱渥資訊處理科技公司 於射頻模組製造期間關於漆霧收集之裝置及方法
US9562288B2 (en) 2013-04-24 2017-02-07 Diamon Fusion International, Inc. Defined dosing atmospheric temperature and pressure vapor deposition system
US9028765B2 (en) 2013-08-23 2015-05-12 Lam Research Corporation Exhaust flow spreading baffle-riser to optimize remote plasma window clean
US20160033070A1 (en) * 2014-08-01 2016-02-04 Applied Materials, Inc. Recursive pumping member
US10388546B2 (en) 2015-11-16 2019-08-20 Lam Research Corporation Apparatus for UV flowable dielectric
JP7216371B2 (ja) * 2019-06-05 2023-02-01 株式会社デンソー 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900116C3 (de) * 1969-01-02 1978-10-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zum Herstellen hxxochreiner, aus Silicium bestehender einkristalliner Schichten
JPS5989407A (ja) * 1982-11-15 1984-05-23 Mitsui Toatsu Chem Inc アモルフアスシリコン膜の形成方法
US4489102A (en) * 1983-04-04 1984-12-18 At&T Technologies, Inc. Radiation-stimulated deposition of aluminum
JPS59198718A (ja) * 1983-04-25 1984-11-10 Semiconductor Energy Lab Co Ltd 気相法による被膜作製方法
JPS60128264A (ja) * 1983-12-14 1985-07-09 Nec Corp 薄膜形成方法
US4683147A (en) * 1984-04-16 1987-07-28 Canon Kabushiki Kaisha Method of forming deposition film
US4571350A (en) * 1984-09-24 1986-02-18 Corning Glass Works Method for depositing thin, transparent metal oxide films
US4811684A (en) * 1984-11-26 1989-03-14 Semiconductor Energy Laboratory Co., Ltd. Photo CVD apparatus, with deposition prevention in light source chamber
US4569855A (en) * 1985-04-11 1986-02-11 Canon Kabushiki Kaisha Method of forming deposition film
DE3689735T2 (de) * 1985-08-02 1994-06-30 Semiconductor Energy Lab Verfahren und Gerät zur Herstellung von Halbleitervorrichtungen.
JPH068509B2 (ja) * 1985-09-17 1994-02-02 勝 岡田 強誘電体薄膜の製造方法
JPS6296327A (ja) * 1985-10-22 1987-05-02 Seiko Epson Corp ゾルの調整方法
CA1302803C (en) * 1986-02-15 1992-06-09 Hiroji Kawai Method and apparatus for vapor deposition
JPS62246826A (ja) * 1986-04-16 1987-10-28 Seiko Epson Corp ガラスの製造方法
JPH0698328B2 (ja) * 1986-10-31 1994-12-07 住友重機械工業株式会社 真空塗装装置
US5456945A (en) * 1988-12-27 1995-10-10 Symetrix Corporation Method and apparatus for material deposition
US5119760A (en) * 1988-12-27 1992-06-09 Symetrix Corporation Methods and apparatus for material deposition
US5316579A (en) * 1988-12-27 1994-05-31 Symetrix Corporation Apparatus for forming a thin film with a mist forming means
US5138520A (en) * 1988-12-27 1992-08-11 Symetrix Corporation Methods and apparatus for material deposition
US5489369A (en) * 1993-10-25 1996-02-06 Viratec Thin Films, Inc. Method and apparatus for thin film coating an article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521406A (zh) * 2013-10-23 2014-01-22 湖南源创高科工业技术有限公司 一种电子设备的涂覆方法及其使用的装置
CN103521406B (zh) * 2013-10-23 2016-03-02 湖南源创高科工业技术有限公司 一种电子设备的涂覆方法及其使用的装置
CN112752616A (zh) * 2018-08-01 2021-05-04 株式会社尼康 雾发生装置以及雾成膜方法和雾成膜装置
CN112752616B (zh) * 2018-08-01 2023-07-14 株式会社尼康 雾发生装置以及雾成膜方法和雾成膜装置
TWI811413B (zh) * 2018-08-01 2023-08-11 日商尼康股份有限公司 霧產生裝置、霧成膜方法、霧成膜裝置及微粒子成膜裝置

Also Published As

Publication number Publication date
US5962085A (en) 1999-10-05
DE69702185D1 (de) 2000-07-06
TW484173B (en) 2002-04-21
WO1997033013A1 (en) 1997-09-12
DE69702185T2 (de) 2000-12-21
KR19990087528A (ko) 1999-12-27
JP4010343B2 (ja) 2007-11-21
EP0885315A1 (en) 1998-12-23
KR100327615B1 (ko) 2002-09-25
TW413840B (en) 2000-12-01
JP2001503567A (ja) 2001-03-13
EP0885315B1 (en) 2000-05-31
TW436875B (en) 2001-05-28

Similar Documents

Publication Publication Date Title
CN1212734A (zh) 改进雾气和雾气流性质的雾化前体沉积设备和方法
US5456945A (en) Method and apparatus for material deposition
US5759923A (en) Method and apparatus for fabricating silicon dioxide and silicon glass layers in integrated circuits
US5614252A (en) Method of fabricating barium strontium titanate
US6143063A (en) Misted precursor deposition apparatus and method with improved mist and mist flow
US6110531A (en) Method and apparatus for preparing integrated circuit thin films by chemical vapor deposition
US6056994A (en) Liquid deposition methods of fabricating layered superlattice materials
JP3462852B2 (ja) 化学気相成長法によって薄膜を製造する方法と装置
US5688565A (en) Misted deposition method of fabricating layered superlattice materials
JP3973051B2 (ja) プライマを用いて材料を堆積させる方法および装置
US5965219A (en) Misted deposition method with applied UV radiation
CN108352443A (zh) Pzt铁电体膜的形成方法
CN1159367A (zh) 用于形成超细粒子薄膜的方法及其装置
JP2004158794A (ja) 絶縁膜の形成方法及び絶縁膜の形成装置
CN1180447A (zh) 使用底层涂料的材料沉积方法及装置
AU636818B2 (en) Methods and apparatus for material deposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication