CN1208968A - 用单个掩模形成互补阱和自对准槽的方法 - Google Patents

用单个掩模形成互补阱和自对准槽的方法 Download PDF

Info

Publication number
CN1208968A
CN1208968A CN98115195A CN98115195A CN1208968A CN 1208968 A CN1208968 A CN 1208968A CN 98115195 A CN98115195 A CN 98115195A CN 98115195 A CN98115195 A CN 98115195A CN 1208968 A CN1208968 A CN 1208968A
Authority
CN
China
Prior art keywords
layer
trap
semi
dopant
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98115195A
Other languages
English (en)
Inventor
罗伯特·T·福勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Corp
Harrier Inc
Original Assignee
Harrier Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harrier Inc filed Critical Harrier Inc
Publication of CN1208968A publication Critical patent/CN1208968A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

制造CMOS晶体管的方法包括在单晶衬底上形成第一绝缘层,在第一绝缘材料上形成半导体材料层,在半导体层上形成并构图p或n阱掩模层中的一个,露出下面半导体层的第一部分,将一种极性的第一掺杂剂注入到与半导体层的第一部分对准的衬底区内。然后将该第一部分转变成第二绝缘材料并除去掩模层,由此露出半导体层的其余部分。然后与第一掺杂剂相反极性的第二掺杂剂注入到其余的部分中。

Description

用单个掩模形成互补阱和自对准槽的方法
本发明涉及场效应晶体管(“FET”)器件,特别涉及改进的FET器件及其形成工艺。
先进的CMOS技术使用互补n和p阱,以同时优化NMOS和PMOS晶体管。常规的互补阱形成工艺使用一个或两个微光刻掩模步骤。两个掩模制造工艺的优点是不会降低硅表面平面性或布局。在先进的CMOS技术中,这是个重要的要求,即使是n阱和p阱之间一个小(例如几千埃)的台阶,也会导致NMOS和PMOS晶体管之间栅波长变化。CMOS晶体管的栅长度变化会降低可制造性和生产率。因此,由于一个掩模的工艺在工艺期间产生台阶或不希望的表面布局,使得常规的一个掩模制造工艺这种工艺简化未得到有力和充分的优点/改进使其适用于半导体技术。
常规的一个掩模制造工艺中的表面布局问题是由选择热氧化工艺产生的。美国专利No.5,252,501的说明书公开了一种用氧化物/氮化物堆叠构图并用做离子注入掩模(通常和光刻胶掩模一起使用)以限定一个阱的工艺。除去光刻胶后,进行氧化步骤选择性限定注入区上方的氧化物硬掩模。使用第二离子注入步骤限定第二(相对的)阱区。由于选择热氧化步骤消耗了硅,该工艺在n和p阱区之间产生了不希望的表面布局或台阶。
已知的工艺通过使用选择性半导体生长工艺尝试解决该台阶问题。然而如果使用常规的材料和常规的工艺,台阶问题的该解决办法不会解决问题。
本发明包括一种制造场效应晶体管的方法,包括以下步骤:在单晶衬底上形成第一绝缘材料层,在所述绝缘材料上形成半导体材料层,在所述半导体层上形成和构图n或p阱掩模层中的一个,露出下面的半导体层的第一部分,在与半导体层的第一部分对准的衬底区域内注入一种极性的第一掺杂剂,将半导体层的第一部分转变为第二绝缘材料,除去掩模层露出半导体层的其余部分,并将与所述第一掺杂剂相反极性的第二掺杂剂注入到所述与半导体材料的其余暴露部分对准的衬底区域内。
本发明还包括一种制造场效应晶体管的方法,包括以下步骤:氧化硅单晶衬底形成二氧化硅层,在所述二氧化硅上淀积多晶硅层,在所述多晶硅上形成并构图氮化物层限定出p阱区,注入p型掺杂剂在衬底内形成p阱,氧化多晶硅层的p阱区;除去氮化物层,注入n型掺杂剂在衬底内形成n阱,包括除去所述多晶硅层的p阱区和n阱区形成多晶硅的台阶,并形成与多晶硅的台阶和n阱和p阱对准的槽。
按惯例,本发明的目的在于包括多个CMOS晶体管的集成电路。CMOS晶体管形成在单晶衬底内。衬底内为多个间隔开成对互补的p阱区和n阱区。在每个阱区之间为填有半导体材料的自对准槽。每个阱区还有源、栅和漏。
为有利起见,制造该晶体管的方法需要第一步在单晶衬底上形成第一绝缘层。接下来,在第一绝缘材料上形成半导体材料层。下面的步骤包括在半导体层上形成并构图p或n阱掩模层中的一个,露出下面半导体层的第一部分。一旦完成该构图步骤,将一种极性的第一掺杂剂注入到与半导体层的第一部分对准的衬底区内。然后将该第一部分转变成第二绝缘材料并除去掩模层,由此露出半导体层的其余部分。然后与第一掺杂剂相反极性的第二掺杂剂注入到其余的部分内。
该方法还包括除去半导体材料的第一部分和露出的其余部分。该除去工艺露出半导体材料的台阶。随后将与台阶对准的部分衬底和台阶一起除去形成槽。槽由第二半导体材料填充。
现在参考附图借助例子介绍本发明。
图1a为本发明的CMOS晶体管的示意图。
图1b为图1a中盒1的放大图。
图2a-i为本发明工艺的描述示意图。
在本发明中,一个掩模的制造工艺利用热氧化工序产生台阶。将部分下面的衬底和台阶一起除去形成位于两个上表面基本共面的互补阱之间的自对准槽。
图1为包括多个CMOS晶体管10的集成电路。CMOS晶体管10形成在单晶衬底12内。衬底12内为多个间隔开成对互补的p阱区16和n阱区18。在这些阱区16,18之间为填充有第二半导体材料22的自对准槽20。在各阱区16和18中为一组重掺杂区17,19,21,23。将阱区16,18其内的每个重掺杂区17,19,21,23相反极性掺杂。
将每个阱区中的一个重掺杂区指定为源,另一个为漏。在每个源和每个漏区的漏之间的是栅24。栅24包括衬底10上方的绝缘层14和绝缘层14上的半导体材料29。然而本发明的工艺目的在于图1b中的结构。
通过图2所示的一个掩模技术得到图1b所示的本发明。参见图2a,在单晶衬底12上施加第一绝缘材料层14。具体地,衬底12为例如由单晶硅构成的起始晶片。绝缘层14,优选氧化层,形成在晶片12的上表面13上或其上方。通过形成250到350埃绝缘材料的低温化学汽相淀积技术或快速热氧化工艺形成氧化层14。这些工艺可确保第一绝缘层14充分附着在衬底12上方,优选在衬底上,用于元件的进一步淀积。
在将绝缘材料14施加到衬底12上方的初始步骤后,将图2b所示的第一半导体材料层26施加在绝缘材料14上方,优选施加在绝缘材料上。通过低压化学汽相淀积(LPCVD)工艺施加4,500到5,500埃厚的半导体材料26。在本发明的该实施例中,半导体材料26为多晶硅材料。
下一步显示在图2c,需要在半导体层26上方优选在半导体层上形成并构图p或n阱掩模层28中的一个以露出下面的半导体层26的第一部分30。掩模层28通常为700到900埃厚。在本发明的一个实施例中,掩模层28为氮化物材料。
参见图2d,在与第一部分30对准的衬底12的区域32内注入一个极性的第一掺杂剂。第一掺杂剂为用于穿透半导体材料26的高注入能量源。通常,注入剂量为2e12、能量为360Kev的硼并形成p阱16。掩模层26阻止硼离子穿透到下面的衬底12内。
如图2e所示,使用多晶硅缓冲局部氧化隔离(通常称做“PBLOCOS”)法将第一部分30转变为第二绝缘材料34。在该实施例中,第二绝缘材料34由二氧化硅导出。通常,PBLOCOS工艺是在约1000摄氏度的温度将第一部分30加热约二个小时的热氧化步骤。在该工艺期间,衬底12未受影响。
转变第一部分30后,除去掩模28露出半导体层26的其余部分36。然后,如图2f所示,将与第一掺杂剂极性相反的第二掺杂剂注入到衬底12与露出的其余部分26对准的区域38内。第二掺杂剂通常由磷离子形成n阱18。氧化层34阻止磷离子进入到p阱32内。
参见图2g,除去半导体材料26的第一部分30和露出的其余部分36。该除去步骤露出半导体材料26的台阶40。在反应离子腐蚀系统中,除去第一部分30和暴露的其余部分36的标准工艺为各向异性腐蚀。
参见图2h,用第二保护层42,优选为氮化层涂敷台阶40和暴露出的绝缘材料14。除去覆盖台阶40的部分第二保护层42。通常由深腐蚀或化学机械抛光工艺完成该除去工艺。由此露出台阶40并被第二保护层42环绕。
随后将台阶40和与台阶40对准的部分衬底12一起除去,形成槽20。除去台阶和部分衬底12的槽形成工艺为常规的腐蚀工艺。最好,槽20的深度约等于最深的阱,n阱或p阱的深度。
形成槽20之后,除去其余的第二保护层42和氧化层14的预定部分,如图2i所示。优选通过半导体工业公知的剥离工序进行该除去工艺。
参见图1b,以氧化衬底12相同的方式热氧化槽40形成氧化层11,并通过LPCVD工艺用第二半导体材料22优选为多晶硅填充。
为了在各n阱和p阱中完全激活掺杂剂并不使结推进得太深,可使用高温快速热退火(RTA)。
本发明的目的在于包括形成在单晶衬底内的多个CMOS晶体管的集成电路。衬底内为多个间隔开成对互补的p阱区和n阱区。在每个阱区之间为填有半导体材料的自对准槽。每个阱区还有源、栅和漏。
一种制造该晶体管的方法需要第一步在单晶衬底上形成第一绝缘材料层。接下来,在第一绝缘材料上形成半导体材料层。下面的步骤包括在半导体层上形成并构图p或n阱掩模层中的一个,露出下面半导体层的第一部分。一旦完成该构图步骤,将一种极性的第一掺杂剂注入到与半导体层的第一部分对准的衬底区内。然后将该第一部分转变成第二绝缘材料并除去掩模层,由此露出半导体层的其余部分。然后与第一掺杂剂相反极性的第二掺杂剂注入到其余的部分内。

Claims (11)

1.一种制造场效应晶体管的方法,包括以下步骤:
在单晶衬底上形成第一绝缘材料层,在所述第一绝缘材料上形成半导体材料层,在所述半导体层上形成并构图p或n阱掩模层中的一个以露出下面半导体层的第一部分,将一种极性的第一掺杂剂注入到与半导体层的第一部分对准的衬底区内,将半导体层的第一部分转变成第二绝缘材料,除去掩模层露出半导体层的其余部分,将与第一掺杂剂相反极性的第二掺杂剂注入到与半导体材料的其余露出部分对准的衬底区域内。
2.根据权利要求1的方法,包括除去半导体材料的第一部分和露出的其余部分,形成半导体材料的台阶,并形成与半导体材料的台阶以及第一和第二阱对准的槽的步骤。
3.根据权利要求1或2的方法,包括在半导体材料的台阶周围形成并构图第二掩模层。
4.根据权利要求1到3任意一个的方法,其中注入第一掺杂剂形成P阱,注入第二掺杂剂形成N阱。
5.根据权利要求1到4任意一个的方法,其中在约1000摄氏度下转变第一部分约两小时,用热氧化转变第一部分。
6.根据权利要求2的方法,其中槽的深度约等于最深阱的深度,包括氧化槽的侧壁并用第二半导体材料填充槽的步骤。
7.根据权利要求1到6任意一个的方法,其中第一和第二半导体材料为多晶硅材料。
8.根据权利要求1到7任意一个的方法,其中在单晶衬底上形成第一绝缘材料层;在所述绝缘材料上形成半导体材料层;并在所述半导体层上形成并构图p或n阱掩模层中的一个,其中仅将半导体材料转变成第一部分,且注入区未氧化。
9.一种制造场效应晶体管的方法,包括以下步骤:
氧化硅单晶衬底形成二氧化硅层,在所述二氧化硅上淀积多晶硅层,在所述多晶硅上形成并构图氮化物层限定出p阱区,注入p型掺杂剂在衬底内形成p阱,氧化多晶硅层的p阱区;除去氮化物层,注入n型掺杂剂在衬底内形成n阱,包括除去所述多晶硅层的p阱区和n阱区形成多晶硅的台阶,并形成与多晶硅的台阶和n阱及p阱对准的槽。
10.根据权利要求9的方法,其中还包括在多晶硅的台阶周围形成并构图第二掩模层,其中也在约1000摄氏度下氧化p阱区约两小时,用热氧化氧化p阱。
11.根据权利要求9或10的方法,其中槽的深度约等于最深阱的深度,包括氧化槽的侧壁并用第二多晶硅材料填充槽的步骤,其中在所述二氧化硅上淀积多晶硅层;并在所述多晶硅上形成和构图氮化物层。
CN98115195A 1997-06-30 1998-06-29 用单个掩模形成互补阱和自对准槽的方法 Pending CN1208968A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US885,707 1997-06-30
US08/885,707 US5956583A (en) 1997-06-30 1997-06-30 Method for forming complementary wells and self-aligned trench with a single mask

Publications (1)

Publication Number Publication Date
CN1208968A true CN1208968A (zh) 1999-02-24

Family

ID=25387526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98115195A Pending CN1208968A (zh) 1997-06-30 1998-06-29 用单个掩模形成互补阱和自对准槽的方法

Country Status (6)

Country Link
US (1) US5956583A (zh)
EP (1) EP0889518A1 (zh)
JP (1) JPH1174375A (zh)
KR (1) KR19990007493A (zh)
CN (1) CN1208968A (zh)
TW (1) TW382790B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599813B2 (en) 2001-06-29 2003-07-29 International Business Machines Corporation Method of forming shallow trench isolation for thin silicon-on-insulator substrates
US6703187B2 (en) * 2002-01-09 2004-03-09 Taiwan Semiconductor Manufacturing Co. Ltd Method of forming a self-aligned twin well structure with a single mask
KR100589489B1 (ko) * 2003-12-31 2006-06-14 동부일렉트로닉스 주식회사 횡형 디모스의 제조방법
US9018048B2 (en) * 2012-09-27 2015-04-28 Stmicroelectronics S.R.L. Process for manufactuirng super-barrier rectifiers

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244752A (en) * 1979-03-06 1981-01-13 Burroughs Corporation Single mask method of fabricating complementary integrated circuits
US4411058A (en) * 1981-08-31 1983-10-25 Hughes Aircraft Company Process for fabricating CMOS devices with self-aligned channel stops
US4470191A (en) * 1982-12-09 1984-09-11 International Business Machines Corporation Process for making complementary transistors by sequential implantations using oxidation barrier masking layer
US4509991A (en) * 1983-10-06 1985-04-09 International Business Machines Corporation Single mask process for fabricating CMOS structure
US4584027A (en) * 1984-11-07 1986-04-22 Ncr Corporation Twin well single mask CMOS process
US4656730A (en) * 1984-11-23 1987-04-14 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating CMOS devices
US4654119A (en) * 1985-11-18 1987-03-31 International Business Machines Corporation Method for making submicron mask openings using sidewall and lift-off techniques
US5023193A (en) * 1986-07-16 1991-06-11 National Semiconductor Corp. Method for simultaneously fabricating bipolar and complementary field effect transistors using a minimal number of masks
IT1213457B (it) * 1986-07-23 1989-12-20 Catania A Procedimento per la fabbricazione di dispositivi integrati, in particolare dispositivi cmos adoppia sacca.
US4735681A (en) * 1986-08-15 1988-04-05 Motorola Inc. Fabrication method for sub-micron trench
US4906585A (en) * 1987-08-04 1990-03-06 Siemens Aktiengesellschaft Method for manufacturing wells for CMOS transistor circuits separated by insulating trenches
US5272367A (en) * 1988-05-02 1993-12-21 Micron Technology, Inc. Fabrication of complementary n-channel and p-channel circuits (ICs) useful in the manufacture of dynamic random access memories (drams)
GB8820058D0 (en) * 1988-08-24 1988-09-28 Inmos Ltd Mosfet & fabrication method
US5132241A (en) * 1991-04-15 1992-07-21 Industrial Technology Research Institute Method of manufacturing minimum counterdoping in twin well process
US5252501A (en) * 1991-12-30 1993-10-12 Texas Instruments Incorporated Self-aligned single-mask CMOS/BiCMOS twin-well formation with flat surface topography
US5219783A (en) * 1992-03-20 1993-06-15 Texas Instruments Incorporated Method of making semiconductor well structure
US5567550A (en) * 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
US5759881A (en) * 1993-09-10 1998-06-02 Micron Technology, Inc. Low cost well process
JPH07326745A (ja) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd 半導体装置の製造方法
US5573962A (en) * 1995-12-15 1996-11-12 Vanguard International Semiconductor Corporation Low cycle time CMOS process

Also Published As

Publication number Publication date
KR19990007493A (ko) 1999-01-25
EP0889518A1 (en) 1999-01-07
TW382790B (en) 2000-02-21
JPH1174375A (ja) 1999-03-16
US5956583A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
US6297132B1 (en) Process to control the lateral doping profile of an implanted channel region
US4784971A (en) Process for manufacturing semiconductor BICMOS device
US5438009A (en) Method of fabrication of MOSFET device with buried bit line
US6245639B1 (en) Method to reduce a reverse narrow channel effect for MOSFET devices
CN101952958B (zh) 包括鳍式晶体管的系统及装置以及其使用、制作及操作方法
US5877041A (en) Self-aligned power field effect transistor in silicon carbide
KR100408328B1 (ko) Mos 트랜지스터 제조 방법
US4891328A (en) Method of manufacturing field effect transistors and lateral bipolar transistors on the same substrate
JP2000036596A (ja) ゲ―トにド―ピングを施し、非常に浅いソ―ス/ドレイン拡張部を作成する方法および結果として得られる半導体
US6362062B1 (en) Disposable sidewall spacer process for integrated circuits
US5547903A (en) Method of elimination of junction punchthrough leakage via buried sidewall isolation
CN1208968A (zh) 用单个掩模形成互补阱和自对准槽的方法
US4762805A (en) Nitride-less process for VLSI circuit device isolation
US4749662A (en) Diffused field CMOS-bulk process
KR980006254A (ko) 반도체 소자의 제조방법
US6933188B1 (en) Use of a selective hard mask for the integration of double diffused drain MOS devices in deep sub-micron fabrication technologies
EP0809286B1 (en) A process for the fabrication of semiconductor devices having various buried regions
KR100306504B1 (ko) 저가의 미크론 이하의 깊이를 갖는 cmos 제조방법
US5981326A (en) Damascene isolation of CMOS transistors
KR19980081139A (ko) Cmos 회로장치의 형성방법
US7098095B1 (en) Method of forming a MOS transistor with a layer of silicon germanium carbon
US4879583A (en) Diffused field CMOS-bulk process and CMOS transistors
EP0851478B1 (en) Method of forming oxide isolation regions
KR100187680B1 (ko) 반도체 소자의 제조방법
KR100259586B1 (ko) 반도체장치 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication