CN1206376C - 硫化物矿物的生物沥滤 - Google Patents

硫化物矿物的生物沥滤 Download PDF

Info

Publication number
CN1206376C
CN1206376C CNB008152624A CN00815262A CN1206376C CN 1206376 C CN1206376 C CN 1206376C CN B008152624 A CNB008152624 A CN B008152624A CN 00815262 A CN00815262 A CN 00815262A CN 1206376 C CN1206376 C CN 1206376C
Authority
CN
China
Prior art keywords
sludge
oxygen
acid
temperature
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008152624A
Other languages
English (en)
Other versions
CN1387581A (zh
Inventor
D·W·杜
P·巴森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Billiton Intellectual Property BV
Original Assignee
Billiton Intellectual Property BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Billiton Intellectual Property BV filed Critical Billiton Intellectual Property BV
Publication of CN1387581A publication Critical patent/CN1387581A/zh
Application granted granted Critical
Publication of CN1206376C publication Critical patent/CN1206376C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/22Obtaining zinc otherwise than by distilling with leaching with acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/26Refining solutions containing zinc values, e.g. obtained by leaching zinc ores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0476Separation of nickel from cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/09Reaction techniques
    • Y10S423/17Microbiological reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Fertilizers (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hydroponics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种生物沥滤包含硫化物矿物的矿泥的方法,其包括向该矿泥中供给包含超过21%体积比的氧的原料气,提高由气相至液相的氧的传递速率。50℃至100℃间的高温和嗜热微生物的使用相结合使硫化物矿物沥滤速率大幅提高。

Description

硫化物矿物的生物沥滤
发明背景
本发明涉及硫化物矿物的生物沥滤。
目前运行中的处理硫化物矿物的商业生物沥滤设备通常在40℃至50℃的温度范围内运行,并且依靠向生物沥滤反应器喷射空气以提供所需的氧。
在该相对较低温度下运行和使用空气供氧限制了可以达到的硫化物矿物的氧化速率。例如,硫铜钴矿和硫砷铜矿在温度低于50℃时沥滤较幔,在该温度或低于该温度下处理导致差的并且不太经济的金属提取。
使用介于50℃至100℃之间的高温极大地加快硫化物矿物沥滤的速率。
然而在高温下氧的溶解度受到限制,硫化物矿物沥滤的速率从而受到限制。在用空气供给氧的情况下,受到限制的氧溶解度的作用使得硫化物矿物沥滤的速率依赖于并且受限于氧从气相向液相的传递速率(1,2)
发明内容
根据本发明的一个方面,提供了一种生物沥滤包含硫化物矿物的矿泥(slurry)的方法,其中包括向该矿泥中供给包含超过21%体积比的氧的原料气的步骤。
所述矿泥可以是包含大量硫化物矿物的含水矿泥。
在此使用的“富氧气体”一词意在包括一种气体,例如空气,其包含超过21%体积比的氧。这一氧含量超过空气的氧含量。“纯氧”一词包括含有超过85%体积比的氧的气体。
向矿泥供给的原料气优选含有超过85%体积比的氧,就是说基本上是纯氧。
本方法可以包括将矿泥中溶解氧浓度维持在所期望范围之内的步骤,该范围由操作条件和用于沥滤的微生物种类决定。本申请人已确定维持微生物生长和矿物氧化的溶解氧浓度的下限是在0.2×10-3kg/m3到4.0×10-3kg/m3的范围内。另一方面,如果溶解氧浓度太高,则微生物的生长受到抑制。上限浓度也取决于用于沥滤过程的微生物的属和菌株,通常是在4×10-3kg/m3到10×10-3kg/m3的范围内。
因此,优选将矿泥中溶解氧浓度维持在0.2×10-3kg/m3到10×10-3kg/m3的范围内。
本方法可以包括下列步骤,即确定矿泥中溶解氧浓度并相应地对至少下列之一进行控制:原料气的氧含量、向矿泥中供给原料气的速率和向反应器中供给矿泥的速率。
矿泥中溶解氧浓度可由任何适当方式确定,例如通过下列方式中的一种或多种:直接测定矿泥中的溶解氧浓度,测定矿泥上方气体中的氧含量和通过测定矿泥产生的废气中的氧含量,并考虑进向矿泥中的富气或纯氧的供给速率和其他相关因素间接确定。
本方法可以包括控制矿泥中的碳含量的步骤。可通过下列的一种或多种方法实现该步骤:向矿泥中添加二氧化碳气体和向矿泥中添加其他含碳物质。
本方法可以扩展到控制进入矿泥的原料气中的二氧化碳的浓度在0.5%至5%体积比范围内的步骤。合适的数值约为1%至1.5%体积比。选择二氧化碳的浓度以维持微生物生长和硫化物矿物氧化的高速率。
生物沥滤优选在高温下进行。如此前所述,生物沥滤速率随操作温度的提高而加快。显然,用于生物沥滤的微生物取决于操作温度,反之亦然。鉴于向矿泥中添加富氧气体或基本上纯的氧有着成本因素,所以最好是在使沥滤速率的提高在量上足以弥补操作成本的增加的温度下进行操作。因此,生物沥滤优选在高于40℃的温度进行。
生物沥滤可以在最高100℃或更高的温度下进行,优选在60℃至85℃的温度范围内进行。
在本发明的一种形式中,所述方法包括在最高45℃的温度下利用中温(嗜温)微生物生物沥滤矿泥的步骤。该微生物可以选自例如下列的属:
酸硫杆菌属(Acidithiobacillus)(前称硫杆菌属(Thiobacillus));钩端螺菌属(Leptosprillum);亚铁微菌属(Ferromicrobium);和嗜酸菌属(Acidiphilium)。
为在所述温度下操作,该微生物可以选自例如下列的种:
高温酸硫杆菌(高温硫杆菌)(Acidithiobacillus caldus(Thiobacillus caldus));氧化硫酸硫杆菌(Acidithiobacillusthiooxidans)(氧化硫硫杆菌(Thiobacillus thiooxidans));氧化亚铁酸硫杆菌(Acidithiobacillus ferrooxidans)(氧化亚铁硫杆菌(Thiobacillus ferrooxidans));嗜酸酸硫杆菌(Acidithiobacillus acidophilus)(嗜酸硫杆菌(Thiobacillusacidophilus));Thiobacillus prosperus;铁氧化钩端螺菌(Leptospirilium ferrooxidans);嗜酸亚铁微菌(Ferromicrobiumacidophilus);和隐藏嗜酸菌(Acidiphilium cryptum)。
如果生物沥滤步骤在45℃至60℃的温度下进行,可以利用中度嗜热微生物。其可以选自例如下列的属:
酸硫杆菌属(Acidithiobacillus)(前称硫杆菌属(Thiobacillus));酸微菌属(Acidimicrobium);硫化杆菌属(Sulfobacillus);铁原体属(Ferroplasma)(Ferriplasma);和脂环酸杆菌属(Alicyclobacillus)。
适合的中度嗜热微生物可以选自例如下列的种:
高温酸硫杆菌(Acidithiobacillus caldus)(前称高温硫杆菌(Thiobacillus caldus));氧化亚铁酸微菌(Acidimicrobiumferrooxidans);嗜酸硫化杆菌(Sulfobacillus acidophilus);二氧化硫硫化杆菌(Sulfobacillus disulfidooxidans);热氧化硫化杆菌(Sulfobacillus thermosulfidooxidans);Ferroplasmaacidarmanus;嗜酸热原体(Thermoplasma acidophilum);和酸热脂环酸杆菌(Alicyclobacillus acidocaldrius)。
优选在60℃至85℃的温度范围内利用嗜热微生物进行沥滤过程。该微生物可以选自例如下列的属:
热酸菌属(Acidothermus);硫化叶菌属(Sulfolobus);生金球菌属(Metallosphaera);酸双面菌属(Acidianus);铁原体属;热原体属(Thermoplasma);和Picrophilus。
适合的嗜热微生物可以选自例如下列的种:
金属硫化叶菌(Sulfolobus metallicus);嗜酸热硫化叶菌(Sulfolobus acidocaldarius);热氧化硫化叶菌(Sulfolobusthermosulfidooxidans);下层酸双面菌(Acidianus infernus);勤奋生金球菌(Metallosphaera sedula);Ferroplasmaacidarmanus;嗜酸热原体(Thermoplasma acidophilum);火山热原体(Thermoplasma volcanium);和Picrophilus oshimae。
可以在与大气连通或基本封闭的反应器罐或容器中沥滤矿泥。在基本封闭的情况下,反应器中可以为废气提供出气口。
按照本发明的另一方面,提供了一种生物沥滤包含硫化物矿物的矿泥的方法,包括如下步骤,即在高于40℃的温度下利用合适的微生物生物沥滤矿泥和将矿泥中的溶解氧浓度控制在预定范围之内。
可以通过控制向矿泥中的氧的供给控制所述溶解氧含量。
氧可以富氧气体或基本纯氧的形式供给到矿泥中。
上述操作温度优选是在60℃至85℃的范围内。
本发明还扩展到一种提高氧由气相到硫化物矿物灰泥中液相的质量传递系数的方法,其中包括向矿泥中供给包含超过21%体积比的氧的原料气的步骤。
优选该原料气包含超过85%体积比的氧。
本发明还扩展到一种生物沥滤包含硫化物矿物的含水矿泥的方法,其中包括在高于40℃的温度下生物沥滤该矿泥和将该矿泥中的溶解氧浓度维持在0.2×10-3kg/m3到10×10-3kg/m3的范围内的步骤。
可以通过向矿泥中供给包含超过21%体积比的氧的气体来维持所述的溶解氧浓度。温度优选是在60℃至85℃的范围内。
本发明还意在扩展到函盖一种生物沥滤设备,其包括反应容器,向该容器供给硫化物矿泥的来源,氧源,测定容器矿泥中溶解氧浓度的装置,以及根据溶解氧浓度的测定、控制氧由氧源到矿泥的供给以获得预定范围内的矿泥中溶解氧浓度的控制装置。
可以利用各种技术控制向矿泥中的氧的供给并从而控制矿泥中的溶解氧含量或浓度在所期望的数值。例如可以利用手工操作的阀门。对于更精确的控制可以利用自动控制系统。所述技术均为已知,在此不作进一步描述。
如同已经表明的,可以按照预定标准将氧和二氧化碳加入矿泥。这些物质的添加可以以预期需求和其他性能参数例如铁(II)浓度的测定为根据,然而最好是利用合适的测量探头抽验关键参数的实际值。
例如,可以利用溶解氧探头直接测定矿泥中的溶解氧浓度。为此将该探头浸入矿泥中。通过在反应器废气中使用探头或定时地向氧气分析仪传送废气样品,可以间接测定溶解氧浓度。同样要指出的是此类测量技术为已知,因此可以采用任何合适的技术。
控制方面的一个优选手段是使用一个或多个探头直接或间接地测定矿泥中的溶解氧浓度。探头产生一个或多个控制信号,用来自动控制对一个或多个合适的阀门(例如电磁阀)的操作,以便按照矿泥中溶解氧浓度的实时测定自动改变输入矿泥的气流中的氧的供给。
虽然优选控制输入矿泥的气流中的氧的添加,但也可以采用相反的方法,即可以维持反应容器中的氧的供给速率基本恒定而改变向反应容器中供给硫化物矿泥的速率,以获得所期望的溶解氧浓度。
本发明不仅仅局限于所采用的实际控制技术,而且意在扩展到上述手段的变种和任何等效的方法。
附图说明
下面将参照附图以实施例的形式对本发明作进一步描述,其中:
图1为施行本发明的设备的局部图示,而图2、3和4图示由利用本发明原则运行的生物反应器所获得的各种结果和参数。
优选实施方案
一般原则
在高温下使用空气的生物沥滤过程中氧溶解度低的局限性限制了反应速度,因此要求空气中富集氧,即氧含量高于21%体积比,或者使用纯氧(定义为高于85%体积比的氧)。富氧空气或纯氧的使用克服了由于氧供给的限制而受限的反应速率,但有两点主要缺陷:
a)供给富氧空气或纯氧的花费昂贵并且需要氧的高利用率(>60%)以补偿额外的花费(3);和
b)如果溶液中氧含量过高,将阻止微生物的生长,硫化物矿物的生物沥滤将停止(4)
因此,为在商业生物沥滤设备中实现在高温时硫化物矿物沥滤的高速率的益处,必须克服需要昂贵的氧的缺点和如果溶解氧浓度过高时的失败危险。
高温下的硫化物矿物的生物沥滤导致高速率的硫化物矿物氧化,但是要依靠氧和二氧化碳的供给来维持高速率的硫化物矿物氧化和适当速度的微生物生长。在生物沥滤反应器中氧和二氧化碳的吸收均受限于由气相向溶液相的质量传递速率。对于氧,氧吸收速率按等式(1)定义如下:
                 R=M·(C*-CL)      (1)
其中:R=每单位时间(s)单位体积(m3)的氧质量(kg)需求(kg/m3/s),
      M=以倒数秒(s-1)计的氧质量传递系数,
      C*=每单位体积(m3)以质量(kg)计的饱和溶解氧浓度(kg/m3),
      CL=每单位体积(m3)以质量(kg)计的溶液中溶解氧浓度(kg/m3)。
(C*-GL)因子被称为氧驱动力。可利用相似的等式描述向溶液中的二氧化碳的供给速率。如果加快硫化物矿物氧化速率,氧需求量成比例增加。为满足更大的氧需求量,必须提高氧质量传递系数(M)和氧驱动力(C*-CL)两者之一。
通过提高生物沥滤反应器混合器的功率输入可以增大氧质量传递系数。该手段增进气体在硫化物矿泥中的分散。然而以此手段,氧质量传递系数例如40%的提高需要混合器的功率输入增加多达200%,导致运行成本成比例的增加。
通过提高饱和溶解氧浓度C*和降低溶解氧含量或浓度CL可以提高所述氧驱动力。
如果溶解氧浓度C*达到过高的水平,微生物群体的生长将受到限制或阻止。已发现高于4×10-3kg/m3的浓度水平有害于硫化叶菌属类菌株。然而已发现某些酸硫杆菌属菌株容许最高10×10-3kg/m3的溶解氧浓度。
本发明人已确定维持微生物生长和矿物氧化的溶解氧浓度的下限在0.2×10-3kg/m3至4.0×10-3kg/m3的范围内。因此,为了提供适当的或最佳的氧供给,必须监控硫化物矿泥中的溶解氧浓度,并且在适当的情况下必须控制向硫化物矿泥中氧的添加,以维持溶液中最低溶解氧浓度值在0.2×10-3kg/m3至4.0×10-3kg/m3之间。
另一方面,溶解氧浓度不得超过阻止微生物生长的上阈值。需要指出该上阈浓度取决于生物沥滤过程中使用的微生物属和菌株。通常的上阈值是在4×10-3kg/m3至10×10-3kg/m3的范围内。
如前所述,在约40℃至55℃的相对较低的温度下操作时可以达到的硫化物矿物的氧化速率是有限的。为了提高氧化速率,最好是利用嗜热微生物并且在超过60℃的温度下操作。任何能够在该温度范围内操作的合适的微生物均可被采用。最佳操作温度取决于所用微生物的属和种类。例如硫化杆菌属类型的中度嗜热微生物适用于在最高达65℃的温度时操作。硫化叶菌属类型的嗜热微生物适用于在从60℃到至少85℃的温度下操作。例如金属硫化叶菌在65℃至70℃的温度范围内显示最佳生长。
本申请人已确定在40℃至85℃的高温时利用富氧气体或纯氧作氧化剂的生物沥滤过程的操作产生以下效果:
显著增加反应器的硫化物氧化单位产量;
导致出乎意料显著提高的氧质量传递速率;
提高氧的使用率,假如溶解氧浓度被控制在高于阻止微生物生长和矿物氧化、但低于抑制微生物生长的浓度的话;和
显著降低硫化物矿物氧化所需的总功率。
本发明的方法相对于在40℃至45℃的温度下用空气进行的生物沥滤操作显示出显著改进。
直接向生物反应器中受控加入富氧空气或纯氧提高了氧利用效率。对于使用空气在40℃至45℃的温度下操作的常规商业生物沥滤设备(容积至少100m3),氧的利用预期可以达到40%至50%的最大氧利用系数。从而供入生物沥滤设备的氧总质量中只有40%至50%被用于氧化硫化物矿物。用本发明方法氧的利用率明显更高,约为60%至95%。这一较高的氧利用率是通过氧的受控加入和提高的氧质量传递速率以及在溶液相中低溶解氧浓度下操作得以实现的。
应该理解,虽然高的氧需求量主要是由于采用较高的温度而产生的,但在低于60℃的温度下利用中温或中度嗜热微生物快速沥滤硫化物矿物将同样有高的氧需求量。因此本发明方法不仅仅局限适于嗜热或极度嗜热微生物,而且还适于中温和中度嗜热微生物。
利用富氧空气或纯氧的另一长处是减少挥发损失,因为会有较少的惰气从反应器顶部带出水蒸汽。在水稀少或昂贵的地区该长处尤为重要。
在进行本发明方法时,可用在所属技术领域中已知的任何适当方式控制生物沥滤容器或反应器中矿泥的温度。在一例中生物沥滤反应器被绝缘,通过硫化物氧化所释放的能量进行加热。利用任何适合的冷却系统例如内部冷却系统调节矿泥的温度。
表1列出在两个分别为设备A和设备B(容积大于100m3)的商业生物反应器中,在40℃至45℃下用空气进行生物沥滤时的硫化物氧化单位产量和氧利用率的典型数据。
                   表1    商业生物反应器性能结果
说明 单位 设备A  设备B
反应器温度 42  40
反应器操作体积 m3 471  896
氧利用率 37.9  43.6
典型的溶解氧浓度 mg/l 2.5  2.7
氧质量传递系数 s-1 0.047  0.031
氧的比需求量 kg/m3/天 21.6  14.8
硫化物氧化单位产量 kg/m3/天 8.9  5.7
每千克被氧化的硫化物的比动力消耗 KWh/kgS2- 1.7  1.8
在涉及示于表1中商业反应器设备A和设备B的结果的低温(40℃至50℃)和用空气作输入气体的条件下,所获得的氧利用率是预期的,而氧质量传递系数(M)符合本申请人的设计值。本申请人已确定,如果将本发明方法用于设备A,设备性能将显著提高,如表2中给出的结果所示。
                 表2    商业生物反应器性能的预期改进
单位 设备A-常规操作 设备A-使用本发明的方法
反应器温度 42 77
微生物类菌株 - 酸硫杆菌属 硫化叶菌属
输入气体氧含量 %体积 20.9 90.0
氧利用率 37.9 93.0
典型的溶解氧浓度 mg/l 2.5 2.5
氧的比需求量 kg/m3/天 21.6 59.5
硫化物氧化单位产量 kg/m3/天 8.9 24.5
每千克被氧化的硫化物的比动力消耗 kWh/kgS2- 1.7 1.2
上述结果清楚地显示了通过高温下生物沥滤、加入富氧气体和控制溶解氧浓度到预定的低水平(例如0.2×10-3kg/m3至4.0×10-3kg/m3)的结合,本发明在实现较高反应速率方面的优越性。反应器的硫化物氧化单位产量被提高几乎3倍。显然溶解氧浓度上限不应被提高到大于阻碍或停止微生物生长的数值。
即使需要额外的资金用于氧的生产,反应器和其他花费的节约至少弥补该额外开支。此外,每千克被氧化的硫化物的比动力消耗被降低了大约三分之一。对于一个每天氧化300吨硫化物的设备,假如每千瓦时动力成本为5美分,动力节约每年可以总计达到280万美元。反应器的高氧利用率和提高的硫化物氧化单位生产能力的结合显示出优于在低温下使用空气供氧的常规生物沥滤实践的显著改进。
具体实施例
附图1阐示一个非局限性的本发明实施例,并图示依照本发明原则进行生物沥滤的生物沥滤设备10。
该设备10包括装有由马达和齿轮箱组合16驱动的搅拌器或混合器14的生物反应器12。
在使用中,该反应器的罐或容器18装有硫化物矿泥20,所述搅拌器的叶轮22浸于矿泥中,用于以所属技术领域中已知的方式混合矿泥。
探头24浸于矿泥中,用于测定矿泥中的溶解氧浓度。在罐18内部位于矿泥水平面28上方的第二探头26用于矿泥20上方的气体30中的二氧化碳含量。
氧源32、二氧化碳源34和空气源36分别通过阀门38、40和42连接在位于罐18内下部、浸在矿泥20中的喷射系统44上。
探头24用于监测硫化物矿泥20中的溶解氧浓度并向控制装置46提供控制信号。该控制装置以所属技术领域中已知的方式但依照在此所述的原则控制氧供给阀门38的操作,以维持矿泥20中所期望的溶解氧浓度。
探头26测定硫化物矿泥20上方气体中的二氧化碳含量。探头26提供控制信号给控制装置48,其随即控制阀门40的操作,以控制由源34向流向喷射器44的气流中二氧化碳的加入。
通过阀门42控制由源36向喷射器44的空气流速。通常设定该阀门以提供近于恒定的由源36向喷射器的空气流,并分别由阀门38和40控制向该空气流中添加氧和二氧化碳。虽然所述方法是调节流向喷射器的空气流中氧和二氧化碳含量的优选手段,但其他技术也可被采用。例如虽然优选程度较低,也可以调节空气流的流速并将可调节的空气流与稳定供应的氧及可变供应的二氧化碳(或者反过来)相混合。另一种可能性是有两个分离的空气流流动,将氧和二氧化碳分别加入其中。无论采用何种技术,目的是相同的,即控制向矿泥20中的氧和二氧化碳的添加。
将矿泥50由矿泥进料源52通过控制阀门54和输入管56送入罐18内部。通过适当调节阀门54,可以维持矿泥进料速率基本恒定,以确保将矿泥以保持最佳沥滤速率的速率供给到罐18中。考虑基本恒定的矿泥进料速率,随后调节空气、氧和二氧化碳的供给,以获得该罐中的矿泥20中所期望的溶解氧浓度和矿泥上方气体30中所期望的二氧化碳含量。虽然上述为优选手段,但显然可以根据探头24给出的信号调节矿泥进料速率,以获得矿泥中所期望的溶解氧浓度。换言之,可以保持向矿泥中的氧添加速率基本恒定,并根据需要改变矿泥进料速率。
另一种可以采用的变化方式是将探头24由浸在矿泥中的位置移到位于水平面28上方的气体30中、标明为24A的位置。这样,该探头测定包含在矿泥上方气体即生物反应器废气中的氧。结合考虑任何其他相关因素,废气中的氧含量也可被用作为控制矿泥中的溶解氧浓度的量度。
反过来可以将二氧化碳探头26(假如其能够测定溶解二氧化碳的浓度)由直接暴露在气体30中的位置移到浸在罐内矿泥中、标明为26A的位置。随后利用在位置26A的该探头产生的信号,通过控制装置48,控制由源34向来自源36的空气流中添加二氧化碳。
虽然以气体形式提供二氧化碳的二氧化碳源34易于控制并代表了向矿泥20中引进碳的优选方式,在将矿泥送入反应器之前向矿泥50中添加适合的碳酸盐材料也是可行的。也可将碳酸盐材料直接加入反应器中的硫化物矿泥20中。不过在其他情况下,硫化物矿泥中可能有足够的碳酸盐,从而既不必以任何形式向矿泥中添加碳,也不必控制矿泥中的碳含量。
由前面关于本发明的一般原则的描述明显可知向矿泥中供氧是受到监测和控制的,以在矿泥20中提供所期望的溶解氧浓度水平。这可以通过各种不同的方式实现,例如通过以适当的方式控制下列中的一项或多项,即:矿泥进料速率、来自源36的空气流速率、来自源32的氧流速率和前述各项的任何变型。
根据流向喷射器44的总气体流速,改变二氧化碳的流速以维持气相即流向反应器的气体流中0.5%至5%体积比的二氧化碳浓度。已发现该二氧化碳浓度范围维持矿泥中适宜的溶解二氧化碳浓度,该浓度是实现有效沥滤的重要因素。
控制向硫化物矿泥20中的氧的添加是为了维持溶液中最低溶解氧浓度在0.2×10-3kg/m3至4.0×10-3kg/m3之间。上阈值取决于生物沥滤过程中所用的微生物的属和菌株并且通常是在4×10-3kg/m3至10×10-3kg/m3的范围内。
图1图示由纯氧源32加入氧。可将该纯氧与来自源36的空气混合。可用任何其他合适的气体代替空气。向空气中加氧导致在此说明书中被称为富氧气体的气体,即氧浓度超过21%体积比的气体。不过也可以将基本为纯净形式的氧直接加入矿泥中。在此所说的纯氧意指包含体积比高于85%的氧的气流。
利用所属领域中的已知技术可以以任何适当的方式控制生物沥滤反应器或容器中的温度。在一个实例中,罐18被绝缘,利用硫化物的氧化所释放的能量进行加热。利用包括多个与外置式换热器74连接的热交换器冷却旋管72的内冷系统70控制矿泥20的温度。
利用盖80可以基本上密封容器18。提供小出气口82以允许废气溢出。如果需要,可在释放进入大气之前以任何适当的方式收集或处理废气。或者是,罐18可根据需要与大气连通。
所选择用于沥滤过程的微生物将决定沥滤温度,反之亦然。本申请人发现优选的操作温度高于60℃,例如在60℃至85℃的范围内。在该范围内使用任何合适组合的嗜热微生物。另一方面,在45℃至60℃的范围内,采用中度嗜热微生物,而在低于45℃的温度时采用中温微生物。这些微生物可以例如选自前面所提及的种类。
虽然利用富氧空气或更优选利用基本上的纯氧即氧的含量高于85%向将被沥滤的矿泥中加氧的好处在使较大沥滤速率成为可能的高温下最为显著,在约40℃或更低的较低温度下加入富氧空气或基本上的纯氧也会有好处。相对于高温,在所述较低温度时的沥滤速率较慢,虽然利用富氧空气后有所改进,但沥滤速率的小幅提高通常弥补不了成本的增加。
试验结果
图2所示的结果显示了保持充分的氧供给从而足够高的溶解氧浓度以维持微生物生长和矿物氧化的重要性。如果允许溶解氧浓度降低到低于1.5ppm,尤其是低于1.0ppm,生物氧化变得不稳定,显示为溶液中的铁(II)浓度较高,大于2g/L。在通过维持溶解氧浓度高于1.5ppm而达到恒定水平生物氧化的本试验中,铁(II)被快速氧化为铁(III),而铁(II)浓度通常保持低于1.0g/l。
由在77℃的温度下以硫化叶菌属类古细菌处理原料固体浓度为10%质量比的黄铜矿精矿的连续实验设备的第一或初级反应器的操作中获得图2中所示的结果。
在利用硫化叶菌属类古细菌的混合培养物和10%质量比的固体密度、使用在大约77℃下用连续的黄铁矿或混合的磁黄铁矿与黄铁矿浮选精矿原料操作的5m3的生物反应器的试验中,检验按照本发明的原则增加流往生物反应器中的原料气的氧含量和控制溶解氧浓度的作用。生物沥滤输入气中的二氧化碳含量被控制在1至1.5%体积比之间。溶解氧浓度一般在0.4×10-3kg/m3至3.0×10-3kg/m3的范围内。试验结果示于图3中。
由图3明显可见,当用空气(二氧化碳富集:20.7%的氧和1.0%的二氧化碳)喷射时,最大氧需求量(与硫化物氧化率成正比)局限于11.3kg/m3/天,因为在只使用空气(即未以氧富集)时可以达到的溶解氧浓度仅足以维持微生物生长。
通过控制输入气的氧含量、氧添加速率和矿泥中溶解氧浓度在0.4×10-3kg/m3至3.0×10-3kg/m3的范围内,氧需求量即硫化物矿物氧化率得以显著提高。溶解氧浓度被控制在一个低值,但高于成功的微生物生长所需的最低限,以便使氧利用率得以最大化。所述结果表明氧需求量或硫化物氧化量被提高了3倍以上。因此,通过将输入气中氧含量由20.7%提高至最高90.8%,氧的比需求量由11.3kg/m3/天增加至33.7kg/m3/天。此外,通过控制溶解氧浓度在一个低值,但高于持续的微生物生长所需的最低值,氧利用率得以最大化。随着输入气中氧含量的增加,氧利用率显示了普遍的提高,由29%(对于氧含量20.7%的输入气)增至91%(对于含85.5%的氧输入气)。
所达到的远高于60%的高的氧利用率远远好于预期。结果的分析表明,对于在高温(77℃)用高氧含量的输入气操作的生物反应器,式(1)定义的氧的质量传递系数(M)有出乎意料的显著提高(本实验中由29%至91%)。事实上,相较于申请人的设计值,氧质量传递系数(M)平均增加2.69倍。这一增加考虑了由温度引起的质量传递系数的提高,对于由42℃至77℃的温度提高,按照Smith等人提出的温度修正系数(5)预计提高M值1.59倍。实验已证实该校正因子在15℃至70℃的温度范围内有效(6)
提高的氧质量传递系数的确定示于图4所示的结果中,其中将氧需求量除以设计氧质量传递系数(M设计)相对于等式(1)定义的氧驱动力作图。穿过数据所标绘的回归线的斜度表明氧质量传递系数提高了2.69倍。
参考文献
1.Bailey,A.D.和Hansford,G.S.,“高固体浓度时批量生物氧化的氧质量传递限制”,《Minerals Eng.》,1996年,第7(23)卷,第293-303页。
2.Myerson,A.S.,“黄铁矿上氧化亚铁硫杆菌生长过程中的氧质量传递要求”,《Biotechnol,Bioeng.》,1981年,第23卷,第1413页。
3.Peter Greenhalgh和Ian Ritchie,1999年,“金生物沥滤方法的高级反应器设计”,《Minproc Ltd,Biomine 99,23-25 Aug1999,Perth Australia》,第52-60页。
4.《Brock Biology of Microorganism》,第8版,1997年,Madigan M.T.、Martinko J.M.和Parker J.,Prentia HallInternational,Inc.,London。
5.J.M.Smith、K van’t Riet和J.C.Middleton,1997年,“用于质量传递的搅拌气体-液体反应器的放大”,《Proceedings ofthe 2nd European Conference on Mixing,Cambridge,England,30March-1 April 1997》,第F4-51至F4-66页。
6.Boogerd,F.C.,Bos,P.,Kuenen,J.G.,Heijnen,J.J.和Van der Lans,R.G.J.M,“氧和二氧化碳质量传递以及中度和极端嗜热微生物的需氧和自养培养:煤的微生物脱硫实例研究”,《Biotech.Bioeng.》,35,1990,1111-1119页。

Claims (18)

1.一种生物沥滤包含硫化物矿物的矿泥的方法,包括如下步骤:使在反应器中的该矿泥在高于40℃的温度下进行生物沥滤,向该矿泥中供给包含超过21%体积比的氧的原料气,和通过控制至少下列之一来控制该矿泥中的溶解氧浓度在0.2×10-3kg/m3至10×10-3kg/m3间的水平:原料气的氧含量;对矿泥的原料气供给;对反应器的矿泥供给速率。
2.根据权利要求1的方法,其中所述原料气包含超过85%体积比的氧。
3.根据权利要求1的方法,其中通过下列方式中的一种或多种确定所述矿泥中的溶解氧浓度:直接测定矿泥中的溶解氧浓度、测定矿泥上方气体中的氧含量和通过测定矿泥产生的废气中的氧含量间接确定。
4.根据权利要求1的方法,其包括控制所述矿泥中的碳含量的步骤。
5.根据权利要求4的方法,其中通过下列的一种或多种方法控制所述的碳含量:向矿泥中添加二氧化碳气体和向矿泥中添加其他含碳物质。
6.根据权利要求1的方法,其包括将所述原料气中的二氧化碳含量控制在0.5%至5.0%体积比的范围内的步骤。
7.根据权利要求1的方法,其中生物沥滤过程是在40℃至100℃的温度范围内进行。
8.根据权利要求7的方法,其中所述的温度在60℃至85℃的范围内。
9.根据权利要求1的方法,其包括利用中温微生物在最高45℃的温度下生物沥滤所述矿泥的步骤。
10.根据权利要求9的方法,其中所述的微生物选自下列属:酸硫杆菌属;钩端螺菌属;亚铁微菌属;和嗜酸菌属。
11.根据权利要求9的方法,其中所述的微生物选自下列种:高温酸硫杆菌;氧化硫酸硫杆菌;氧化亚铁酸硫杆菌;嗜酸酸硫杆菌;Thiobacillus prosperus;铁氧化钩端螺菌;嗜酸亚铁微菌;和隐藏嗜酸菌。
12.根据权利要求1的方法,其包括利用中度嗜热微生物在45℃至60℃的温度下生物沥滤所述矿泥的步骤。
13.根据权利要求12的方法,其中所述的微生物选自下列属:酸硫杆菌属;酸微菌属;硫化杆菌属;铁原体属;和脂环酸杆菌属。
14.根据权利要求12的方法,其中所述的微生物选自下列种:高温酸硫杆菌;氧化亚铁酸微菌;嗜酸硫化杆菌;二氧化硫硫化杆菌;热氧化硫化杆菌;Ferroplasma acidarmanus;嗜酸热原体;和酸热脂环酸杆菌。
15.根据权利要求8的方法,其包括利用嗜热微生物在60℃至85℃的温度下生物沥滤所述矿泥的步骤。
16.根据权利要求15的方法,其中所述的微生物选自下列属:热酸菌属;硫化叶菌属;生金球菌属;酸双面菌属;铁圆铁属;热原体属;和Picrophilus。
17.根据权利要求15的方法,其中所述的微生物选自下列种:金属硫化叶菌;嗜酸热硫化叶菌;热氧化硫化叶菌;下层酸双面菌;勤奋生金球菌;Ferroplasma acidarmanus;嗜酸热原体;火山热原体;和Picrophilus oshimae。
18.根据权利要求1的方法,其中所述的反应器基本闭合。
CNB008152624A 1999-09-07 2000-08-31 硫化物矿物的生物沥滤 Expired - Fee Related CN1206376C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA995746 1999-09-07
ZA99/5746 1999-09-07

Publications (2)

Publication Number Publication Date
CN1387581A CN1387581A (zh) 2002-12-25
CN1206376C true CN1206376C (zh) 2005-06-15

Family

ID=25587900

Family Applications (3)

Application Number Title Priority Date Filing Date
CNB008152624A Expired - Fee Related CN1206376C (zh) 1999-09-07 2000-08-31 硫化物矿物的生物沥滤
CNB008153124A Expired - Fee Related CN1198950C (zh) 1999-09-07 2000-09-05 生物沥滤和电解提取法从含锌硫化物矿物中回收锌
CNB008149852A Expired - Fee Related CN1198949C (zh) 1999-09-07 2000-09-05 用可控的供氧量通过生物浸提从含铜硫化物矿物中回收铜

Family Applications After (2)

Application Number Title Priority Date Filing Date
CNB008153124A Expired - Fee Related CN1198950C (zh) 1999-09-07 2000-09-05 生物沥滤和电解提取法从含锌硫化物矿物中回收锌
CNB008149852A Expired - Fee Related CN1198949C (zh) 1999-09-07 2000-09-05 用可控的供氧量通过生物浸提从含铜硫化物矿物中回收铜

Country Status (8)

Country Link
US (3) US6733567B1 (zh)
CN (3) CN1206376C (zh)
AP (3) AP1421A (zh)
AU (6) AU775042B2 (zh)
CA (5) CA2381157C (zh)
FI (2) FI122564B (zh)
PE (5) PE20010771A1 (zh)
WO (6) WO2001018262A2 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206376C (zh) * 1999-09-07 2005-06-15 比利顿知识产权有限公司 硫化物矿物的生物沥滤
US7455715B2 (en) 2001-07-13 2008-11-25 Teck Cominco Metals Ltd. Heap bioleaching process for the extraction of zinc
CA2353002C (en) 2001-07-13 2009-12-01 Teck Cominco Metals Ltd. Heap bioleaching process for the extraction of zinc
WO2004027099A1 (en) * 2002-09-17 2004-04-01 Frank Kenneth Crundwell Heap leach process
AU2003900604A0 (en) * 2003-02-11 2003-02-27 Australian Nuclear Science & Technology Organisation Methods and Systems for Measuring Rate of Change in Gaseous Oxygen Concentration and for Measuring Intrinsic Oxidation Rate in a Pile of Material
AU2003901050A0 (en) * 2003-03-05 2003-03-20 Commonwealth Scientific And Industrial Research Organisation Method for leaching mineral sulphides
WO2005061741A1 (en) * 2003-12-23 2005-07-07 Bhp Billiton Sa Limited Method of and apparatus for simulating a biological heap leaching process
PE20060789A1 (es) 2004-10-22 2006-08-10 Biosigma Sa Cepa de bacteria wenelen dsm 16786 y proceso de lixiviacion basado en la inoculacion de dicha cepa
CN100417607C (zh) * 2005-01-21 2008-09-10 浙江大学 以悬挂硫填料形式供应底物的生物沥滤方法
CN1304310C (zh) * 2005-03-08 2007-03-14 浙江大学 连续搅拌生物沥滤反应器
WO2007124159A2 (en) * 2006-04-21 2007-11-01 Bayer Corporation System and method for in situ measurements
US8268037B2 (en) * 2006-08-02 2012-09-18 H.C. Starck Gmbh Recovery of molybdenum from molybdenum bearing sulfide materials by bioleaching in the presence of iron
CN100398677C (zh) * 2006-10-13 2008-07-02 中国铝业股份有限公司 一种细菌脱除高硫型铝土矿中杂质硫的方法
US20080102514A1 (en) * 2006-10-27 2008-05-01 Biosigma S.A. Reactor for the culture, biooxidation of solutions and/or large-scale propagation of isolated microorganisms and/or native microorganisms that are useful in ore leaching
CN100410365C (zh) * 2006-12-14 2008-08-13 中南大学 化学胁迫法分离纯化勤奋金属球菌
KR100914444B1 (ko) * 2008-04-10 2009-09-02 현대엔지니어링 주식회사 철산화미생물이 함침된 담체와 황배출 깁섬의 상호 작용을이용한 철과 인의 회수방법과 그 장치
KR101048526B1 (ko) * 2008-08-21 2011-07-12 한국지질자원연구원 은 촉매를 이용한 황동광의 박테리아 침출방법
CN102337401A (zh) * 2010-07-27 2012-02-01 北京有色金属研究总院 闪锌矿精矿连续搅拌生物提镉工艺
CN101899570B (zh) * 2010-07-27 2012-05-23 中国科学院过程工程研究所 采用转鼓式反应器生物浸出含砷金矿的预氧化处理方法
CN101913745B (zh) * 2010-08-16 2011-12-28 娄底市裕德科技有限公司 一种污水厂污泥中重金属的脱除工艺
CN102161015B (zh) * 2011-03-16 2013-04-03 长春黄金研究院 浮选金精矿微生物氧化预处理工艺的泡沫处理方法及微生物氧化反应器
CN103858006B (zh) 2011-08-01 2016-08-24 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 用于在固体堆中现场测量至少氧含量的装置
CN102277490B (zh) * 2011-08-30 2013-05-29 内蒙古科技大学 生物柱浸装置
MX2011011147A (es) * 2011-10-21 2013-04-22 Servicios Condumex Sa Biorreactor para biolixiviacion cm un sistema para inyeccion y difusion de aire.
CN103088100A (zh) * 2011-10-27 2013-05-08 中国科学院城市环境研究所 一种混合菌种快速催化氧化钛白副产物制备聚合铁的方法
JP5700029B2 (ja) 2012-12-11 2015-04-15 住友金属鉱山株式会社 硫化水素を含む貧液の処理方法及び処理装置
CN103898001B (zh) * 2012-12-28 2016-08-24 北京有色金属研究总院 一种异养嗜酸菌及利用该菌抑制矿山酸性废水产生的方法
FI126884B (en) * 2013-11-29 2017-07-14 Outotec Finland Oy Method and apparatus for separating arsenic from starting materials
US20150197827A1 (en) * 2014-01-14 2015-07-16 Derrick Corporation Methods and systems of metal sorption using interstage screening
US20160160312A1 (en) * 2014-12-04 2016-06-09 Air Products And Chemicals, Inc. Hydrometallurgical System and Process Using an Ion Transport Membrane
CN105802869B (zh) * 2014-12-30 2019-10-01 有研工程技术研究院有限公司 一种用于黄铜矿浸出的中温浸矿复合菌系及浸矿工艺
CN106867921B (zh) * 2015-12-11 2020-10-30 有研工程技术研究院有限公司 嗜酸硫杆菌及该菌处理矿山酸性废水回收铁资源的方法
CN106011484B (zh) * 2016-07-08 2018-09-14 扬州大学 一种基于产氰生物膜反应器的废弃电路板贵金属回收装置
CN106050236A (zh) * 2016-07-08 2016-10-26 中国矿业大学 一种煤炭开采过程中脱硫的方法
CN106378266A (zh) * 2016-11-01 2017-02-08 长春黄金研究院 浮选金精矿微生物氧化预处理中的泡沫处理装置及方法
CN106755999B (zh) * 2016-12-21 2018-11-23 武汉理工大学 一种黄铜矿的微波强化浸出方法
WO2020160611A1 (en) * 2019-02-05 2020-08-13 Newcrest Mining Limited Processing ores containing precious metals
CN112301217B (zh) * 2020-10-11 2021-12-03 北京科技大学 一种加强通气摇瓶金属矿物生物浸出装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1023947A (en) * 1974-06-27 1978-01-10 Centre De Recherches Minerales, Ministere Des Richesses Naturelles Du Qu Ebec Selective bacterial cyclic leaching process
SU730848A1 (ru) * 1977-07-15 1980-04-30 Институт Микробиологии И Вирусологии Ан Казахской Сср Способ бактериального выщелачивани металлов
EP0004431B1 (en) 1978-03-23 1981-09-09 Interox Chemicals Limited Bacterial leaching of minerals
SU910815A1 (ru) * 1980-07-03 1982-03-07 Московский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Институт Стали И Сплавов Способ выщелачивани руд и концентратов с использованием микроорганизмов
US4816234A (en) * 1985-05-10 1989-03-28 Kamyr, Inc. Utilization of oxygen in leaching and/or recovery procedures employing carbon
US4732608A (en) * 1986-02-07 1988-03-22 Envirotech Corporation Method for biological processing of metal-containing ores
US5007620A (en) * 1986-02-07 1991-04-16 Envirotech Corporation Apparatus for biological processing of metal-containing ores
US4721526A (en) * 1986-08-13 1988-01-26 Kamyr, Inc. Heap leaching with oxygen
US4729788A (en) * 1987-01-23 1988-03-08 Advanced Mineral Technologies, Inc. Thermophilic microbial treatment of precious metal ores
GB2225256B (en) * 1988-10-06 1992-10-21 Tolltreck International Limite Method and apparatus for effecting a bioreaction
GB8823533D0 (en) * 1988-10-06 1988-11-16 Tolltreck International Ltd Method & apparatus for effecting bioreaction
GB2225257A (en) * 1988-11-22 1990-05-30 Atomic Energy Authority Uk Separation of gas
FR2640284B1 (fr) 1988-12-09 1992-01-17 Commissariat Energie Atomique Procede de fabrication d'un reactif acide oxydant pour la lixiviation de minerais
US5102104A (en) 1990-03-05 1992-04-07 U.S. Gold Corporation Biological conversion apparatus
JPH0452291A (ja) * 1990-06-20 1992-02-20 Akita Seiren Kk 亜鉛製錬法
US5127942A (en) * 1990-09-21 1992-07-07 Newmont Mining Corporation Microbial consortium treatment of refractory precious metal ores
US5413624A (en) * 1991-02-22 1995-05-09 Mbx Systems, Inc. Enhancement of bioleach systems using nutrient additives
WO1992016667A1 (en) * 1991-03-22 1992-10-01 Bac Tech (Australia) Pty. Ltd. Oxidation of metal sulfides using thermotolerant bacteria
AU647898B2 (en) * 1991-03-27 1994-03-31 Mount Isa Mines Limited Bioleaching of cobalt and copper containing pyritic concentrates
ZA928157B (en) 1991-10-25 1993-06-09 Sasox Processing Pty Ltd Extraction or recovery of metal values.
PE11095A1 (es) * 1993-05-25 1995-05-08 Mim Holdings Ltd Proceso integrado de lixiviacion biologica/proceso de extraccion con solventes para la produccion de metal de cinc a partir de concentrados de cinc
AU665907B2 (en) * 1993-05-28 1996-01-18 Commonwealth Industrial Gases Limited, The Device for measuring dissolved oxygen demand
PT101436B (pt) 1993-12-31 1996-11-29 Iskay Servicios Metalurgicos S Processo de biolixiviacao de minerios contendo sulfuretos de cobre por contacto indirecto com solucoes de sulfato ferrico e "thiobacillus ferrooxidans" suportado, com separacao de efeitos.
FI108047B (fi) 1994-08-01 2001-11-15 Billiton Intellectual Pty Menetelmä nikkelin valmistamiseksi nikkelisulfidikonsentraatista
US5729605A (en) 1995-06-19 1998-03-17 Plantronics, Inc. Headset with user adjustable frequency response
US5626648A (en) 1995-07-17 1997-05-06 Bhp Minerals International Inc. Recovery of nickel from bioleach solution
AUPN439395A0 (en) * 1995-07-25 1995-08-17 Bactech (Australia) Pty Limited Process for the removal of arsenic from bacterial leach liquors and slurries
US5827701A (en) * 1996-05-21 1998-10-27 Lueking; Donald R. Method for the generation and use of ferric ions
US5914441A (en) 1996-06-12 1999-06-22 Yellowstone Environmental Science, Inc. Biocatalyzed anaerobic oxidation of metal sulfides for recovery of metal values
AR012179A1 (es) * 1997-03-27 2000-09-27 Billiton Sa Ltd Un procedimiento para la recuperacion de cobre
ZA987217B (en) 1997-08-15 2000-02-14 Cominco Eng Services Chloride assisted hydrometallurgical extraction of metal from sulphide or laterite ores.
AUPP718098A0 (en) * 1998-11-18 1998-12-17 Bactech (Australia) Pty Limited Bioxidation process and apparatus
CN1206376C (zh) * 1999-09-07 2005-06-15 比利顿知识产权有限公司 硫化物矿物的生物沥滤

Also Published As

Publication number Publication date
AU775042B2 (en) 2004-07-15
WO2001018262A2 (en) 2001-03-15
US6833020B1 (en) 2004-12-21
CA2383815A1 (en) 2001-03-15
WO2001018263A1 (en) 2001-03-15
CA2383812A1 (en) 2001-03-15
CA2383815C (en) 2009-11-10
AU7391800A (en) 2001-04-10
WO2001018267A1 (en) 2001-03-15
AP1505A (en) 2005-12-06
WO2001018268A1 (en) 2001-03-15
CA2383816C (en) 2009-11-10
CA2381157C (en) 2008-08-12
AU774254B2 (en) 2004-06-24
US6860919B1 (en) 2005-03-01
CA2383812C (en) 2009-07-07
PE20010773A1 (es) 2001-07-20
AU6806300A (en) 2001-04-10
CN1198949C (zh) 2005-04-27
FI20020427A (fi) 2002-05-03
CN1384890A (zh) 2002-12-11
AU775044B2 (en) 2004-07-15
PE20010774A1 (es) 2001-07-20
CN1387581A (zh) 2002-12-25
WO2001018266A1 (en) 2001-03-15
PE20010772A1 (es) 2001-07-18
AP2002002437A0 (en) 2002-03-31
AP2002002438A0 (en) 2002-03-31
CA2381157A1 (en) 2001-03-15
AP1421A (en) 2005-06-03
AP1551A (en) 2006-01-17
AU778258B2 (en) 2004-11-25
US6733567B1 (en) 2004-05-11
CA2383816A1 (en) 2001-03-15
WO2001018269A1 (en) 2001-03-15
CN1198950C (zh) 2005-04-27
PE20010769A1 (es) 2001-07-20
CA2383817A1 (en) 2001-03-15
CN1387582A (zh) 2002-12-25
PE20010771A1 (es) 2001-07-20
AU6806500A (en) 2001-04-10
FI20020428A (fi) 2002-05-03
CA2383817C (en) 2009-11-10
AP2002002439A0 (en) 2002-03-31
AU6806200A (en) 2001-04-10
FI122564B (fi) 2012-03-30
AU2301201A (en) 2001-04-10
AU775052B2 (en) 2004-07-15
AU6806400A (en) 2001-04-10
WO2001018262A3 (en) 2001-05-31

Similar Documents

Publication Publication Date Title
CN1206376C (zh) 硫化物矿物的生物沥滤
US5914441A (en) Biocatalyzed anaerobic oxidation of metal sulfides for recovery of metal values
US8491701B2 (en) Methods and systems for leaching a metal-bearing ore for the recovery of a metal value
US10767242B2 (en) Methods and systems for leaching a metal-bearing ore using a bio-augmentation process
US20080102514A1 (en) Reactor for the culture, biooxidation of solutions and/or large-scale propagation of isolated microorganisms and/or native microorganisms that are useful in ore leaching
CN1509341A (zh) 一种细菌辅助的黄铜矿堆浸方法
AU773999B2 (en) A method of operating a bioleach process with control of redox potential
CN1331759A (zh) 生物氧化方法及其装置
CN1784501A (zh) 浸取矿物硫化物的微生物和方法
CN1031860A (zh) 氧化多金属硫化物矿的化学/生物工艺
CN109182751A (zh) 一种基于铁硫代谢调控促进黄铜矿生物浸出的方法
US20040023350A1 (en) Method for biological oxidation of elemental sulfur-bearing materials for sulfuric acid production
RU2552207C1 (ru) Способ управления процессом биоокисления сульфидных концентратов
ZA200201532B (en) Bioleaching of sulphide minerals.
ZA200201536B (en) Recovery of precious metal from sulphide minerals by bioleaching.
ZA200707987B (en) Reactor for the culture, biooxidation of solutions and/or large-scale propagation of isolated microorganisms and/or native micro organisms that are useful in ore leaching
ZA200201538B (en) Recovery of copper from copper bearing sulphide minerals by bioleaching with controlled oxygen feed.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050615

Termination date: 20120831