CN1201991A - 软磁材料制成的元件的磁场热处理工艺 - Google Patents

软磁材料制成的元件的磁场热处理工艺 Download PDF

Info

Publication number
CN1201991A
CN1201991A CN98109635A CN98109635A CN1201991A CN 1201991 A CN1201991 A CN 1201991A CN 98109635 A CN98109635 A CN 98109635A CN 98109635 A CN98109635 A CN 98109635A CN 1201991 A CN1201991 A CN 1201991A
Authority
CN
China
Prior art keywords
magnetic field
pulse
magnetic
technology
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98109635A
Other languages
English (en)
Other versions
CN1112711C (zh
Inventor
G·考德乔恩
P·沃林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of CN1201991A publication Critical patent/CN1201991A/zh
Application granted granted Critical
Publication of CN1112711C publication Critical patent/CN1112711C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Thin Magnetic Films (AREA)
  • Powder Metallurgy (AREA)
  • General Induction Heating (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种低各向异性软磁材料制成的磁性元件的磁场热处理工艺,所述软磁材料例如是15/80/5FeNiMo合金、Co基非晶合金或者纳米晶FeSiCuNbB合金,其中在低于磁性材料居里点的温度对磁性元件进行退火,在退火过程中,对磁性元件施加AC或DC的、单一纵向或单一横向的磁场,其中,以接连的脉冲方式施加磁场,每个脉冲包括其间磁场强度达到最大值的第一部分和其间磁场强度为最小值的第二部分。

Description

软磁材料制成的元件的磁场热处理工艺
本发明涉及磁性元件的磁场热处理工艺,该磁性元件例如是用于剩余电流器件的磁心,由软磁合金例如15/80/5 FeNiMo合金、Co基非晶合金或者纳米晶FeSiCuNbB合金构成。
在电工技术、例如测量变压器或者电源变压器的应用中,使用的磁心是由针对其磁性能例如导磁率或损耗所选择的磁性材料构成的。对于这些应用,磁滞回线的形状不是主要的。另一方面,对于处理小振幅电信号的许多应用来说,例如剩余电流器件、用于连接至数字电话网络的开关电源或开关变压器,磁滞回线的形状是头等重要的。特别是,磁滞回线的形状特征体现在Br/Bm比值,即剩余磁感与最大磁感的比值。当Br/Bm大于约0.9时,磁滞回线被称为“矩形”。当Br/Bm比值小于约0.5时,磁滞回线被称为“扁平”。具有矩形磁滞回线的材料用来例如制造磁放大器的磁心或者开关电源的控制级的磁心。具有扁平磁滞回线的材料具体用于剩余电流器件的磁心、电滤波器或者DC隔离变压器。
为了采用具有矩形或扁平的精确的磁滞回线形状的软磁材料制造磁性元件,使用具有低各向异性(各向异性常数小于5000ergs/cm3,最好小于1000ergs/cm3)的软磁合金,例如15/80/5 FeNiMo合金、Co基非晶合金或者纳米晶FeSiCuNbB合金,而且在强磁场中对磁性元件退火。在低于合金的居里点的温度进行退火。当期望获得矩形磁滞回线时,磁场是纵向的、即平行于磁性能测量方向。当期望获得扁平磁滞回线时,磁场是横向的、即垂直于磁性能测量方向。在整个处理过程中均施加磁场,并且是恒定的。处理的温度和时间是对热处理结果有影响的两个参数。当具有较长时间(从1小时到几个小时),这些参数能够以较高的可靠性获得相当矩形的(Br/Bm>0.9)磁滞回线或者相当扁平的(Br/Bm<0.2)的磁滞回线。但是,尚不能以足够的可靠性获得具有中间形状(0.3<Br/Bm<0.9)的磁滞回线,而这种磁滞回线对于某些应用是非常有用的。这是因为,为了获得这种磁滞回线,必须进行短暂的退火处理,但是从展望工业应用的角度来看,就矩形性和导磁率这两者而言,其结果是极为随机的。这是因为必须能够同时控制这些参数。
本发明的目的在于克服上述缺点,提供一种以可重现的方式获得由软磁合金制成的磁性元件的技术方案,所述软磁合金具有处于极矩形磁滞回线与极扁平磁滞回线之间的中间磁滞回线,亦即特征在于Br/Bm比值在0.3~0.9之间的回线。
为此目的,本发明的主题在于软磁材料制成的磁性元件的磁场热处理工艺,所述软磁材料例如是15/80/5 FeNiMo合金、Co基非晶合金或者纳米晶FeSiCuNbB合金,其中在低于磁性材料居里点的温度对磁性元件进行退火,在退火过程中,以接连的脉冲方式对磁性元件施加AC或DC的纵向或横向磁场,每个接连的脉冲包括其间磁场强度达到最大值的第一部分和其间磁场强度为最小值的第二部分。该最小值最好小于对应于向磁性元件施加的最大脉冲的磁场最大值的10%。
两个接连的脉冲的最大磁场强度可以基本上相同或者基本上不同。具体地,对于任何一对的两个接连的脉冲,第二脉冲的最大磁场强度可以小于第一脉冲的最大磁场强度,以便在整个处理中降低最大磁场。最终产生的脉冲的最大磁场强度则可小于首先产生的脉冲的最大磁场强度的25%。
每个脉冲的最小磁场强度最好为零。
而且,每个脉冲的全部持续时间最好少于30分钟,磁场具有最大强度的持续时间最好少于15分钟。
以下将参考单一附图更具体地说明本发明,该附图展示了对软磁合金制成的磁性元件的热处理中所施加的磁场和温度在整个时间过程中的变化。还将通过实施例展示本发明。
根据本发明的热处理,是施加于由各向异性极低的软磁合金制成的磁性元件,该热处理由在低于软磁合金居里点的温度的磁场退火组成,其中,间断地施加磁场。该磁场热处理是在用于在单方向磁场中进行热处理的已知炉中进行的。例如,当磁性元件是由软磁合金带卷绕构成的环形磁心,以便形成矩形剖面的圆环时,利用其中通入DC或AC电流的、并且圆环在其上滑动的电导体产生磁场,或者利用其轴平行于圆环环绕轴并且围绕圆环的线圈产生磁场。在第一种情况,磁场是纵向的,亦即平行于软磁合金带的纵轴。在第二种情况,磁场是横向的,亦即平行于合金带表面,但垂直于其纵轴。
退火温度应大于表示为摄氏度的居里点0.5倍。
如图1所示,热处理包括:
在温度方面,在处理开始时刻t0与处理结束时刻t1之间,温度保持在处理温度θ,低于居里温度θc
在磁场方面,有接连的脉冲C1、C2、C3和C4
每个脉冲具有其间磁场强度为最大值Hmax(对C1是Hmax1,对C2是Hmax2等)的第一持续部分Δt(对C1是Δt1,对C2是Δt2等)和其间磁场强度为最小值Hmin(对C1是Hmin1,对C2是Hmin2等)的第二持续部分Δt’(对C1是Δt’1,对C2是Δt’2等)。
当磁场是连续的时,Hmax代表磁场强度。当磁场是交替的时,Hmax代表磁场峰值强度(在每个交替周期达到的最大强度)。
所示脉冲是矩形的。但是,脉冲例如可以是梯形的或者三角形的,在对应于强磁场的脉冲部分的过程中磁场强度以规则形式降低。
在所示实施例中,与两个接连的脉冲C1、C2对应的磁场最大值Hmax1和Hmax2相等。但是,Hmax3小于Hmax2、大于Hmax4。事实上,接连的磁场最大值的变化可以根据需要选择。具体地,这些接连的值可以从可使圆环在处理过程中饱和的值(该值不仅取决于构成圆环的材料性质,而且还取决于圆环尺寸)开始,在整个处理中降低,以便在处理结束时达到小于初始值的25%的值。
磁场最小值Hmin通常大约为零,在所有情况中必须小于处理过程中磁场达到的最大值的10%。
通常,Δt值具有5分钟的数量级,应必须保持小于15分钟。从一个脉冲到另一个脉冲它们不必相等。持续时间Δt’通常具有5分钟的数量级,应必须保持小于30分钟。
脉冲数量可以根据需要选择,这取决于所要获得的结果,还取决于最好大于10分钟并且可能持续几小时的整个处理过程。在所有情形中脉冲数量必须大于2。
作为一种变型,某些脉冲产生于纵向磁场,其余产生于横向磁场。
在一个实施例中,采用由合金Fe73.5Si13.5Nb3Cu1B9制成的带,制造圆环形磁心,外径为26mm,内径为16mm,厚10mm。首先对这些磁心进行在530℃保持1小时的热处理,从而使其具有钠米晶结构;然后进行根据本发明的各种磁场退火处理。各种处理的不同之处在于保持温度、其间施加磁场的保持时间的比例、和磁场方向。在所有情形中,温度保持时间是1小时,并且以矩形脉冲形式施加磁场,其间最大磁场强度足以使圆环在几分钟内饱和。所获得的磁滞回线形状的特征在于Br/Bm是:
        横向磁场           纵向磁场
    温度   时间的25%   时间的95%   时间的25%   时间的95%
    250℃     0.55     0.35     0.65     0.75
    300℃     0.40     0.25     0.70     0.80
    350℃     0.25     0.15     0.80     0.85
    400℃     0.15     0.05     0.85     0.95
从此表中可见,例如在对时间的25%施加的横向磁场以及250℃的退火温度的处理中,Br/Bm比值是0.35。事实上,这些值的获得在±0.02。此外,50Hz的最大磁导率,比通过根据已有技术的连续磁场热处理获得的50Hz的最大磁导率,系统地至少大25%。
更具体地,在以脉冲形式施加的横向磁场中于400℃退火的情况,对温度保持时间的25%施加强磁场,获得0.08~0.12之间的Br/Bm比值以及180000~220000之间的50Hz的阻抗磁导率μmax
通过对比,进行根据已有技术的磁场热处理,也就是说在温度持续过程中磁场保持恒定的条件下进行热处理。这些处理由在垂直磁场中的350℃退火组成。所获得的Br/Bm值在0.12~0.31之间,即分散比上述实施例大5倍。磁导率μmax值在180000~220000之间。

Claims (10)

1.一种低各向异性软磁材料制成的磁性元件的磁场热处理工艺,所述软磁材料例如是15/80/5 FeNiMo合金、Co基非晶合金或者纳米晶FeSiCuNbB合金,其中在低于磁性材料居里点的温度对磁性元件进行退火,在退火过程中,对磁性元件施加AC或DC的、单一纵向或单一横向的磁场,其特征在于,以接连的脉冲方式施加磁场,每个脉冲包括其间磁场强度达到最大值的第一部分和其间磁场强度为最小值的第二部分。
2.根据权利要求1的工艺,其特征在于,对于至少两个接连的脉冲,最大磁场强度基本相同。
3.根据权利要求1的工艺,其特征在于,对于至少两个接连的脉冲,最大磁场强度基本不同。
4.根据权利要求3的工艺,其特征在于,第二脉冲的最大磁场强度小于第一脉冲的最大磁场强度。
5.根据权利要求4的工艺,其特征在于,对于任何一对的两个接连的脉冲,第二脉冲的最大磁场强度小于第一脉冲的最大磁场强度。
6.根据权利要求5的工艺,其特征在于,最终产生的脉冲的最大磁场强度小于首先产生的脉冲的最大磁场强度的25%。
7.根据权利要求1~6中任一项的工艺,其特征在于,对于至少一个脉冲,最大磁场强度小于处理过程中磁场所达到的最大强度的10%。
8.根据权利要求1~7中任一项的工艺,其特征在于,至少一个脉冲具有小于30分钟的整个持续时间。
9.根据权利要求8的工艺,其特征在于,对于其整个持续时间小于30分钟的一个脉冲,其间磁场具有最大强度的持续部分小于15分钟。
10.根据权利要求1~9中任一项的工艺,其特征在于,热处理的整个持续时间大于10分钟。
CN98109635A 1997-06-04 1998-06-03 软磁材料制成的元件的磁场热处理工艺 Expired - Fee Related CN1112711C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9706849A FR2764430B1 (fr) 1997-06-04 1997-06-04 Procede de traitement thermique sous champ magnetique d'un composant en materiau magnetique doux
FR9706849 1997-06-04

Publications (2)

Publication Number Publication Date
CN1201991A true CN1201991A (zh) 1998-12-16
CN1112711C CN1112711C (zh) 2003-06-25

Family

ID=9507559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98109635A Expired - Fee Related CN1112711C (zh) 1997-06-04 1998-06-03 软磁材料制成的元件的磁场热处理工艺

Country Status (19)

Country Link
US (1) US5935346A (zh)
EP (1) EP0883141B1 (zh)
JP (1) JPH118110A (zh)
KR (1) KR19990006483A (zh)
CN (1) CN1112711C (zh)
AT (1) ATE241849T1 (zh)
AU (1) AU733279B2 (zh)
CZ (1) CZ165998A3 (zh)
DE (1) DE69814983T2 (zh)
ES (1) ES2196510T3 (zh)
FR (1) FR2764430B1 (zh)
HU (1) HUP9801275A3 (zh)
PL (1) PL184069B1 (zh)
RO (1) RO119574B1 (zh)
RU (1) RU2190023C2 (zh)
SK (1) SK67798A3 (zh)
TR (1) TR199801001A3 (zh)
TW (1) TW367508B (zh)
ZA (1) ZA984148B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031348A (zh) * 2010-11-09 2011-04-27 王旋旋 一种消除热轧制钢板应力的方法
CN101717901B (zh) * 2009-12-22 2011-07-20 上海大学 脉冲磁场条件下非晶薄带热处理工艺与装置
CN103238190A (zh) * 2010-11-23 2013-08-07 真空融化股份有限公司 用于机电元件的软磁金属带
CN112251648A (zh) * 2020-09-29 2021-01-22 绵阳西磁科技有限公司 一种高磁导率低损耗FeNiMo磁粉心及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176943B1 (en) * 1999-01-28 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Processing treatment of amorphous magnetostrictive wires
JP4047114B2 (ja) * 2002-09-13 2008-02-13 アルプス電気株式会社 薄膜磁気ヘッド
US7713888B2 (en) * 2004-05-24 2010-05-11 Ashkenazi Brian I Magnetic processing of electronic materials
US7479859B2 (en) 2006-03-08 2009-01-20 Jack Gerber Apparatus and method for processing material in a magnetic vortex
EP2209127A1 (fr) * 2009-01-14 2010-07-21 ArcelorMittal - Stainless & Nickel Alloys Procédé de fabrication d'un noyau magnétique en alliage magnétique ayant une structure nanocristalline
CN102031349B (zh) * 2010-11-09 2012-02-29 张子睿 消除浇铸钢材结构件应力的方法
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
US9457404B2 (en) * 2013-02-04 2016-10-04 The Boeing Company Method of consolidating/molding near net-shaped components made from powders
US9993946B2 (en) 2015-08-05 2018-06-12 The Boeing Company Method and apparatus for forming tooling and associated materials therefrom
US9933392B2 (en) * 2015-09-30 2018-04-03 The Boeing Company Apparatus, system, and method for non-destructive ultrasonic inspection
CN105861959B (zh) * 2016-05-26 2018-01-02 江苏奥玛德新材料科技有限公司 智能电表用低角差纳米晶软磁合金磁芯及其制备方法
CN106119500B (zh) * 2016-08-04 2017-11-07 江西大有科技有限公司 软磁材料磁芯加纵磁场热处理方法及装置
CN107464649B (zh) * 2017-08-03 2020-03-17 江苏奥玛德新材料科技有限公司 一种具有线性磁滞回线的磁芯
CN115094210B (zh) * 2022-07-16 2023-04-25 温州大学 一种软磁合金多功能复合磁场真空热处理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH545530A (zh) * 1972-05-05 1974-01-31
DE2816173C2 (de) * 1978-04-14 1982-07-29 Vacuumschmelze Gmbh, 6450 Hanau Verfahren zum Herstellen von Bandkernen
JPS565962A (en) * 1979-06-27 1981-01-22 Sony Corp Manufacture of amorphous magnetic alloy
JPS5779157A (en) * 1980-10-31 1982-05-18 Sony Corp Manufacture of amorphous magnetic alloy
US4873605A (en) * 1986-03-03 1989-10-10 Innovex, Inc. Magnetic treatment of ferromagnetic materials
JPS6311654A (ja) * 1986-06-30 1988-01-19 Mitsubishi Electric Corp 非晶質磁性材料の製造方法
JPH0694589B2 (ja) * 1987-04-13 1994-11-24 富士写真フイルム株式会社 非晶質軟磁性材料の熱処理方法
US4816965A (en) * 1987-05-29 1989-03-28 Innovex Inc. Mechanism for providing pulsed magnetic field
JP2713363B2 (ja) * 1987-06-04 1998-02-16 日立金属 株式会社 Fe基軟磁性合金圧粉体及びその製造方法
IT1211537B (it) * 1987-11-18 1989-11-03 Halsall Prod Ltd Motore a corrente continua senza spazzole per motoventilatori pompe ed altre apparecchiature similari
JP2710949B2 (ja) * 1988-03-30 1998-02-10 日立金属株式会社 超微結晶軟磁性合金の製造方法
JPH0637666B2 (ja) * 1989-04-14 1994-05-18 チャイナ スチール コーポレーション パルス高電流によるアモルファス合金の磁気および機械特性の改良方法
JP2927826B2 (ja) * 1989-07-24 1999-07-28 ティーディーケイ株式会社 軟磁性合金とその製造方法
JPH0570901A (ja) * 1991-09-16 1993-03-23 Hitachi Metals Ltd Fe基軟磁性合金
JPH0636927A (ja) * 1992-07-14 1994-02-10 Fujitsu Ltd 軟磁性薄膜及びそれを用いた薄膜磁気ヘッド
JPH07254116A (ja) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd 薄膜磁気ヘッドの熱処理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717901B (zh) * 2009-12-22 2011-07-20 上海大学 脉冲磁场条件下非晶薄带热处理工艺与装置
CN102031348A (zh) * 2010-11-09 2011-04-27 王旋旋 一种消除热轧制钢板应力的方法
CN103238190A (zh) * 2010-11-23 2013-08-07 真空融化股份有限公司 用于机电元件的软磁金属带
CN112251648A (zh) * 2020-09-29 2021-01-22 绵阳西磁科技有限公司 一种高磁导率低损耗FeNiMo磁粉心及其制备方法
CN112251648B (zh) * 2020-09-29 2022-02-11 绵阳西磁科技有限公司 一种高磁导率低损耗FeNiMo磁粉心及其制备方法

Also Published As

Publication number Publication date
JPH118110A (ja) 1999-01-12
EP0883141B1 (fr) 2003-05-28
CZ165998A3 (cs) 1999-01-13
TR199801001A2 (xx) 1999-10-21
HUP9801275A3 (en) 2002-12-28
RU2190023C2 (ru) 2002-09-27
SK67798A3 (en) 1999-01-11
DE69814983D1 (de) 2003-07-03
FR2764430B1 (fr) 1999-07-23
PL326622A1 (en) 1998-12-07
DE69814983T2 (de) 2004-05-13
TR199801001A3 (tr) 1999-10-21
RO119574B1 (ro) 2004-12-30
AU733279B2 (en) 2001-05-10
EP0883141A1 (fr) 1998-12-09
ATE241849T1 (de) 2003-06-15
US5935346A (en) 1999-08-10
PL184069B1 (pl) 2002-08-30
HUP9801275A2 (hu) 2000-12-28
AU6483698A (en) 1998-12-10
ES2196510T3 (es) 2003-12-16
FR2764430A1 (fr) 1998-12-11
KR19990006483A (ko) 1999-01-25
ZA984148B (en) 1998-11-26
HU9801275D0 (en) 1998-07-28
CN1112711C (zh) 2003-06-25
TW367508B (en) 1999-08-21

Similar Documents

Publication Publication Date Title
CN1112711C (zh) 软磁材料制成的元件的磁场热处理工艺
Roshen Ferrite core loss for power magnetic components design
US4314594A (en) Reducing magnetic hysteresis losses in cores of thin tapes of soft magnetic amorphous metal alloys
WO2000030132A1 (de) Magnetkern, der zum einsatz in einem stromwandler geeignet ist, verfahren zur herstellung eines magnetkerns und stromwandler mit einem magnetkern
US5256211A (en) Rapid annealing method using shorted secondary technique
Wilcox et al. Application of modified modal theory in the modelling of practical transformers
US5069428A (en) Method and apparatus of continuous dynamic joule heating to improve magnetic properties and to avoid annealing embrittlement of ferro-magnetic amorphous alloys
EP0528883B1 (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
Chen et al. Theoretical eddy-current permeability spectra of slabs with bar domains
CA2423980C (en) Apparatus for treating body ailments
US4834816A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JP2011155278A (ja) 絶縁体で被覆した磁性金属リボンを用いる磁性物品
EP0604810A2 (en) Internal stress relaxation method in magnetic field sensor head cores
FR2327617A1 (fr) Transformateur de puissance haute-frequence a large bande
US4621416A (en) Amorphous metal transformer with low loss core
ATE100266T1 (de) Spulenanordnung, verfahren zur herstellung von spulenpaaren sowie vorrichtung zur herstellung von spulenpaaren.
GB2233828A (en) Improving magnetic properties of ferromagnetic material
JP2006514433A5 (zh)
JPS6236367B2 (zh)
JPH06275417A (ja) Fe基非晶質合金を用いたコイルのインダクタンスの改善方法
JPS60245724A (ja) 鉄心の熱処理方法
JPS5651815A (en) Transformer winding
Yoshizawa et al. Stability of Co-Based Amorphous Wound Cores Used for Controlling a Switched-Mode Power Supply and Their Optimum Conversion Frequency
Smith Demagnetization of iron
GB2233829A (en) Improving magnetic properties of ferromagnetic alloys

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee