CN118272393A - 一种与类黄酮合成相关的鸭茅基因及其应用 - Google Patents

一种与类黄酮合成相关的鸭茅基因及其应用 Download PDF

Info

Publication number
CN118272393A
CN118272393A CN202410548795.3A CN202410548795A CN118272393A CN 118272393 A CN118272393 A CN 118272393A CN 202410548795 A CN202410548795 A CN 202410548795A CN 118272393 A CN118272393 A CN 118272393A
Authority
CN
China
Prior art keywords
gene
dgcmo
flavonoid
mao
duck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410548795.3A
Other languages
English (en)
Inventor
张新全
王苗利
冯光燕
曹磊
刘�文
李顺风
边昊阳
何定鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Agricultural University
Original Assignee
Sichuan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Agricultural University filed Critical Sichuan Agricultural University
Priority to CN202410548795.3A priority Critical patent/CN118272393A/zh
Publication of CN118272393A publication Critical patent/CN118272393A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种与类黄酮合成相关的鸭茅基因及其应用,该基因的核苷酸序列如SEQ ID NO.3所示,其表达的蛋白质氨基酸序列如SEQ ID NO.4所示。经研究,将该基因在拟南芥中过表达,可使拟南芥出现白化,其类黄酮合成有关基因的表达量均出现下降,表明该基因是一个类黄酮合成的负调控基因,可用于类黄酮化合物的合成,有利于类黄酮化合物的工业生产。同时,通过调控该基因的表达,可用于鸭茅品系的改良,促进优质禾本科牧草鸭茅的开发与利用,对传统牧草的改良有显著的贡献。

Description

一种与类黄酮合成相关的鸭茅基因及其应用
技术领域
本发明涉及植物基因工程领域,具体涉及一种与类黄酮合成相关的鸭茅基因及其应用。
背景技术
鸭茅属于禾本科(Poaceae)早熟禾亚科(Festucoideae)鸭茅属(Dactylis),是世界范围内广泛栽培的多年生冷季型丛生牧草。鸭茅具有叶多高产、耐阴、适应性强、适口性好、营养价值高等优点,可用于青饲、调制干草或青贮,是世界四大分布广泛的禾本科牧草之一,全球每年约生产14000t鸭茅种子,占世界温带牧草种子的3.3%。目前,鸭茅在青海、甘肃、陕西、山西、河南、吉林、江苏、湖北、四川及新疆等省区均有栽培,刈牧兼用,各种家禽喜食,并取得了良好的经济和生态效益,展示了广阔的利用前景。开花期是鸭茅的重要农艺性状,与鸭茅的品质和产量紧密相关。开花期代表植物从营养生长向生殖生长阶段转变,饲草品质与产量也会随之变化。鸭茅适宜于与豆科牧草混播,针对性培育不同开花期鸭茅品种,配合成熟期一致的豆科牧草品种,可以延长混播草地放牧时间,提高综合生产性能和利用效率。
黄酮类化合物是一大类由植物产生的多酚类化合物,在维持植物健康、发育和生长的各器官中发挥重要作用。与此同时,越来越多的证据也表明,类黄酮对牲畜健康有益。例如在反刍动物日粮中添加黄酮类化合物可以提高反刍动物的生产力。类黄酮可分为黄酮类、黄酮醇类、异黄酮类、花青素类、查尔酮类、神经酮类、黄烷类等,类黄酮化合物普遍存在于植物体内的生物合成途径当中,并产生及其丰富的次生代谢产物,是次生代谢产物中最大的类群之一,是植物色素的主要来源,在植物的各个部位都有积累,而在鸭茅中关于与类黄酮合成有关的基因还未见开发和报道。
发明内容
本发明的目的是提供一种与类黄酮合成相关的鸭茅基因,将该基因在拟南芥中过表达,可使拟南芥出现白化,其类黄酮合成有关基因的表达量均出现下降,表明该基因是一个类黄酮合成的负调控基因,可用于类黄酮化合物的工业生产;同时,通过调控该基因的表达,可用于鸭茅品系的改良。
为了达到上述目的,本发明提供了一种与类黄酮合成相关的鸭茅基因DgCMO-like,该基因的核苷酸序列如SEQ ID NO.3所示。
本发明还提供了上述鸭茅基因DgCMO-like所编码的蛋白质,该蛋白质的氨基酸序列如SEQ ID NO.4所示。
本发明还提供了一种含有上述鸭茅基因DgCMO-like核苷酸序列的重组载体。
本发明还提供了一种含有上述重组载体的重组工程菌。
本发明提供的鸭茅基因DgCMO-like可用于牧草改良和育种中。
本发明提供的鸭茅基因DgCMO-like可用于类黄酮化合物的工业生产中。
本发明提供的鸭茅基因DgCMO-like可用于创制观赏类植株中,尤其可用于创制白化的观赏类植株。
本发明具有以下优点:
本发明首次公开了一种与类黄酮合成相关的鸭茅基因DgCMO-like,推动了鸭茅基因功能的注释工作。
由于过表达基因DgCMO-like导致类黄酮合成的减少,因此,可利用基因敲除技术降低鸭茅中基因DgCMO-like的表达量来提高类黄酮的合成,对于传统牧草改良技术见效慢、周期长的缺点,可用于开发类黄酮合成效率高的鸭茅品系,有助于缩短育种时间,提高育种效率,促进优质禾本科牧草鸭茅的开发与利用。
附图说明
图1为本发明中基因DgCMO-like所编码蛋白的亚细胞定位情况。
图2为本发明中过表达了基因DgCMO-like的拟南芥T1代抗性筛选结果。
图3为本发明中过表达纯合株系阳性苗DgCMO-like基因的表达量情况。
图4为本发明中野生型和过表达株系的表型对比情况。
图5为本发明中与类黄酮合成有关基因的表达量情况。
图6为本发明中野生型和过表达株系中花青素的含量检测结果。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
说明:本申请中未具体说明的方法均为本领域的常规方法,未具体给出的试剂耗材均为本领域的常规试剂耗材。
实验例1基因的获取
1、实验材料的选择
选取种植于四川农业大学温江校区的鸭茅品种‘2006-1’,取其幼嫩叶片为材料提取总RNA。选用天根(北京)生化科技有限公司的植物总RNA提取试剂盒进行RNA提取,操作参考内附说明书进行。RNA提取后利用1%琼脂糖凝胶电泳进行完整性检测,使用超微量分光光度计测定RNA浓度和纯度。反转录选用TaKaRa公司的PrimeScript II 1st Strand cDNASynthesis Kit,操作流程参考内附说明书。
2、目的基因的扩增
(1)基因片段的克隆:
以鸭茅参考基因组(参考文章中的测序数据Huang L.Genome assembly providesinsights into the genome evolution and flowering regulation oforchardgrass.Plant Biotechnol J)为模板,通过序列全长设计引物,具体引物序列如下所示(5’→3’):
F(SEQ ID NO.1):ATGGCGATAGCGCGATCCCTG;
R(SEQ ID NO.2):CGCGCGGCCGGTGAGGTCGGC。
将上述提取的RNA反转得到cDNA,以cDNA为模板通过上述设计的引物进行PCR扩增,扩增选用vazyme公司的2×PhantaMax MasterMix(Dye Plus)试剂盒进行,操作流程参考内附说明书。
其中,PCR扩增的反应体系为50μL:包括25μL的2×PhantaMax Master Mix(DyePlus),2μL的F引物(10μM),2μL的R引物(10μM),4μL的模板DNA,17μL的ddH2O。
PCR扩增反应程序为:95℃预变性3min;95℃变性15s,55℃退火15s,72℃延伸1min,35个循环;72℃延伸5min。
对扩增所得的产物进行回收并送测序,得到经扩增的核苷酸序列如SEQ ID NO.3所示,将其命名为DgCMO-like,同时,其编码的蛋白的氨基酸序列如SEQ ID NO.4所示。
DgCMO-like全基因序列(SEQ ID NO.3):
ATGGCGATAGCGCGATCCCTGACTCCGTCCTCGACCGCCTCCGCCGCGAGAGCAGCTCGCGTCAGGTCCCGGCGCGCCGCGACGTCTCGCGTCGCCGCCACGGGGGCGGCGGCGGCGGCAGCGGAGCCCGCGCGGCGGCTCGTGGCGGAGTTCGACCCGGCGATCCCGCTGGCCTCCGCGGTGACGCCGCCGAGCGGGTGGTACACCGACCCGGAGTTCCTGCGGCTCGAGCTCGACCGCGTCTTCTTCCGCGGGTGGCAGGCTGTTGGTCACATAGGACAAGTCAAGAACCCAAATGATTTCTTCACAGGAAGACTGGGAAATGTAGAATTTGTCATATGCCGGGATGCAAATGGGAAACTACACGCTTTTCACAACGTGTGTCGCCACCATGCCTCGCTCCTCGCATGTGGAAGTGGTCAGAAAGTGTGCTTCCAATGCCCTTATCATGGCTGGACATATGGGTTGGATGGTACCCTCCTGAAAGCTACTAGAATCTCAGGAATCAAGAACTTCAACAAGAATGATTTTGGTCTTAAACCAATTAAGGTGGCTACATGGGGACCATTTGTGCTGGCCAAATTTGATGATTTCACTCAAGATACTGGCGATGATGTAGTTGGAGATGAATGGCTGGGCAGTGCTTCAGATCTGCTGAGTAGAAGTGGCATTGACACTTCACTGCCCCATATTTGCAGGCGAGAATATATTATCGAGTGTAACTGGAAGGTCTTCTGTGACAACTATCTAGATGGTGGATATCATGTTCCATATGCACATGGGGCCCTTGCATCTGGTCTTCAGCTTCAATCCTATGAAACACTTGCATATGAAAGAGTTAGTGTTCAAAGATGTGAGAGTGCCGCAGCAGAACAAGAAGACATTGATCGCTTAGGGACAAAAGCTACATATGCCTTTGTTTATCCAAACTTTATGATCAACAGGTATGGTCCGTGGATGGACACTAATCTCGCTGTCCCATTGGATGCAACCAGGTGTAAAGTGGTTTTTGATTATTTTCTGGACGAGTCTCTTCTGGATGACCAGAGTTTTATTGATAGAAGCTTGGAAGACAGCGAACCAGTACAGATGGAAGACATTGCGCTGTGTGAGGGAGTGCAGCGTGGCCTGGGGTCACCGGCCTACGGCGTGGGCAGGTATGCCCCGTCAGTGGAGATGGCCATGCACCACTTCCACTGCCTCCTACACGCCGACCTCACCGGCCGCGCGTAG。
DgCMO-like氨基酸序列(SEQ ID NO.4):
MAIARSLTPSSTASAARAARVRSRRAATSRVAATGAAAAAAEPARRLVAEFDPAIPLASAVTPPSGWYTDPEFLRLELDRVFFRGWQAVGHIGQVKNPNDFFTGRLGNVEFVICRDANGKLHAFHNVCRHHASLLACGSGQKVCFQCPYHGWTYGLDGTLLKATRISGIKNFNKNDFGLKPIKVATWGPFVLAKFDDFTQDTGDDVVGDEWLGSASDLLSRSGIDTSLPHICRREYIIECNWKVFCDNYLDGGYHVPYAHGALASGLQLQSYETLAYERVSVQRCESAAAEQEDIDRLGTKATYAFVYPNFMINRYGPWMDTNLAVPLDATRCKVVFDYFLDESLLDDQSFIDRSLEDSEPVQMEDIALCEGVQRGLGSPAYGVGRYAPSVEMAMHHFHCLLHADLTGRA。
实验例2DgCMO-like基因功能分析
1、利用亚细胞定位确定DgCMO-like基因的表达位置
(1)克隆的构建:
以pAN580质粒为空载体,经XbaI和BamHI双酶切,并通过克隆重组技术将DgCMO-like基因序列连接到经酶切的pAN580质粒上,将连接产物送测序进行阳性克隆的鉴定,将所测定的阳性克隆记为pAN580-DgCMO-like,并转化至大肠杆菌DH5α感受态细胞中进行保存。
(2)水稻原生质体的转化
将上述所得的阳性克隆质粒转化原生质体,步骤如下:
1)将30℃左右暗培养7-15d的水稻幼苗,取茎叶,用水冲洗表面污垢,出去最外层叶鞘;
2)将幼苗茎叶在干净的塑料板上,用锋利的刀片切成碎段长度;
3)加入5-10mL酶解液,以全部浸泡组织为宜,28℃缓慢震荡4-5小时;
4)将原生质体用40μm滤网进行过滤,然后转移至2mL离心管进行离心600rmp离心5min,可见浑浊沉淀;
5)直接吸取上清,用预冷W5溶液10mL洗涤2次,600rmp离心5min,于25℃进行离心;
6)根据需要加入适量MMG溶液悬浮,至浓度为2*105个/mL,镜检可见原生质体圆润,破裂较少;
7)取所得的100μL原生质体悬液、10μL质粒DNA,和与之体积之和相等的PEG4000溶液,轻柔均匀混合,室温静置10-15min;
8)用1mLW5稀释原生质体,混合均匀终止反应;
9)600rmp离心5min收集原生质体,去除上清;
10)加入1mLW5溶液洗涤。
通过水稻原生质体瞬时表达后,在激光共聚焦显微镜下观察DgCMO-like荧光,得到DgCMO-like蛋白亚细胞定位情况如图1所示,可以看出DgCMO-like蛋白在细胞质中荧光信号明显,可确定该蛋白定位于细胞质的颗粒聚集中。
2、基因的功能分析
(1)过表达重组载体的构建
以BamHI和PstⅠ对质粒pHG-35S进行双酶切,并通过克隆重组技术将DgCMO-like基因序列连接到经双酶切的pHG-35S质粒上,将连接产物送测序进行阳性克隆的鉴定,将所测定的阳性克隆记为pHG-35S-DgCMO-like,并转化至大肠杆菌DH5α感受态细胞中进行保存。
(2)农杆菌转化拟南芥
1)提取上述构建成功的重组载体pHG-35S-DgCMO-like,通过如下步骤转入农杆菌:
a.取-80℃保存的农杆菌GV3101感受态于室温或手心片刻待其部分融化,处于冰水混合状态时插入冰中;
b.每100μL感受态加0.1μg(体积不大于10μL)质粒DNA,用手拨打管底混匀,依次于冰上静置5分钟、液氮5分钟、37℃水浴5分钟、冰浴5分钟;
c.加入700μL无抗生素的LB液体培养基,于28℃、200rpm振荡培养2~3小时;
d.6000rpm离心一分钟收菌,留取100μL左右上清轻轻吹打重悬菌块涂布于含相应抗生素的LB平板上,倒置放于28℃培养箱培养2-3天。随机挑选1个单菌落,做菌落PCR,鉴定正确的农杆菌单克隆做标记待用;
e.用无菌枪头挑取做标记的农杆菌单克隆接种到1.5mL含相应抗生素的LB液体培养基(用50mL蓝盖离心管)中,30℃,200rpm振荡培养24小时;
f.按1%比例将过小摇的农杆菌培养物接种加入100mL含有抗生素的LB液体培养基中,30℃,振荡培养到OD600=1.0左右;
g.20℃、4,000rpm,离心15min,收集菌体;将菌体用转化Buffer吹打均匀,重悬至OD600=1.0左右,得到重组工程菌。
2)将得到的重组工程菌菌悬液转化拟南芥,步骤如下:
a.将正在抽薹开花的拟南芥提前一天浇足水;
b.小盆倒置,将所有的花序倒置入事先用转化Buffer悬浮好的菌液中约30秒钟;
c.7天后按上述步骤重复转化一次,2-3周后,尽量少浇营养液,加速衰老,成熟种子收在纸袋中,干燥器中7天。
其中,转化Buffer配制如下表:
3)转基因拟南芥的筛选
a.培养基的配制:拟南芥的培养基用1/2MS(0.8%琼脂粉,不含蔗糖,pH=5.8);
b.种子消毒:70%乙醇1分钟,加1mL 7%的次氯酸钠溶液(含有1滴吐温)消毒10分钟,颠倒混匀5分钟,用无菌水冲洗5次;
c.把消毒后的种子用100μL无菌水重悬,用1mL枪头吸取,点到1/2MS培养基(培养基中加入筛选抗生素:50μg/mL KAN或30μg/mL HYG或50μMGlufosinate-ammonium草铵膦)平板上;
d.平皿封口,4度冰箱内春化48h,放入到人工气候室中开始萌发生长;植物生长环境为相对湿度60%;恒温20-22℃;光照周期为16h光照,8h黑暗,光照强度为80-200μmol/M2/S;
e.8-15天后观察,区分出阳性移栽到种植土中;
f.种植土的配制:泥炭土和蛭石按2:1混匀,放置备用;
g.浸土:把土装入到种植盆中至距盆口约1cm,用花无缺复合肥(N、P、K=20%、20%、20%),完全浸透;
h.移栽:萌发后20天的苗,选取健壮、生长一致的移栽到事先用花无缺浸过的培养土中,其上覆盖保鲜膜,到苗活棵后揭去;
i.在苗期取样进行PCR鉴定,既得拟南芥T1代抗性筛选阳性植株。
其中,在对20天的幼苗进行取样,选用植物基因组DNA提取试剂盒(DP305)进行DNA提取,操作参考内附说明书进行。对提取的DNA进行PCR鉴定,根据DgCMO-like基因序列设计PCR鉴定引物,具体序列如下(5’→3’),该对引物的扩增产物为574bp:
DgCMO-like-F(SEQ ID NO.5):ATGAGGTGGCCGGAGCAG;
DgCMO-like-R(SEQ ID NO.6):CTGTTCGGAAGATAAAGCG。
随机选取16株幼苗进行鉴定,经PCR后,其产物的电泳结果如图2所示,其中,泳道M为DL2000的marker,泳道1~16依次为编号OE1、OE2……、OE16的转基因拟南芥幼苗,泳道con为野生型拟南芥。由电泳结果可知,成功获得了过表达DgCMO-like基因的拟南芥阳性植株。
4)T3代转基因株系中DgCMO-like表达量的验证
随机选取4个T3代纯合转基因株系纯合株系苗,待生长至3周后进行RNA的提取,验证了7个纯合株系阳性苗DgCMO-like基因的表达量,表达量情况见图3所示
5)转基因拟南芥幼苗表型差异
a.过表达株系的表型情况测定:
对过表达DgCMO-like基因的拟南芥阳性植株表型与野生型进行对比,发现该基因过表达的植株幼苗出现了白化现象,其中,野生型和过表达DgCMO-like株系OE6、OE8的表型对比情况如图4所示。提示该基因的表达可能与类黄酮的合成有关,且该基因的过表达会导致类黄酮合成的减少。
b.与类黄酮合成有关基因的荧光定量测定:
对萌发后第3周的阳性过表达株系(OE6、OE10)和野生型拟南芥(WT)进行取样,随后放入液氮冷冻,每个样品取3个重复。对获取的样品进行RNA提取和反转录,RNA和反转录的实验方法如上。
针对拟南芥与类黄酮合成有关基因(AtBAN、AtTT4、AtTT5、AtTT7、AtCHIL、AtF3H、AtDFR),采用常规qPCR对各个样品的七个基因进行荧光定量,结果如图5所示,结果表明,除AtBAN基因外,其余与类黄酮合成有关的基因在过表达株系中均表达出下降的趋势如AtTT4、AtTT5、AtTT7、AtCHIL、AtF3H和AtDFR。而花青素是类黄酮家族的重要一员,同时检测花青素含量,其定量结果如图6所示,可见该基因过表达株系的花青素含量也比野生型低。综合图5-6可知,鸭茅DgCMO-like基因可能是类黄酮合成的负调控基因,该基因的过表达会导致类黄酮合成的降低。
综上可知,DgCMO-like是一个与类黄酮合成相关的鸭茅基因,该基因的过表达可以显著降低类黄酮的合成,表明可以利用基因敲除技术降低鸭茅中DgCMO-like的表达量来增加类黄酮的合成。通过构建该基因的过表达载体,通过将其转入植株中可导致出现白化苗,可用于观赏类植株的创制,如上述创制白化的拟南芥,同时可用于创制其他白化的观赏类植株。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (8)

1.一种与类黄酮合成相关的鸭茅基因DgCMO-like,其特征在于,该基因的核苷酸序列如SEQ ID NO.3所示。
2.如权利要求1中所述鸭茅基因DgCMO-like所编码的蛋白质,其特征在于,所述蛋白质的氨基酸序列如SEQ ID NO.4所示。
3.包含如权利要求1中所述鸭茅基因DgCMO-like的核苷酸序列的重组载体。
4.含有如权利要求3所述重组载体的重组工程菌。
5.如权利要求1所述的鸭茅基因DgCMO-like在牧草改良和育种中的应用。
6.如权利要求1所述的鸭茅基因DgCMO-like在类黄酮化合物的工业生产中的应用。
7.如权利要求1所述的鸭茅基因DgCMO-like在观赏类植株创制中的应用。
8.根据权利要求7所述的应用,其特征在于,所述的观赏类植株为白化植株。
CN202410548795.3A 2024-05-06 2024-05-06 一种与类黄酮合成相关的鸭茅基因及其应用 Pending CN118272393A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410548795.3A CN118272393A (zh) 2024-05-06 2024-05-06 一种与类黄酮合成相关的鸭茅基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410548795.3A CN118272393A (zh) 2024-05-06 2024-05-06 一种与类黄酮合成相关的鸭茅基因及其应用

Publications (1)

Publication Number Publication Date
CN118272393A true CN118272393A (zh) 2024-07-02

Family

ID=91637002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410548795.3A Pending CN118272393A (zh) 2024-05-06 2024-05-06 一种与类黄酮合成相关的鸭茅基因及其应用

Country Status (1)

Country Link
CN (1) CN118272393A (zh)

Similar Documents

Publication Publication Date Title
US11535858B2 (en) Polynucleotide construct for improving agricultural characteristics in crop plants
CN104903444B (zh) 对植物赋予高产性的核酸、制备产量增加的转基因植物的方法、使植物的产量增大的方法
CN108660140B (zh) SlSL4基因在调控番茄果实成熟中的应用
CN118147175B (zh) MtCOMT13基因在调控植物耐盐抗旱性中的应用
CN118726410A (zh) 促进植物耐旱和早花的蔓花生wrky40转录因子及其应用
CN113088526A (zh) 热激相关基因ZmHsf11及其在调控植物耐热性中的应用
CN118256555A (zh) 马铃薯生长素转运基因StLAX5的应用
CN108676081B (zh) 紫云英leafy基因及其应用
CN113774043B (zh) 一种控制水稻颖壳色彩性状的相关蛋白及其编码基因
CN114164229B (zh) 利用FvePILS5基因的CRISPR/Cas9基因敲除载体获得再生效率高的草莓新种质的方法及应用
CN115991756A (zh) 一种提高弱光条件下番茄果实产量和番茄果实番茄红素含量的方法
CN116064568A (zh) 紫花苜蓿MsASG166基因及在提高植物耐旱中的用途
CN118272393A (zh) 一种与类黄酮合成相关的鸭茅基因及其应用
CN112063597B (zh) 玉米多铜氧化酶编码基因ZmDEK559-2及其应用
CN118240839A (zh) 一种鸭茅开花基因dg3c00010.1及其应用
CN116218870B (zh) 一种光周期基因CsCOL4及其编码蛋白和应用
CN117568289B (zh) 一种抗大豆胞囊线虫病的蛋白质及其编码基因与应用
CN116897961B (zh) 一种植物分枝调节剂及其应用
CN114874300B (zh) TaDRS1蛋白及其编码基因在调控小麦株高及粒形中的应用
CN112391403B (zh) Tgw10基因在用于改良农作物粒型性状中的应用
CN113308489B (zh) 一种耐盐燕麦新种质的创制方法
CN113652434B (zh) 一种具有促进水稻籽粒增大作用的芡实dna分子及其应用
CN119082119A (zh) 一种调控植物开花时间的基因dg1c00225.1及其应用
CN115992150A (zh) GhbHLH093基因在调控植物开花期中的应用
CN116970638A (zh) 敲除番茄SlZF3基因在提高番茄产量中的应用

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination