CN118185309A - 一种四元共聚热塑性聚酰亚胺薄膜及其制备方法 - Google Patents

一种四元共聚热塑性聚酰亚胺薄膜及其制备方法 Download PDF

Info

Publication number
CN118185309A
CN118185309A CN202410378076.1A CN202410378076A CN118185309A CN 118185309 A CN118185309 A CN 118185309A CN 202410378076 A CN202410378076 A CN 202410378076A CN 118185309 A CN118185309 A CN 118185309A
Authority
CN
China
Prior art keywords
polyimide film
monomer containing
thermoplastic polyimide
dianhydride
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410378076.1A
Other languages
English (en)
Inventor
谢新玲
叶芝琴
肖迪
秦祖赠
苏通明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202410378076.1A priority Critical patent/CN118185309A/zh
Publication of CN118185309A publication Critical patent/CN118185309A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • C08K2003/3036Sulfides of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开一种四元共聚热塑性聚酰亚胺薄膜及其制备方法,涉及聚酰亚胺薄膜技术领域。本发明采用多元聚合法将含柔性醚键基团的二胺单体、含氟基团的二胺单体与含联苯结构的二酐单体、含柔性醚键基团和侧甲基基团的二酐单体进行反应形成聚酰胺酸溶液,然后将羟基化ZnS纳米颗粒掺入聚酰胺酸溶液中,热胺化处理后,得到四元共聚热塑性聚酰亚胺薄膜。本发明通过在聚酰亚胺分子链中引入柔性醚键基团以及侧甲基团赋予聚酰亚胺薄膜热塑性,引入含氟基团以提高薄膜的透光率,引入联苯基团以提高薄膜的弹性模量,并通过掺入羟基化ZnS纳米颗粒以降低其热膨胀系数,从而使得薄膜具有高透光率、低热膨胀系数、力学性能好等特性,有望应用于双面柔性覆铜板中。

Description

一种四元共聚热塑性聚酰亚胺薄膜及其制备方法
技术领域
本发明涉及聚酰亚胺薄膜技术领域,具体涉及一种四元共聚热塑性聚酰亚胺薄膜及其制备方法。
背景技术
聚酰亚胺(Polyimide,简写为PI)指主链上含有酰亚胺环(-CO-NR-CO-)的一类聚合物,是综合性能最佳的有机高分子材料之一,由于其具有优异的机械性能、高的热稳定性、低介电常数和易于加工等优点,被广泛应用于微电子器件、薄膜和粘合剂中。在快速发展的柔性显示衬底领域,迫切需要开发具有过耐热性和高热尺寸稳定性的聚酰亚胺。聚酰亚胺薄膜分为热塑性聚酰亚胺(TPI)和热固性聚酰亚胺薄膜(PI-s),热塑性聚酰亚胺是指具有可塑性好、可再加工性强的聚合物材料;热固性聚酰亚胺则是指在热固化后,不可逆转的形成耐高温、高强度、高模量等优异性能的材料。热塑性聚酰亚胺的韧性比热固性聚酰亚胺好,热固性聚酰亚胺的芳环结构导致这类高分子材料的刚性较大,玻璃化转变温度(Tg)较高,且不熔不溶,加工比较困难,这就在某种程度上限制了其应用。
热塑性聚酰亚胺分子结构上含有醚键、酮键、侧甲基基团和亚甲基等柔性链节,而热固性聚酰亚胺分子结构上含有刚性吡啶单元、双苯并恶唑结构单元、吡嗪结构单元。为了解决热固性聚酰亚胺薄膜加工困难问题,一般通过对聚酰亚胺分子结构进行改性以制备热塑性聚酰亚胺薄膜,具有不同分子链的醚类二胺和二酐单体可以使聚酰亚胺到达热塑性,主要是通过降低所生成的亚胺基在分子链中的重复单元中的浓度,亚胺之间缔合能力减弱,分子间凝聚力降低使玻璃化转变温度降低。对于聚酰亚胺薄膜在新兴柔性器件和精密仪器中的应用,迫切要求其具有较低的热膨胀系数和较高的弹性模量,以解决聚酰亚胺薄膜在和铜箔复合时发生翘曲问题,且在实际应用中也需要其具备高耐热性、高韧性以及良好的力学性能等。
目前针对聚酰亚胺薄膜的热膨胀系数的改善研究主要从聚酰亚胺分子结构设计角度出发,在聚酰亚胺分子链中引入刚性基团(吡啶和双苯并恶唑结构基团等),采用共混、多元共聚、添加无机填料等改性方法,比如专利公开号CN 110387041 A公开了一种聚酰亚胺复合膜及其制备方法,该聚酰亚胺复合膜为掺杂有ZnS无机纳米颗粒的聚酰亚胺膜,该聚酰亚胺膜含有苯并恶唑结构,苯并恶唑结构是一种刚性基团,其可以降低所制备薄膜的热膨胀系数。但是该热固性聚酰亚胺薄膜存在溶解性和熔体流动性能较差,难以再次加工使用的问题,以及聚酰亚胺薄膜再和铜箔结合生产双面柔性覆铜板时出现粘结力低,容易发生翘曲问题。
因此,本发明提出通过多元聚合法在聚酰亚胺分子链中引入柔性醚键基团以及侧甲基团赋予聚酰亚胺薄膜热塑性,引入含氟基团以提高薄膜透光率,引入联苯基团以提高薄膜弹性模量,并通过添加改性无机纳米颗粒以降低其热膨胀系数,由此得到一种具有低热膨胀系数、力学性能好的热塑性聚酰亚胺薄膜,且该薄膜可应用于双面柔性覆铜板中,实现工业化生产。
发明内容
针对以上问题,本发明提供一种四元共聚热塑性聚酰亚胺薄膜及其制备方法,制得的热塑性聚酰亚胺薄膜具有高透光率、低热膨胀系数、力学性能好等特性。
本发明通过以下技术方案实现:
一种四元共聚热塑性聚酰亚胺薄膜,采用多元聚合法将含柔性醚键基团的二胺单体、含氟基团的二胺单体与含联苯结构的二酐单体、含柔性醚键基团和侧甲基基团的二酐单体进行反应形成聚酰胺酸溶液,然后将羟基化ZnS纳米颗粒掺入聚酰胺酸溶液中,经热胺化处理后,得到四元共聚热塑性聚酰亚胺薄膜。
进一步地,所述含柔性醚键基团的二胺单体为4,4'-二氨基二苯醚、3,4'-二氨基二苯醚、1,3-双(4-氨基苯氧基)苯或1,4-双(4-氨基苯氧基)苯;所述含氟基团的二胺单体为2,2'-双(三氟甲基)-4,4'-二氨基联苯、4,5-二氟-1,2-苯二胺或4-(3-氯-4-氟苯基)-7-(3-吗啉丙氧基)喹唑啉-4,6-二胺;所述含联苯结构的二酐单体为4,4'-联苯醚二酐、2,3,3',4'-联苯四甲酸二酐或3,3',4,4'-联苯四甲酸二酐;所述含柔性醚键基团和侧甲基基团的二酐单体为双酚A二酐、4,4'-联苯醚二酐或乙二胺四乙酸二酐。
进一步地,所述四元共聚热塑性聚酰亚胺薄膜的厚度为20μm时透光率为62~75%、玻璃化转变温度为235.27~242.04℃、热膨胀系数为37.77~45.88ppm/K、拉伸强度为124~129MPa、弹性模量为3.43~3.82GPa。
一种如上所述的四元共聚热塑性聚酰亚胺薄膜的制备方法,包括以下步骤:
(1)取含氟基团的二胺单体溶于有机溶剂中,待其完全溶解后,分三次加入含柔性醚键基团和侧甲基基团的二酐单体,之后再加入含柔性醚键基团的二胺单体和含联苯结构的二酐单体,并于低温下进行水浴反应,得到聚酰胺酸溶液;
(2)取ZnS纳米颗粒加入水中,得到ZnS悬浮液,然后加入3-巯基丙基三甲氧基硅烷溶液,并于室温下进行反应,以使ZnS纳米颗粒表面形成羟基,反应结束后,进行洗涤、离心以及真空干燥,得到羟基化ZnS纳米颗粒;
(3)取羟基化ZnS纳米颗粒溶于有机溶剂中,将所得的羟基化ZnS溶液与聚酰胺酸溶液混合,于低温下进行水浴反应,然后将反应溶液均匀涂覆于玻璃板上,放入烘箱中进行程序升温以完成热亚胺化处理,结束后自然冷却至室温,取下薄膜进行烘干后,得到四元共聚热塑性聚酰亚胺薄膜。
进一步地,步骤(1)中,所述含柔性醚键基团的二胺单体、含氟基团的二胺单体、含联苯结构的二酐单体、含柔性醚键基团和侧甲基基团的二酐单体的摩尔比为1:5~9:1~5:1。
进一步地,步骤(1)中,所述低温下进行水浴反应的温度8~12℃,反应时间3~4h。
进一步地,步骤(2)中,所述ZnS纳米颗粒与3-巯基丙基三甲氧基硅烷溶液的质体比为0.2~0.5g:15μL。
进一步地,步骤(2)中,所述于室温下进行反应的时间为20~22h。
进一步地,步骤(3)中,所述羟基化ZnS纳米颗粒的添加量为所加单体总质量的5~10%。
进一步地,步骤(3)中,所述低温下进行水浴反应的温度为8~12℃,反应时间为3~4h;所述程序升温为:从150~160℃升温至200~210℃保温5~10min,继续升温至250~260℃保温5~10min,最后升温至390~400℃保温5~10min。
进一步地,步骤(1)和(3)中,所述有机溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、二甲基亚砜中的任一种。
本发明使用的ZnS纳米颗粒可直接从市场上购买现有产品获得。
本发明的四元共聚热塑性聚酰亚胺薄膜的制备原理:
(1)本发明的二胺单体和二酐单体在共聚反应中,二胺与环状酸酐的开环加成反应,即二胺的仲胺与酸酐的羧基碳之间的亲核加成反应,经亚胺化反应,聚酰胺酸溶液的酰胺基上的氮亲核攻击羧基上的羰基碳,经脱水反应生成聚酰亚胺薄膜。在该过程中,含柔性醚键基团的二胺单体以及含柔性醚键基团和侧甲基基团的二酐单体可以降低所生成聚酰亚胺分子中亚胺基在分子链中的重复单元中的浓度,亚胺间缔合能力减弱,分子间凝聚力降低,使聚酰亚胺薄膜的玻璃化转变温度降低,从而使得该薄膜具有热可塑性。此外,含氟基团的二胺单体可以提高该薄膜透光率,含联苯结构的二酐单体可以提高薄膜的弹性模量,从而使得薄膜具备热塑性的同时,还具有透光率高、力学性能好等特性。
(2)ZnS纳米颗粒是高导热性(25.1W/mL)、低热膨胀系数(CTE值为6.36ppm/K)、尺寸和表面性能易于控制的填料,相对于SiO2纳米颗粒、Al2O3纳米颗粒等传统无机填料,ZnS纳米颗粒具有可将热转化为光的热致发光特性,有助于热应力消散,将其掺入聚酰亚胺薄膜中,可使得薄膜结构紧密,并降低薄膜的热膨胀系数。但是ZnS纳米颗粒易团聚,难以在聚合物基质中分散。为防止ZnS纳米颗粒团聚,使其均匀分散,本发明采用改性剂3-巯基丙基三甲氧基硅烷对ZnS纳米颗粒进行改性,对其表面进行修饰,经反应后,ZnS纳米颗粒表面形成羟基,可更好地在聚酰亚胺聚合物基质中分散,从而更好地降低薄膜的热膨胀系数。
(3)本发明将羟基化ZnS纳米颗粒与聚酰胺酸进行复合,其中的羟基化ZnS纳米颗粒的表面基团为-OH,其棒状结构可以与聚酰胺酸分子链缠绕紧密,羟基化ZnS纳米颗粒与聚酰胺酸分子之间通过羟基结合,这时整个分子链形成氢键,产生新的堆砌方式,更有利于聚酰胺酸形成规整的超分子结构,在一定程度上促进聚酰胺酸分子链的面内取向和排列规整,从而使得聚酰亚胺薄膜具有高度的面内取向,从而可以很好的降低薄膜的热膨胀系数。
与现有技术相比,本发明的优点及有益效果为:
1、本发明在制备聚酰亚胺薄膜过程中,通过在聚酰亚胺分子链中引入柔性醚键基团以及侧甲基团赋予聚酰亚胺薄膜热塑性,引入含氟基团以提高薄膜的透光率,引入联苯基团以提高薄膜的弹性模量,并通过掺入羟基化ZnS纳米颗粒以降低其热膨胀系数,从而使得制得的四元共聚热塑性聚酰亚胺薄膜具有高透光率、低热膨胀系数、力学性能好等特性。
2、本发明的聚酰亚胺薄膜在引入羟基化ZnS纳米颗粒前,热膨胀系数65.35ppm/K、拉伸强度109MPa、弹性模量2.40GPa,在引入羟基化ZnS纳米颗粒之后,热膨胀系数可以降低27ppm/k左右,且拉伸强度和弹性模量均有所提高。说明本发明在聚酰亚胺中引入羟基化ZnS纳米颗粒对聚酰亚胺进行改性,可有效降低薄膜的热膨胀系数,并增强薄膜的力学性能。
3、因双面柔性覆铜板由铜箔、薄膜两种材料复合而成,其作为电子产品的基材要求聚酰亚胺薄膜与铜箔复合具有很好的粘接力和不能翘曲,以及要求弹性模量不低于3GPa,机械性能中的拉伸强度至少达到110MPa。而本发明的薄膜含有联苯结构的二酐单体,薄膜的弹性模量和拉伸强度高,弹性模量为3.43~3.82GPa、拉伸强度为124~129MPa,达到双面柔性覆铜板的要求,因此本发明的薄膜有望与铜箔复合以制备双面柔性覆铜板。
附图说明
图1为实施例1中四元共聚热塑性聚酰亚胺薄膜的产品图。
图2为实施例1、对比例1-4中聚酰亚胺薄膜的FT-IR图。
具体实施方式
下面通过实施例对本发明做进一步地详细说明,这些实施例仅用来说明本发明,并不限制本发明的保护范围。
实施例1
四元共聚热塑性聚酰亚胺薄膜的制备:
(1)称取1.0473g 2,2'-双(三氟甲基)-4,4'-二氨基联苯溶于15mL N,N-二甲基乙酰胺中,待2,2'-双(三氟甲基)-4,4'-二氨基联苯完全溶解于溶剂之后,加入3.0639g双酚A二酐(分三次加入,每次间隔10min);然后加入0.6549g 4,4'-二氨基二苯醚和0.1924g3,3',4,4'-联苯四甲酸二酐,于10℃冰水浴下反应4h,得到聚酰胺酸溶液;
(2)取0.2479g ZnS纳米颗粒加入水中得到ZnS悬浮液,然后加入15μL 3-巯基丙基三甲氧基硅烷溶液,于室温下反应22h,反应后经过乙醇溶液洗涤离心3次(离心转速9000r/min,每次离心10min),然后在60℃下真空干燥6h,得到羟基化ZnS纳米颗粒;
(3)取0.2479g羟基化ZnS纳米颗粒溶于15mL N,N-二甲基乙酰胺中,将所得的羟基化ZnS溶液与聚酰胺酸溶液进行混合,于10℃冰水浴下反应4h,反应结束后,将反应溶液均匀涂覆于玻璃板上,然后放入烘箱中进行程序升温以完成热亚胺化处理,具体为:从160℃升温至210℃保温5min,继续升温至260℃保温5min,最后升温至400℃保温5min,结束后自然冷却至室温,用100℃热水浸泡玻璃板20min取下薄膜,经烘干后,得到四元共聚热塑性聚酰亚胺薄膜。图1为该聚酰亚胺薄膜产品图,因薄膜为黄色透明的膜状材料,为突显该薄膜材料为透明状态,将底图描绘成彩色图。
实施例2
四元共聚热塑性聚酰亚胺薄膜的制备:
(1)称取1.0478g 2,2'-双(三氟甲基)-4,4'-二氨基联苯溶于15mL N,N-二甲基甲酰胺中,待2,2'-双(三氟甲基)-4,4'-二氨基联苯完全溶解于溶剂之后,加入3.0639g 4,4'-联苯醚二酐(分三次加入,每次间隔10min);然后加入0.6555g 3,4'-二氨基二苯醚和0.1941g 2,3',3,4'-联苯四甲酸二酐,于8℃冰水浴下反应4h,得到聚酰胺酸溶液;
(2)取0.3471g ZnS纳米颗粒加入水中得到ZnS悬浮液,然后加入15μL 3-巯基丙基三甲氧基硅烷溶液,于室温下反应21h,反应后经过乙醇溶液洗涤离心3次(离心转速9000r/min,每次离心10min),然后在60℃下真空干燥6h,得到羟基化ZnS纳米颗粒;
(3)取0.3471g羟基化ZnS纳米颗粒溶于15mL N,N-二甲基甲酰胺中,将所得的羟基化ZnS溶液与聚酰胺酸溶液进行混合,于8℃冰水浴下反应4h,反应结束后,将反应溶液均匀涂覆于玻璃板上,然后放入烘箱中进行程序升温以完成热亚胺化处理,具体为:从150℃升温至200℃保温7min,继续升温至250℃保温7min,最后升温至390℃保温7min,结束后自然冷却至室温,用100℃热水浸泡玻璃板20min取下薄膜,经烘干后,得到四元共聚热塑性聚酰亚胺薄膜。
实施例3
四元共聚热塑性聚酰亚胺薄膜的制备:
(1)称取0.8680g 4,5-二氟-1,2-苯二胺溶于15mL N-甲基-2-吡咯烷酮中,待4,5-二氟-1,2-苯二胺完全溶解于溶剂之后,加入2.2391g双酚A二酐(分三次加入,每次间隔10min);然后加入0.5169g 1,3-双(4-氨基苯氧基)苯和1.3345g 4,4′-联苯醚二酐,于10℃冰水浴下反应4h,得到聚酰胺酸溶液;
(2)取0.3967g ZnS纳米颗粒加入水中得到ZnS悬浮液,然后加入15μL 3-巯基丙基三甲氧基硅烷溶液,于室温下反应20h,反应后经过乙醇溶液洗涤离心3次(离心转速9000r/min,每次离心10min),然后在60℃下真空干燥6h,得到羟基化ZnS纳米颗粒;
(3)取0.3967g羟基化ZnS纳米颗粒溶于15mL N-甲基-2-吡咯烷酮中,将所得的羟基化ZnS溶液与聚酰胺酸溶液进行混合,于10℃冰水浴下反应4h,反应结束后,将反应溶液均匀涂覆于玻璃板上,然后放入烘箱中进行程序升温以完成热亚胺化处理,具体为:从160℃升温至200℃保温8min,继续升温至260℃保温8min,最后升温至390℃保温8min,结束后自然冷却至室温,用100℃热水浸泡玻璃板20min取下薄膜,经烘干后,得到四元共聚热塑性聚酰亚胺薄膜。
实施例4
四元共聚热塑性聚酰亚胺薄膜的制备:
(1)称取1.4801g 4-(3-氯-4-氟苯基)-7-(3-吗啉丙氧基)喹唑啉-4,6-二胺苯溶于15mL二甲基亚砜中,待4-(3-氯-4-氟苯基)-7-(3-吗啉丙氧基)喹唑啉-4,6-二胺完全溶解于溶剂之后,加入1.7838g乙二胺四乙酸二酐(分三次加入,每次间隔10min);然后加入0.6862g 1,4-双(4-氨基苯氧基)苯和1.0083g 3,3',4,4'-联苯四甲酸二酐,于12℃冰水浴下反应3h,得到聚酰胺酸溶液;
(2)取0.4958g ZnS纳米颗粒加入水中得到ZnS悬浮液,然后加入15μL 3-巯基丙基三甲氧基硅烷溶液,于室温下反应22h,反应后经过乙醇溶液洗涤离心3次(离心转速9000r/min,每次离心10min),然后在60℃下真空干燥6h,得到羟基化ZnS纳米颗粒;
(3)取0.4958g羟基化ZnS纳米颗粒溶于15mL二甲基亚砜中,将所得的羟基化ZnS溶液与聚酰胺酸溶液进行混合,于12℃冰水浴下反应3h,反应结束后,将反应溶液均匀涂覆于玻璃板上,然后放入烘箱中进行程序升温以完成热亚胺化处理,具体为:从150℃升温至210℃保温10min,继续升温至250℃保温10min,最后升温至400℃保温10min,结束后自然冷却至室温,用100℃热水浸泡玻璃板20min取下薄膜,经烘干后,得到四元共聚热塑性聚酰亚胺薄膜。
对比例1
对比例1与实施例1的区别在于,对比例1中不加入ZnS纳米颗粒,其余制备过程和条件均与实施例1相同,制得四元共聚热塑性聚酰亚胺薄膜。
对比例2
对比例2与实施例1的区别在于,对比例2中将ZnS纳米颗粒替换为SiO2纳米颗粒,且SiO2纳米颗粒不进行改性,其余制备过程和条件均与实施例1相同,制得四元共聚热塑性聚酰亚胺薄膜。
对比例3
对比例3与实施例1的区别在于,对比例3中将ZnS纳米颗粒替换为Al2O3纳米颗粒,且Al2O3纳米颗粒不进行改性,其余制备过程和条件均与实施例1相同,制得四元共聚热塑性聚酰亚胺薄膜。
对比例4
对比例4与实施例1的区别在于,对比例4中不加入ZnS纳米颗粒,且将4,4'-二氨基二苯醚替换为对苯二胺,其余制备过程和条件均与实施例1相同,制得四元共聚热固性聚酰亚胺薄膜。
材料表征分析
采用傅里叶红外光谱仪(FT-IR)对实施例1、对比例1-4中的聚酰亚胺薄膜的官能团进行分析,分析结果如图2所示。图2中,实施例1、对比例1-4的聚酰亚胺薄膜均在3740cm-1附近出现酰亚胺环的特征吸收峰,为N-H伸缩振动吸收峰,1778cm-1、1706cm-1、1508cm-1和838cm-1附近出现了酰亚胺环的特征吸收峰,分别对应为C=O不对称伸缩振动吸收峰、C=O对称伸缩振动吸收峰、C—N伸缩振动吸收峰、C=O弯曲振动吸收峰,以上特征表明了酰亚胺环的形成。1850cm-1、1660cm-1、1550cm-1处未见酸酐及酰胺酸的吸收峰,说明酰胺酸的亚胺化较为完全。
材料性能测试
对实施例1-4和对比例1-4中的所有聚酰亚胺薄膜进行吸水率、透光率、玻璃化转变温度、热膨胀系数和力学性能进行测试,上述性能测试采用的方法为:
<吸水率测试>
将烘干至恒重的薄膜裁成一片约2cm*4cm大小,在电子天平上称重,记录起始重量为m1。浸泡在去离子水中24h,随后将膜取出,用纸擦干其表面,迅速地在电子天平上称重,记录重量为m2。吸水率s可由公式算出s=[(m2-m1)/m1]×100%。
<透光率测试>
使用双光束紫外可见分光光度计对薄膜透光率进行测试,将薄膜裁剪到成1cm*2cm大小放入到仪器测试样品槽中,使用普通模式测量波长为390-780nm范围的透光率。
<玻璃化转变温度测试>
通过示差扫描量热分析DSC测定,预处理条件:200℃环境中30s后冷却5min,测试条件为:起始温度25℃,终点温度250℃,负载0.05N,升温速率10℃/min,氮气保护50mL/min。
<热膨胀系数>
使用静态热机械测试仪TMA,在起始温度25℃,终点温度250℃,负载0.05N,升温速率10℃/min,氮气保护50mL/min的条件下测定。
<力学性能测试>
采用万能材料试验机测试薄膜的力学性能,将薄膜裁剪为25mm*50mm的长方形条状薄膜,在室温的条件下,拉伸速率为1mm/min。
由上述测试方法测得聚酰亚胺薄膜性能的结果如表1所示。
表1聚酰亚胺薄膜性能测试结果
由表1数据可知,与对比例1相比,实施例1中加入羟基化ZnS纳米颗粒得到的聚酰亚胺复合薄膜的透明度和热膨胀系数都有所降低,但是透明度能够维持在70%以上,热膨胀系数的降低效果显著,可降低27ppm/K左右,说明本发明薄膜的尺寸稳定性显著提高,说明羟基化ZnS纳米颗粒的添加可以降低薄膜的热膨胀系数。此外,与对比例1相比,实施例1中的拉伸强度和弹性模量数据优于对比例1,分别提高20MPa、1.42GPa,说明在聚酰亚胺薄膜中加入羟基化ZnS纳米颗粒对力学性能起到改善作用。此外,实施例1-4中羟基化ZnS纳米颗粒的添加量分别为所加单体总质量的5%、7%、8%、10%,得到的薄膜综合性能好,避免羟基化ZnS纳米颗粒添加量过多影响其分散,造成团聚问题而影响到薄膜热膨胀系数的降低。
实施例1与对比例2相比,两者的薄膜透明度和吸水率的差距小,但实施例1中的热膨胀系数低于对比例2,两者相差13ppm/K左右,说明实施例1中加入羟基化ZnS纳米颗粒对于薄膜尺寸稳定性的改善效果要优于对比例2中的SiO2纳米颗粒。此外,对比例2中加入SiO2纳米颗粒对力学性能改善作用要小于实施例1。实施例1与对比例3薄膜的透光率相近,但对比例3中加入Al2O3纳米颗粒得到复合薄膜的热膨胀系数高,同时薄膜弹性模量低,说明加入Al2O3纳米颗粒薄膜的尺寸稳定性和力学性能改善作用小。
对比例2和对比例3中的热性能和力学性能低的原因之一在于SiO2纳米颗粒和Al2O3纳米颗粒不同于ZnS纳米颗粒具有将热转化为光的热致发光特性,有助于热应力的消散。此外,ZnS纳米颗粒具有较低的固有CTE值为6.36ppm/K,与其他填料颗粒相当,并且其尺寸和表面性能易于控制。而SiO2纳米颗粒表面含有硅氧键不宜与聚酰亚胺分子形成氢键,Al2O3纳米颗粒固有CTE值为8.5ppm/K比ZnS颗粒固有CTE值高,因此形成的聚酰亚胺复合薄膜的尺寸稳定性和力学性能弱于羟基化SiO2纳米颗粒改性聚酰亚胺薄膜。
实施例1与对比例4相比,对比例4中含有对苯二胺这个刚性极强的单体,实施例1含醚键的柔性二胺单体,实施例1的玻璃化转变温度比对比例4的低134.11℃。因刚性单体会增加所制备薄膜的玻璃化转变温度,特别是对苯二胺这个刚性单体从结构上来看只含有苯环和胺基,在与二酐发生反应时会增加所生成聚酰亚胺分子中亚胺基在分子链中的重复单元中的浓度,亚胺间缔合能力增强,分子间凝聚力提高,使得聚酰亚胺薄膜的玻璃化转变温度提高,因此对比例4中制得的是热固性聚酰亚胺薄膜。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种四元共聚热塑性聚酰亚胺薄膜,其特征在于,采用多元聚合法将含柔性醚键基团的二胺单体、含氟基团的二胺单体与含联苯结构的二酐单体、含柔性醚键基团和侧甲基基团的二酐单体进行反应形成聚酰胺酸溶液,然后将羟基化ZnS纳米颗粒掺入聚酰胺酸溶液中,经热胺化处理后,得到四元共聚热塑性聚酰亚胺薄膜。
2.根据权利要求1所述的四元共聚热塑性聚酰亚胺薄膜,其特征在于,所述含柔性醚键基团的二胺单体为4,4'-二氨基二苯醚、3,4'-二氨基二苯醚、1,3-双(4-氨基苯氧基)苯或1,4-双(4-氨基苯氧基)苯;所述含氟基团的二胺单体为2,2'-双(三氟甲基)-4,4'-二氨基联苯、4,5-二氟-1,2-苯二胺或4-(3-氯-4-氟苯基)-7-(3-吗啉丙氧基)喹唑啉-4,6-二胺;所述含联苯结构的二酐单体为4,4'-联苯醚二酐、2,3,3',4'-联苯四甲酸二酐或3,3',4,4'-联苯四甲酸二酐;所述含柔性醚键基团和侧甲基基团的二酐单体为双酚A二酐、4,4'-联苯醚二酐或乙二胺四乙酸二酐。
3.根据权利要求1所述的四元共聚热塑性聚酰亚胺薄膜,其特征在于,所述四元共聚热塑性聚酰亚胺薄膜的厚度为20μm时透光率为62~75%、玻璃化转变温度为235.27~242.04℃、热膨胀系数为37.77~45.88ppm/K、拉伸强度为124~129MPa、弹性模量为3.43~3.82GPa。
4.一种如权利要求1-3任一所述的四元共聚热塑性聚酰亚胺薄膜的制备方法,其特征在于,包括以下步骤:
(1)取含氟基团的二胺单体溶于有机溶剂中,待其完全溶解后,分三次加入含柔性醚键基团和侧甲基基团的二酐单体,之后再加入含柔性醚键基团的二胺单体和含联苯结构的二酐单体,并于低温下进行水浴反应,得到聚酰胺酸溶液;
(2)取ZnS纳米颗粒加入水中,得到ZnS悬浮液,然后加入(3-氨基丙基)三乙氧基硅烷溶液,并于室温下进行反应,以使ZnS纳米颗粒表面形成羟基,反应结束后,进行洗涤、离心以及真空干燥,得到羟基化ZnS纳米颗粒;
(3)取羟基化ZnS纳米颗粒溶于有机溶剂中,将所得的羟基化ZnS溶液与聚酰胺酸溶液混合,于低温下进行水浴反应,然后将反应溶液均匀涂覆于玻璃板上,放入烘箱中进行程序升温以完成热亚胺化处理,结束后自然冷却至室温,取下薄膜进行烘干后,得到四元共聚热塑性聚酰亚胺薄膜。
5.根据权利要求4所述的四元共聚热塑性聚酰亚胺薄膜的制备方法,其特征在于,步骤(1)中,所述含柔性醚键基团的二胺单体、含氟基团的二胺单体、含联苯结构的二酐单体、含柔性醚键基团和侧甲基基团的二酐单体的摩尔比为1:5~9:1~5:1。
6.根据权利要求4所述的四元共聚热塑性聚酰亚胺薄膜的制备方法,其特征在于,步骤(1)中,所述低温下进行水浴反应的温度为8~12℃,反应时间为3~4h。
7.根据权利要求4所述的四元共聚热塑性聚酰亚胺薄膜的制备方法,其特征在于,步骤(2)中,所述ZnS纳米颗粒与3-巯基丙基三甲氧基硅烷溶液的质体比为0.2~0.5g:15μL。
8.根据权利要求4所述的四元共聚热塑性聚酰亚胺薄膜的制备方法,其特征在于,步骤(2)中,所述于室温下进行反应的时间为20~22h。
9.根据权利要求4所述的四元共聚热塑性聚酰亚胺薄膜的制备方法,其特征在于,步骤(3)中,所述羟基化ZnS纳米颗粒的添加量为所加单体总质量的5~10%。
10.根据权利要求4所述的四元共聚热塑性聚酰亚胺薄膜的制备方法,其特征在于,步骤(3)中,所述低温下进行水浴反应的温度为8~12℃,反应时间为3~4h;所述程序升温为:从150~160℃升温至200~210℃保温5~10min,继续升温至250~260℃保温5~10min,最后升温至390~400℃保温5~10min。
CN202410378076.1A 2024-03-29 2024-03-29 一种四元共聚热塑性聚酰亚胺薄膜及其制备方法 Pending CN118185309A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410378076.1A CN118185309A (zh) 2024-03-29 2024-03-29 一种四元共聚热塑性聚酰亚胺薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410378076.1A CN118185309A (zh) 2024-03-29 2024-03-29 一种四元共聚热塑性聚酰亚胺薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN118185309A true CN118185309A (zh) 2024-06-14

Family

ID=91414949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410378076.1A Pending CN118185309A (zh) 2024-03-29 2024-03-29 一种四元共聚热塑性聚酰亚胺薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN118185309A (zh)

Similar Documents

Publication Publication Date Title
KR102345844B1 (ko) 수지 박막의 제조방법 및 수지 박막형성용 조성물
EP1022301B1 (en) Essentially colorless, transparent polyimide coatings and films
JP2010538103A (ja) ポリイミドフィルム
CN112708134B (zh) 一种无色透明共聚酰胺-酰亚胺膜及其制备方法
JP6236349B2 (ja) ポリイミドおよびその利用
JPWO2013121917A1 (ja) ジアミン、ポリイミド、ならびに、ポリイミドフィルムおよびその利用
KR20090013036A (ko) 열안정성이 개선된 폴리이미드 필름
JP2015527422A (ja) ポリイミド樹脂及びこれから製造されたポリイミドフィルム
JP2021042382A (ja) ポリイミドフィルム及び電子デバイス
KR101292993B1 (ko) 폴리이미드 수지와 이를 이용한 액정 배향막 및 필름
WO2002066546A1 (fr) Film polyimide et procede de fabrication de ce film
Zheng et al. Soluble polyimides containing bulky rigid terphenyl groups with low dielectric constant and high thermal stability
TW201831563A (zh) 可撓性元件基板形成用組成物
CN112300388B (zh) 聚酰亚胺前驱体溶液及其制备方法、聚酰亚胺及其制备方法、聚酰亚胺薄膜及其制备方法
JPH1160947A (ja) 水性分散体およびその製造方法
CN112266478A (zh) 低体阻聚酰亚胺及其制备方法和应用、聚酰亚胺薄膜及其制备方法
TW202130706A (zh) 聚醯亞胺樹脂、聚醯亞胺清漆、以及聚醯亞胺薄膜
JP2020132885A (ja) ポリイミドフィルム及び電子デバイス
TWI834630B (zh) 聚醯亞胺、聚醯亞胺溶液組成物、聚醯亞胺膜及包含其的基材積層體、基板、顯示器,以及其製造方法
KR20140049382A (ko) 폴리이미드 필름 및 이의 제조방법
CN118185309A (zh) 一种四元共聚热塑性聚酰亚胺薄膜及其制备方法
JP2519228B2 (ja) 無色透明ポリイミド成形体およびその製法
KR20230157950A (ko) 폴리이미드 전구체 조성물
JPH05112644A (ja) ポリイミド前駆体及びそのポリイミド硬化物及びその製造法
CN114685793A (zh) 聚酰胺酰亚胺共聚物及含其的薄膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination