CN118122355A - 一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法 - Google Patents

一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法 Download PDF

Info

Publication number
CN118122355A
CN118122355A CN202211529737.3A CN202211529737A CN118122355A CN 118122355 A CN118122355 A CN 118122355A CN 202211529737 A CN202211529737 A CN 202211529737A CN 118122355 A CN118122355 A CN 118122355A
Authority
CN
China
Prior art keywords
catalyst
active component
carrier
phosphorus
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211529737.3A
Other languages
English (en)
Inventor
韩伟
张峰
车春霞
温翯
苟尕莲
杨博
樊春江
王爱琴
韩迎红
张万霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN202211529737.3A priority Critical patent/CN118122355A/zh
Publication of CN118122355A publication Critical patent/CN118122355A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法。该催化剂包括载体和活性组分,载体为磷掺杂碳材料,活性组分包括主活性组分和助活性组分,主活性组分包括Pd,助活性组分包括Co,主活性组分和助活性组分呈原子级分散在载体上。该催化剂的制备方法包括以下步骤:将含磷化合物和碳水化合物在水中混合,水热反应后,再经干燥、煅烧后,得到磷掺杂碳材料载体;将活性组分负载于磷掺杂碳材料载体,得到催化剂半成品;将催化剂半成品进行还原,得到所述的催化剂。本发明提供的甲醇制烯烃产物中的微量乙炔选择加氢催化剂具有优异的加氢活性、选择性及长周期运行稳定性。

Description

一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备 方法
技术领域
本发明涉及一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法,属于加氢催化剂技术领域。
背景技术
乙烯、丙烯等低碳烯烃是重要的基本化工原料。迄今为止,制取乙烯、丙烯等低碳烯烃的重要途径,仍然是通过石脑油、轻柴油(均来自石油)的催化裂化、裂解制取。而发展非石油资源来制取低碳烯烃的技术日益引起人们的重视。
甲醇制乙烯、丙烯的MTO工艺和甲醇制丙烯的MTP工艺是目前重要的化工技术。该技术以煤或天然气合成的甲醇为原料,生产低碳烯烃,是发展非石油资源生产乙烯、丙烯等产品的核心技术。
甲醇制烯烃工艺是煤基烯烃产业链中的关键步骤,其工艺流程主要为:在合适的操作条件下,以甲醇为原料,选取适宜的催化剂,在固定床和硫化床反应器中通过甲醇脱水制低碳烯烃。根据目的产品的不同,甲醇制烯烃工艺分为甲醇制乙烯、丙烯(methanol-to-olefin,MTO)、甲醇制丙烯(methanol-to-propylene,MTP)两种工艺。
甲醇制烯烃反应可分为两个阶段:脱水阶段、裂解反应阶段,它们的反应过程主要为:
1、脱水阶段:
2CH3OH→CH3OCH3+H2O+Q
2、裂解反应阶段:
该反应过程主要是脱水反应产物二甲醚和少量未转化的原料甲醇进行的催化裂解反应,包括:
主反应(生成烯烃):
nCH3OH→CnH2n+nH2O+Q
nCH3OH→2CnH2n+nH2O+Q
n=2和3(主要),4、5和6(次要)
以上各种烯烃产物均为气态;
副反应(生成烷烃、芳烃、碳氧化物并结焦):
(n+1)CH3OH→CnH2n+2+C+(n+1)H2O+Q
(2n+1)CH3OH→2CnH2n+2+CO+2nH2O+Q
(3n+1)CH3OH→3CnH2n+2+CO2+(3n-1)H2O+Q
n=1、2、3、4、5……
nCH3OCH3→CnH2n-6+3H2+nH2O+Q
n=6、7、8……
以上产物有气态(CO、H2、H2O、CO2、CH4等烷烃、芳烃等)和固态(大分子量烃和焦炭)之分。
甲醇经脱水、裂解、分离后,脱乙烷塔塔顶的乙烯物料中仍然含有5~100ppm的乙炔,它影响乙烯的聚合过程,并造成产品质量下降,需要通过选择加氢方法将其脱除。乙烯物料中微量乙炔的选择加氢对乙烯的聚合过程有极其重要的影响,除了保证加氢具有足够的活性,在低乙炔含量的条件下具有良好的除炔性能,保证反应器出口的乙炔含量达标,反应器出口的氢气含量达标外,还要求催化剂的选择性优良,可以使乙烯尽可能少的生成乙烷,确保加氢过程不带来装置乙烯的损失。
目前甲醇制烯烃装置乙烯物料中微量乙炔的选择加氢主要采用单段反应器工艺。在该工艺中,反应器入口物料组成:乙烯≥99.99%(Φ),乙炔5~100ppm,CO 1~10ppm,氢气采用配气的方式,H2/C2H2=2~6,反应压力1.5~2.5MPa,空速2000~10000h-1,入口温度25℃~60℃。
炔烃和二烯烃选择加氢催化剂是通过将贵金属如钯负载在多孔的无机材料载体上得到的,例如US4762956中所公开的催化剂。为了增加催化剂的选择性,减少由加氢时低聚反应产生的绿油所导致的催化剂失活,现有技术采用了在催化剂中添加例如第IB族元素为助催化组分的方法:Pd-Au(US4490481)、Pd-Ag(US4404124)、Pd-Cu(US3912789),或者加入碱金属或碱土金属(US5488024)等,所用的载体主要包括氧化铝、二氧化硅(US5856262)、蜂窝荩青石(CN1176291A)等等。US4404124通过分步浸渍法制备了活性组分钯壳层分布的选择加氢催化剂,可应用于碳二、碳三馏分的选择加氢,以消除乙烯中的乙炔和丙烯中的丙炔、丙二烯。US5587348以氧化铝为载体,调节助催化剂银与钯作用,加入碱金属、化学键合的氟制备了性能优良的碳二加氢催化剂。该催化剂具有减少绿油生成,提高乙烯选择性,减少含氧化合物生成量的特点。US5519566公开了一种湿法还原制备银与钯催化剂的方法,通过在浸渍液中加入有机或无机还原剂,制备银与钯双组分选择加氢催化剂。
以上传统的碳二加氢催化剂均采用浸渍法制备,其活性相是Pd、Ag双金属。该方法存在以下缺点:(1)受载体孔结构的影响,活性组分分散不能精确控制,随机性较强;(2)受浸渍液表面张力、溶剂化效应的影响,金属活性组分前驱体以聚集体形式沉积于载体表面,不能形成均匀分布;(3)碳二加氢对催化剂选择性要求较高,传统制备方法通过加大Ag的量来促进其助剂作用的发挥,由此导致氢的传递受到阻碍,齐聚反应发生的可能性增大,绿油生成量增多,影响催化剂的寿命。以上三种现象的发生容易导致金属活性组分的分散性差,反应的选择性低,绿油生成量高,进而影响到催化剂的整体性能。
CN102205243A通过在载体上吸附特定的高分子化合物,在载体表面一定厚度形成高分子涂裹层,以带有功能基的化合物与高分子反应,使之具有能够与活性组分络合的功能基,通过活性组分在载体表面功能基上发生络合反应,保证活性组分有序和高度分散。采用该方法,载体吸附特定的高分子化合物,通过氧化铝的羟基与高分子进行化学吸附,载体吸附高分子化合物的量将受到氧化铝的羟基数量的限制;经过功能化的高分子与Pd的络合作用不强,有时活性组分负载量达不到要求,浸渍液中还残留部分活性组分,造成催化剂成本提高。
为了提高催化剂的抗结焦性能,降低催化剂的表面结焦程度,近年来公开了采用双峰孔载体、微乳液制法负载活性组分的碳二选择加氢催化剂及制备方法。CN104098427A公开的选择加氢催化剂,其载体主要为氧化铝,具有双峰孔分布结构,其中小孔的孔径为50nm以内,大孔的孔径在60~800nm。以该催化剂的总质量为100%计,催化剂含有Pd 0.01~0.5%,为壳层分布,厚度为1~500um;含有Ni 0.2~5%,抗结焦组分Ni通过微乳液法控制微乳液粒径大于载体小孔的粒径,使Ni主要分布于载体的大孔中。CN104096573A公开了一种加氢催化剂的制备方法,催化剂载体主要为氧化铝,并具有双峰孔分布结构。该催化剂含有Pd和Ni双活性组分,通过制备催化剂时将抗结焦组分Ni以微乳液的形式进入至载体大孔中,活性组分Pd主要分布于载体表面特别是小孔中。CN104098426A公开了一种适用于前脱丙烷前加氢工艺的碳二馏分选择加氢方法。该方法采用的选择加氢催化剂,其载体为氧化铝或主要为氧化铝,并具有双峰孔分布结构,含有双活性组分Pd和Ni,抗结焦组分Ni主要分布在大孔中。上述方法提高了催化剂抗结焦性能,但催化剂载体大孔中的单组分Ni,还原温度达到500℃以上,在该温度下还原,使催化剂活性组分Pd聚集,大幅降低了催化剂活性。为了补偿催化剂活性损失需增加活性组分用量,从而导致催化剂选择性下降,活性组分利用率降低。
CN106654300A公开了一种电化学溶胀石墨制备单分散金属原子/石墨烯复合材料的方法,提供了一种经过电化学液相溶胀石墨基原料而高效率制备出金属原子种类和数量可控的单分散金属原子/石墨烯复合催化剂的新方法。该方法是一种更温和条件下由石墨一步制备单分散金属原子/石墨烯复合材料的电化学剥离法,主要包括以下步骤:(1)把石墨基原料做成电极;(2)所制电极在电解池中电解,固液分离,电解液回收利用;(3)分离得到的固体进一步剥离,得到粗制的单分散金属原子/石墨烯复合材料;(4)粗制的单分散金属原子/石墨烯复合材料分离提纯出单分散金属原子/石墨烯复合材料;(5)步骤(4)所得复合材料和/或与非气相氮源混合均匀的复合材料,在惰性气氛或/和氨气气氛保护下热处理,冷却,即得到单分散金属原子/石墨烯复合催化剂。该材料中金属以单原子的形式分散于石墨烯的骨架中/上,中心金属原子的种类和组分可根据需要进行调变,可分为单核或双核,并且双核金属组分可为单金属或双金属。但该文献对金属活性组分含量及其金属状态并没有描述,仅制备了一种单原子催化剂,并没有针对某一体系进行催化剂性能评价。
CN109126857A公开了一种基于碳纳米笼载体的金属单原子催化剂及其制备方法。该基于碳纳米笼载体的金属单原子催化剂,包括碳纳米笼载体和嵌入所述碳纳米笼载体笼壁微孔通道中的金属单原子;金属单原子为Pt、Pd、Ru、Ir、Ag或Au;碳纳米笼载体为掺杂碳纳米笼,金属单原子的负载量在8wt%以下,掺杂碳纳米笼为单元素掺杂碳纳米笼或共掺杂碳纳米笼,单元素掺杂碳纳米笼为N掺杂、B掺杂、S掺杂或P掺杂碳纳米笼,所述P掺杂碳纳米笼中P的掺杂量在8at%以下,碳纳米笼载体的笼壁微孔孔径为0.4~1.5nm。该金属单原子催化剂的制备方法包括:将掺杂碳纳米笼浸渍于金属前驱体溶液中,依次经过分离和热处理,得到基于碳纳米笼载体的金属单原子催化剂;所述金属前驱体为对应Pt、Pd、Ru、Ir、Ag或Au的可溶于水的金属离子化合物,热处理的温度为40~600℃,热处理的时间为0.5~24h,浸渍的温度为0~100℃,浸渍的时间为0.5~50h。
CN112808288A公开了一种氮磷或氮磷共掺杂碳负载金属单原子的催化剂及其微波辅助制备方法。该催化剂包括载体和负载于所述载体上的活性组分金属;所述的载体为氮磷或氮磷硫共掺杂的碳材料,所述的金属包括钯,钌,铑,铱,铂,铁,钴,镍中的任一种,按质量百分比计,所述催化剂中,金属的负载量为0.1%-5%。该催化剂的制备方法包括如下步骤:(1)将植酸和含氮、含硫有机分子如硫脲,尿素,三聚氰胺,双氰胺,三聚氰酸,苯胺,吡咯之任一种或二种以上之混合物以一定质量比混合,并将其置于微波炉中微波加热,获得的黑色产物为氮磷或氮硫磷掺杂的碳载体;(2)将一定量金属前驱体溶液与上述步骤(1)中的载体、还原剂混合,搅拌,洗涤,干燥得到所述氮磷或氮磷硫掺杂碳材料负载金属单原子的催化材料。
CN111389437A公开了一种碳化钼负载单原子加氢催化剂、其制备方法及其在炔烃半加氢中的应用。该加氢催化剂包括:载体,所述载体包括MoC;和金属单原子,所述金属单原子负载在所述载体上,且所述金属单原子与所述MoC中的钼原子化学键合;其中,所述金属单原子包括单原子镍、单原子钴和单原子铜中的至少一种。
CN112844406A公开了一种轻烃裂解碳二馏分选择加氢的催化剂制备方法。该催化剂采用的载体为氧化铝或主要是氧化铝,并具有双峰孔分布结构,催化剂至少含有Pd、Ga、Ni、Cu,其中活性组分Pd以溶液及微乳液两种方式负载;Ga采用溶液法负载,与以溶液法负载的Pd主要分布在载体58~75nm的小孔中;Ni、Cu采用微乳液浸渍法负载,与以乳液法负载的Pd主要分布在载体350~700nm的大孔中,并于负载Ni、Cu后负载。
CN106925279A公开了一种Fe系选择加氢催化剂、制备方法及其应用。该催化剂的活性组分Fe含量占2~15wt%,X含量占0~2wt%,X选自K、La、Ce中的一种或者几种,其余为氧元素和载体。该催化剂比表面为10~300m2/g,孔容为0.2~0.65mL/g。该催化剂可用于C2~C3裂解馏分中乙炔、丙炔和丙二烯的选择性加氢。
发明内容
为解决上述技术问题,本发明的目的在于提供一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法。本发明提供的催化剂,其活性组分呈原子级分散在所述载体上,具有良好的加氢活性、选择性和抗结焦性能。
为了实现上述目的,本发明第一方面提供了一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂,所述催化剂包括载体和活性组分,所述载体为磷掺杂碳材料,所述活性组分包括主活性组分和助活性组分,所述主活性组分包括Pd,所述助活性组分包括Co,所述主活性组分和所述助活性组分呈原子级分散在所述载体上。
根据本发明的具体实施方式,优选地,以所述催化剂的总质量为100%计,其中的主活性组分含量为0.025~0.45%,助活性组分含量为0.01~0.60%,余量为所述载体。更优选地,以所述催化剂的总质量为100%计,其中的主活性组分含量为0.025~0.24%,助活性组分含量为0.01~0.30%,余量为所述载体。
根据本发明的具体实施方式,优选地,所述催化剂包括载体和活性组分,所述载体为磷掺杂碳材料,所述活性组分包括Pd和Co,Pd和Co呈原子级分散在所述载体上,以所述催化剂的总质量为100%计,其中的Pd含量为0.025~0.45%,Co含量为0.01~0.60%,余量为所述载体;更优选地,以所述催化剂的总质量为100%计,其中的Pd含量为0.025~0.24%,Co含量为0.01~0.30%,余量为所述载体。
在上述的催化剂中,优选地,所述载体为多孔结构,其具有较高的比表面积,所述主活性组分和所述助活性组分呈原子级分散在所述载体的表面和孔道内。所述比表面积的测试方法可以采用本领域常规的方法进行,例如GB/T-5816。
根据本发明的具体实施方式,优选地,所述甲醇制烯烃产物中的微量乙炔选择加氢催化剂是通过以下步骤制备得到的:
(1)将含磷化合物和碳水化合物在水中混合,然后进行水热反应,再至少经干燥、煅烧后,得到磷掺杂碳材料载体;
(2)将活性组分负载于所述磷掺杂碳材料载体,得到催化剂半成品;
(3)将所述催化剂半成品进行还原,得到还原态的催化剂,即为所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂。
在上述的催化剂制备步骤中,优选地,在步骤(1)中,所述含磷化合物包括磷酸和/或植酸等。
在上述的催化剂制备步骤中,优选地,在步骤(1)中,所述碳水化合物包括葡萄糖和/或蔗糖等。
在上述的催化剂制备步骤中,优选地,在步骤(1)中,所述含磷化合物和所述碳水化合物的混合摩尔比为0.0001~1000,更优选为0.001~10,进一步优选为0.02~0.4。
在上述的催化剂制备步骤(1)中,所述含磷化合物和所述碳水化合物在水中的浓度可以由本领域技术人员进行常规调节,只要能使它们在水中充分溶解和混合,并使反应顺利进行即可。
在上述的催化剂制备步骤中,优选地,在步骤(1)中,将含磷化合物和碳水化合物在水中混合是在搅拌条件下进行的,所述搅拌的时间为30~120min。
在上述的催化剂制备步骤中,优选地,在步骤(1)中,所述水热反应的温度为160~300℃,时间为4~12h。更具体地,所述水热反应在置于烘箱中的水热釜中进行,并且该过程无需搅拌。
在上述的催化剂制备步骤中,优选地,在步骤(1)中,所述干燥的温度为120~160℃,时间为4~12h。
在上述的催化剂制备步骤中,优选地,步骤(1)还包括:球磨,以细化成粉,所述球磨在所述干燥之后、所述煅烧之前进行,所述球磨的时间为3~10min。
在上述的催化剂制备步骤中,优选地,在步骤(1)中,所述煅烧是在惰性气氛下进行的,所述煅烧的温度为600~1000℃,时间为1~5h。
在上述的催化剂制备步骤中,优选地,步骤(2)具体包括:
(2)-a1将所述磷掺杂碳材料载体加入到主活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到负载主活性组分的载体;
(2)-a2将所述负载主活性组分的载体加入到助活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到所述的催化剂半成品;
或者,步骤(2)具体包括:
(2)-b1将所述磷掺杂碳材料载体加入到助活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到负载助活性组分的载体;
(2)-b2将所述负载助活性组分的载体加入到主活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到所述的催化剂半成品。
在上述的催化剂的制备步骤(2)中,可以先将主活性组分负载于所述载体,再负载助活性组分;也可以先将助活性组分负载于所述载体,再负载主活性组分。
在上述的催化剂制备步骤中,优选地,在步骤(2)中,所述主活性组分的前驱体包括钯盐,具体可以包括氯化钯、硝酸钯以及硫酸钯等中的一种或几种的组合。
在上述的催化剂制备步骤中,优选地,在步骤(2)中,所述助活性组分的前驱体包括钴盐,具体可以包括硝酸钴、硫酸钴、溴化钴以及氯化钴等中的一种或几种的组合。
在上述的催化剂制备步骤中,优选地,在步骤(2)中,所述主活性组分的前驱体水溶液中的主活性组分的浓度为0.1~5mgPd/mL Pd前驱体水溶液。
在上述的催化剂制备步骤中,优选地,在步骤(2)中,所述助活性组分的前驱体水溶液中的助活性组分的浓度为0.1~10mgCo/mLCo前驱体水溶液。
在上述的催化剂制备步骤(2)中,将载体加入到活性组分前驱体水溶液中的量可以由本领域技术人员进行常规调节,只要能够充分混合,并且使所制备得到的催化剂中的活性组分的含量满足本发明的要求即可。
在上述的催化剂制备步骤中,优选地,在步骤(2)中,在紫外氙灯下进行光照的时间为0.5~5.0h。
在上述的催化剂制备步骤中,优选地,在步骤(2)中,所述冷冻干燥的时间为2~7h,所述冷冻干燥的真空度为15~20Pa。
在上述的催化剂制备步骤中,优选地,在步骤(2)中,所述煅烧是在惰性气氛下进行的,所述煅烧的温度为300~500℃,时间为0.5~5h。
在上述的催化剂制备步骤中,优选地,在步骤(3)中,将所述催化剂半成品进行还原采用H2体积百分数为10~100%的H2和He混合气或者纯氢气,还原温度为50~300℃,还原压力为0.1~2.0MPa,还原时间为0.5~10h。更优选地,还原温度为100~200℃,还原压力为0.5~1.0MPa,还原时间为2~6h。
本发明第二方面提供了一种上述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂的制备方法,其包括以下步骤:
(1)将含磷化合物和碳水化合物在水中混合,然后进行水热反应,再至少经干燥、煅烧后,得到磷掺杂碳材料载体;
(2)将活性组分负载于所述磷掺杂碳材料载体,得到催化剂半成品;
(3)将所述催化剂半成品进行还原,得到还原态的催化剂,即为所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂。
在上述的制备方法中,优选地,在步骤(1)中,所述含磷化合物包括磷酸和/或植酸等。
在上述的制备方法中,优选地,在步骤(1)中,所述碳水化合物包括葡萄糖和/或蔗糖等。
在上述的制备方法中,优选地,在步骤(1)中,所述含磷化合物和所述碳水化合物的混合摩尔比为0.0001~1000,更优选为0.001~10,进一步优选为0.02~0.4。
在上述的制备方法的步骤(1)中,所述含磷化合物和所述碳水化合物在水中的浓度可以由本领域技术人员进行常规调节,只要能使它们在水中充分溶解和混合,并使反应顺利进行即可。
在上述的制备方法中,优选地,在步骤(1)中,将含磷化合物和碳水化合物在水中混合是在搅拌条件下进行的,所述搅拌的时间为30~120min。
在上述的制备方法中,优选地,在步骤(1)中,所述水热反应的温度为160~300℃,时间为4~12h。更具体地,所述水热反应在置于烘箱中的水热釜中进行,并且该过程无需搅拌。
在上述的制备方法中,优选地,在步骤(1)中,所述干燥的温度为120~160℃,时间为4~12h。
在上述的制备方法中,优选地,步骤(1)还包括:球磨,以细化成粉,所述球磨在所述干燥之后、所述煅烧之前进行,所述球磨的时间为3~10min。
在上述的制备方法中,优选地,在步骤(1)中,所述煅烧是在惰性气氛下进行的,所述煅烧的温度为600~1000℃,时间为1~5h。
在上述的制备方法中,优选地,步骤(2)具体包括:
(2)-a1将所述磷掺杂碳材料载体加入到主活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到负载主活性组分的载体;
(2)-a2将所述负载主活性组分的载体加入到助活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到所述的催化剂半成品;
或者,步骤(2)具体包括:
(2)-b1将所述磷掺杂碳材料载体加入到助活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到负载助活性组分的载体;
(2)-b2将所述负载助活性组分的载体加入到主活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到所述的催化剂半成品。
在上述的制备方法的步骤(2)中,可以先将主活性组分负载于所述载体,再负载助活性组分;也可以先将助活性组分负载于所述载体,再负载主活性组分。
在上述的制备方法中,优选地,在步骤(2)中,所述主活性组分的前驱体包括钯盐,具体可以包括氯化钯、硝酸钯以及硫酸钯等中的一种或几种的组合。
在上述的制备方法中,优选地,在步骤(2)中,所述助活性组分的前驱体包括钴盐,具体可以包括硝酸钴、硫酸钴、溴化钴以及氯化钴等中的一种或几种的组合。
在上述的制备方法中,优选地,在步骤(2)中,所述主活性组分的前驱体水溶液中的主活性组分的浓度为0.1~5mgPd/mL Pd前驱体水溶液。
在上述的制备方法中,优选地,在步骤(2)中,所述助活性组分的前驱体水溶液中的助活性组分的浓度为0.1~10mgCo/mLCo前驱体水溶液。
在上述的制备方法的步骤(2)中,将载体加入到活性组分前驱体水溶液中的量可以由本领域技术人员进行常规调节,只要能够充分混合,并且使所制备得到的催化剂中的活性组分的含量满足本发明的要求即可。
在上述的制备方法中,优选地,在步骤(2)中,在紫外氙灯下进行光照的时间为0.5~5.0h。
在上述的制备方法中,优选地,在步骤(2)中,所述冷冻干燥的时间为2~7h,所述冷冻干燥的真空度为15~20Pa。
在上述的制备方法中,优选地,在步骤(2)中,所述煅烧是在惰性气氛下进行的,所述煅烧的温度为300~500℃,时间为0.5~5h。
在上述的制备方法中,优选地,在步骤(3)中,将所述催化剂半成品进行还原采用H2体积百分数为10~100%的H2和He混合气或者纯氢气,还原温度为50~300℃,还原压力为0.1~2.0MPa,还原时间为0.5~10h。更优选地,还原温度为100~200℃,还原压力为0.5~1.0MPa,还原时间为2~6h。
本发明提供了一种炔烃选择加氢催化剂,特别是一种在甲醇制乙烯的产物中,对微量乙炔进行选择性加氢的Pd-Co-P-C催化剂。传统的乙炔加氢催化剂,其活性组分多以纳米颗粒或亚纳米团簇结构存在,从而影响催化剂的性能。而本发明的加氢催化剂是以磷掺杂碳材料为载体,该载体为多孔结构,具有较高的比表面积,采用光还原法使活性组分(优选钯和钴)呈单原子状态分散在载体上(表面及孔道内),而不是形成纳米颗粒或亚纳米团簇结构。原子级分散状态的Pd、Co,在炔烃选择加氢尤其是甲醇制乙烯产物中的微量乙炔选择加氢的反应过程中,具有如下特征:活性组分呈原子级分散,金属原子利用率提高,从而提高催化剂加氢活性;对烯烃尤其是乙烯的吸附能力降低,从而提高催化剂加氢选择性;相临活性位点同时吸附炔烃/二烯烃的几率下降,进而使聚合结焦的机率显著降低,从而提高催化剂抗结焦性能。因此,本发明提供的甲醇制烯烃产物中的微量乙炔选择加氢催化剂表现出优异的加氢活性、选择性及长周期运行稳定性。
附图说明
图1为实施例1提供的加氢催化剂的球差校正透射电镜图。
图2为对比例5提供的加氢催化剂的透射电镜图。
图3为本发明一具体实施方式提供的甲醇制乙烯产物的碳二后加氢及顺序分离工艺流程图。
主要组件符号说明:1—甲醇制烯烃反应器,2—再生器,3—分离器,4—碱洗塔,5—干燥塔,6—脱甲烷塔,7—脱乙烷塔,8—乙烯分离塔,9—丙烯分离塔,10—脱丙烷塔,11—单段绝热式固定床反应器。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
根据本发明的具体实施方式,优选地,本发明的甲醇制烯烃产物中的微量乙炔选择加氢催化剂是通过以下步骤制备得到的:
(1)将含磷化合物和碳水化合物在水中充分搅拌混合,搅拌时间为30-120min,得到一混合溶液;将所述混合溶液在160~300℃烘箱中的水热釜中水热4~12h,然后在120~160℃干燥4~12h,之后经球磨3~10min,得到粉末;将所述粉末在惰性气氛下、600~1000℃煅烧1~5h,得到磷掺杂碳材料载体;
其中,所述含磷化合物包括磷酸和/或植酸等;所述碳水化合物包括葡萄糖和/或蔗糖等;所述含磷化合物和所述碳水化合物的混合摩尔比为0.0001~1000,优选为0.001~10,进一步优选为0.02~0.4;
(2)-a1将所述磷掺杂碳材料载体加入到钯前驱体水溶液中,搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5~5.0h;之后在15~20Pa真空度条件下冷冻干燥2~7h,再在惰性气氛下、300~500℃煅烧0.5~5h,得到负载钯的载体;
(2)-a2将所述负载钯的载体加入到钴前驱体水溶液中,搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5~5.0h;之后在15~20Pa真空度条件下冷冻干燥2~7h,再在惰性气氛下、300~500℃煅烧0.5~5h,得到催化剂半成品;
或者,
(2)-b1将所述磷掺杂碳材料载体加入到钴前驱体水溶液中,搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5~5.0h;之后在15~20Pa真空度条件下冷冻干燥2~7h,再在惰性气氛下、300~500℃煅烧0.5~5h,得到负载钴的载体;
(2)-b2将所述负载钴的载体加入到钯前驱体水溶液中,搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5~5.0h;之后在15~20Pa真空度条件下冷冻干燥2~7h,再在惰性气氛下、300~500℃煅烧0.5~5h,得到催化剂半成品;
其中,所述钯前驱体包括氯化钯、硝酸钯以及硫酸钯等中的一种或几种的组合;所述钯前驱体水溶液中钯的浓度为0.1~5mgPd/mL Pd前驱体水溶液;
所述钴前驱体包括硝酸钴、硫酸钴、溴化钴以及氯化钴等中的一种或几种的组合;所述钴前驱体水溶液中钴的浓度为0.1~10mgCo/mLCo前驱体水溶液;
(3)将所述催化剂半成品用H2体积百分数为10~100%的H2和He混合气或纯氢气进行还原,还原温度为50~300℃(优选为100~200℃),还原压力为0.1~2.0MPa,(优选为0.5~1.0MPa),还原时间为0.5~10h(优选为2~6h),得到还原态的催化剂,即为所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂。
下面通过具体实施例对本发明的技术方案作进一步的说明。
在以下具体实施例和对比例中,所采用的分析测试方法包括:
催化剂中活性组分含量:原子吸收法;
单原子形貌表征:球差校正透射电镜;
转化率和选择性按下面公式计算:
乙炔转化率(%)=100×(入口乙炔含量-出口乙炔含量)/入口乙炔含量,
乙烯选择性(%)=100×(出口乙烯含量-入口乙烯含量)/(入口乙炔含量-出口乙炔含量)。
实施例1
本实施例提供了一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂,其是通过以下步骤制备得到的:
(1)将10g磷酸和120g葡萄糖在水中充分搅拌混合,搅拌时间为30min,得到一混合溶液;将所述混合溶液在160℃烘箱中的水热釜中进行水热反应4h,然后在120℃干燥4h,之后经球磨3min,得到粉末;将所述粉末在惰性气氛下、600℃煅烧1h,得到磷掺杂碳材料载体;
(2)量取10mL的0.25mgPd/mLPd(NO3)2水溶液,加入10g所述的磷掺杂碳材料载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5h;之后在15Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧0.5h,得到负载钯的载体;
将所述负载钯的载体加入到溶解有3.1mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5h;之后在15Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧0.5h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为10%的H2和He混合气进行还原,还原温度为70℃,还原压力为0.5MPa,还原时间为1h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.025%,Co含量为0.01%,余量为磷掺杂碳材料载体。
本实施例的加氢催化剂的球差校正透射电镜图如图1所示,由图1可以看出,Pd和Co呈原子级分散在载体上。
实施例2
本实施例提供了一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂,其是通过以下步骤制备得到的:
(1)将10g植酸和120g蔗糖在水中充分搅拌混合,搅拌时间为100min,得到一混合溶液;将所述混合溶液在200℃烘箱中的水热釜中进行水热反应6h,然后在130℃干燥6h,之后经球磨5min,得到粉末;将所述粉末在惰性气氛下、800℃煅烧2h,得到磷掺杂碳材料载体;
(2)量取10mL的1mgPd/mLPdCl2水溶液,加入10g所述的磷掺杂碳材料载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照1h;之后在16Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧2h,得到负载钯的载体;
将所述负载钯的载体加入到溶解有31.0mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照1h;之后在16Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧2h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为15%的H2和He混合气进行还原,还原温度为85℃,还原压力为0.8MPa,还原时间为2h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.1%,Co含量为0.1%,余量为磷掺杂碳材料载体。
实施例3
本实施例提供了一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂,其是通过以下步骤制备得到的:
(1)将10g植酸和120g蔗糖在水中充分搅拌混合,搅拌时间为120min,得到一混合溶液;将所述混合溶液在200℃烘箱中的水热釜中进行水热反应8h,然后在140℃干燥8h,之后经球磨7min,得到粉末;将所述粉末在惰性气氛下、900℃煅烧3h,得到磷掺杂碳材料载体;
(2)将10g所述的磷掺杂碳材料载体加入到溶解有77.6mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照1h;之后在17Pa真空度条件下冷冻干燥3h,再在惰性气氛下、300℃煅烧3h,得到负载钴的载体;
量取20mL的1mgPd/mL硫酸钯水溶液,加入所述负载钴的载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照1h;之后在17Pa真空度条件下冷冻干燥3h,再在惰性气氛下、300℃煅烧3h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为20%的H2和He混合气进行还原,还原温度为150℃,还原压力为1MPa,还原时间为4h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.2%,Co含量为0.25%,余量为磷掺杂碳材料载体。
实施例4
本实施例提供了一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂,其是通过以下步骤制备得到的:
(1)将10g植酸和120g葡萄糖在水中充分搅拌混合,搅拌时间为60min,得到一混合溶液;将所述混合溶液在250℃烘箱中的水热釜中进行水热反应10h,然后在150℃干燥10h,之后经球磨8min,得到粉末;将所述粉末在惰性气氛下、700℃煅烧4h,得到磷掺杂碳材料载体;
(2)将10g所述的磷掺杂碳材料载体加入到溶解有139.7mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照3h;之后在18Pa真空度条件下冷冻干燥5h,再在惰性气氛下、400℃煅烧4h,得到负载钴的载体;
量取30mL的1mgPd/mL Pd(NO3)2水溶液,加入所述负载钴的载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照3h;之后在18Pa真空度条件下冷冻干燥5h,再在惰性气氛下、400℃煅烧4h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为50%的H2和He混合气进行还原,还原温度为230℃,还原压力为1.5MPa,还原时间为6h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.3%,Co含量为0.45%,余量为磷掺杂碳材料载体。
实施例5
本实施例提供了一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂,其是通过以下步骤制备得到的:
(1)将10g磷酸和120g蔗糖在水中充分搅拌混合,搅拌时间为90min,得到一混合溶液;将所述混合溶液在300℃烘箱中的水热釜中进行水热反应12h,然后在160℃干燥12h,之后经球磨10min,得到粉末;将所述粉末在惰性气氛下、1000℃煅烧5h,得到磷掺杂碳材料载体;
(2)量取45mL的1mgPd/mLPdCl2水溶液,加入10g所述的磷掺杂碳材料载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照5h;之后在20Pa真空度条件下冷冻干燥7h,再在惰性气氛下、500℃煅烧5h,得到负载钯的载体;
将所述负载钯的载体加入到溶解有186.3mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照5h;之后在20Pa真空度条件下冷冻干燥7h,再在惰性气氛下、500℃煅烧5h,得到催化剂半成品;
(3)将所述催化剂半成品用纯氢气进行还原,还原温度为270℃,还原压力为2MPa,还原时间为8h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.45%,Co含量为0.6%,余量为磷掺杂碳材料载体。
对比例1
本对比例提供了一种加氢催化剂,其是通过以下步骤制备得到的:
(1)将120g葡萄糖在水中充分搅拌,搅拌时间为30min,得到葡萄糖水溶液;将所述葡萄糖水溶液在160℃烘箱中的水热釜中反应4h,然后在120℃干燥4h,之后经球磨3min,得到粉末;将所述粉末在惰性气氛下、600℃煅烧1h,得到碳材料载体;
(2)量取10mL的0.25mgPd/mL Pd(NO3)2水溶液,加入10g所述的碳材料载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5h;之后在15Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧0.5h,得到负载钯的载体;
将所述负载钯的载体加入到溶解有3.1mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5h;之后在15Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧0.5h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为10%的H2和He混合气进行还原,还原温度为70℃,还原压力为0.5MPa,还原时间为1h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.025%,Co含量为0.01%,余量为碳材料载体。本对比例提供的催化剂中的活性组分不全为单原子分散,存在纳米颗粒的产生。
对比例2
本对比例提供了一种加氢催化剂,其是通过以下步骤制备得到的:
(1)载体采用市售双峰孔分布球形氧化铝载体,其直径为4mm;将该双峰孔分布球形氧化铝载体经过1250℃高温焙烧4h后,得到催化剂载体;
(2)量取10mL的1mgPd/mLPdCl2水溶液,加入10g所述的催化剂载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照1h;之后在16Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧2h,得到负载钯的载体;
将所述负载钯的载体加入到溶解有31.0mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照1h;之后在16Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧2h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为15%的H2和He混合气进行还原,还原温度为85℃,还原压力为0.8MPa,还原时间为2h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.1%,Co含量为0.1%,余量为催化剂载体。
对比例3
本对比例提供了一种加氢催化剂,其是通过以下步骤制备得到的:
(1)将10g植酸和120g蔗糖在水中充分搅拌混合,搅拌时间为120min,得到一混合溶液;将所述混合溶液在200℃烘箱中的水热釜中进行水热反应8h,然后在140℃干燥8h,之后经球磨7min,得到粉末;将所述粉末在惰性气氛下、900℃煅烧3h,得到磷掺杂碳材料载体(同实施例3);(2)将10g所述的磷掺杂碳材料载体加入到溶解有77.6mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照1h;之后在17Pa真空度条件下冷冻干燥3h,再在惰性气氛下、300℃煅烧3h,得到负载钴的载体;
量取10mL的10mgPd/mL硫酸钯水溶液,加入所述负载钴的载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照1h;之后在17Pa真空度条件下冷冻干燥3h,再在惰性气氛下、300℃煅烧3h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为20%的H2和He混合气进行还原,还原温度为150℃,还原压力为1MPa,还原时间为4h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为1.0%,Co含量为0.25%,余量为磷掺杂碳材料载体。
对比例4
本对比例提供了一种加氢催化剂,其是通过以下步骤制备得到的:
(1)将10g植酸和120g葡萄糖在水中充分搅拌混合,搅拌时间为60min,得到一混合溶液;将所述混合溶液在250℃烘箱中的水热釜中进行水热反应10h,然后在150℃干燥10h,之后经球磨8min,得到粉末;将所述粉末在惰性气氛下、700℃煅烧4h,得到磷掺杂碳材料载体(同实施例4);
(2)将10g所述的磷掺杂碳材料载体加入到溶解有310.4mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照3h;之后在18Pa真空度条件下冷冻干燥5h,再在惰性气氛下、400℃煅烧4h,得到负载钴的载体;
量取30mL的1mgPd/mL Pd(NO3)2水溶液,加入所述负载钴的载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照3h;之后在18Pa真空度条件下冷冻干燥5h,再在惰性气氛下、400℃煅烧4h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为50%的H2和He混合气进行还原,还原温度为230℃,还原压力为1.5MPa,还原时间为6h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.3%,Co含量为1.0%,余量为磷掺杂碳材料载体。
对比例5
本对比例提供了一种加氢催化剂,其是通过以下步骤制备得到的:
(1)将10g磷酸和120g蔗糖在水中充分搅拌混合,搅拌时间为90min,得到一混合溶液;将所述混合溶液在300℃烘箱中的水热釜中进行水热反应12h,然后在160℃干燥12h,之后经球磨10min,得到粉末;将所述粉末在惰性气氛下、1000℃煅烧5h,得到磷掺杂碳材料载体(同实施例5);
(2)量取45mL的1mgPd/mL PdCl2水溶液,采用盐酸调节PdCl2水溶液的pH值为2,加入10g所述的磷掺杂碳材料载体,在室温条件下浸渍吸附1h后,在110℃干燥2小时,然后在480℃焙烧6h,得到负载钯的载体;
将所述负载钯的载体加入到溶解有186.3mg硝酸钴的硝酸钴水溶液中,在室温条件下浸渍吸附1h,然后在100℃干燥3小时,再在500℃焙烧4h,得到催化剂半成品;
(3)将所述催化剂半成品用纯氢气进行还原,还原温度为270℃,还原压力为2MPa,还原时间为8h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.45%,Co含量为0.6%,余量为磷掺杂碳材料载体。本对比例的加氢催化剂的透射电镜图如图2所示,由图2可以看出,Pd和Co几乎呈纳米颗粒级分散。
对比例6
本对比例提供了一种加氢催化剂,其是通过以下步骤制备得到的:
(1)在烧杯中称取12.5g三聚氰胺并加水30mL,再加入27.8mL植酸溶液(植酸与三聚氰胺质量比为2:1),超声30min后将烧杯放入微波炉以1000W功率微波加热120s,经洗涤干燥后,得到氮磷共掺杂的碳载体;
(2)量取10mL的0.25mgPd/mL Pd(NO3)2水溶液,加入10g所述的氮磷共掺杂的碳载体,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5h;之后在15Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧0.5h,得到负载钯的载体;
将所述负载钯的载体加入到溶解有3.1mg硝酸钴的硝酸钴水溶液中,室温搅拌均匀后,置入液氮中快速冷冻,然后在紫外氙灯下光照0.5h;之后在15Pa真空度条件下冷冻干燥2h,再在惰性气氛下、300℃煅烧0.5h,得到催化剂半成品;
(3)将所述催化剂半成品用H2体积百分数为10%的H2和He混合气进行还原,还原温度为70℃,还原压力为0.5MPa,还原时间为1h,得到还原态的催化剂,即为所述的加氢催化剂。
经原子吸收法测试得到,以所述催化剂的总质量为100%计,其中的Pd含量为0.025%,Co含量为0.01%,余量为氮磷共掺杂的碳载体。
将上述实施例和对比例提供的催化剂在单段绝热式固定床反应器中进行性能评价。单段绝热式固定床反应器的入口物料组成和反应条件如表1所示。实施例和对比例提供的催化剂的评价结果如表2所示。
表1反应物料组成和反应条件
表2催化剂评价结果
注:结焦量=(600℃焙烧烧失量÷催化剂初始填装量)×100%
由上述表1和表2可以看出,本发明实施例1~5提供的催化剂中的活性组分呈原子级分散,金属原子利用率提高,因此催化剂加氢活性高;对乙烯的吸附能力降低,因此催化剂加氢选择性高;相临活性位点同时吸附炔烃/二烯烃的几率下降,进而使聚合结焦的机率显著降低,因此催化剂的抗结焦性能强。因此,本发明提供的甲醇制烯烃产物中的微量乙炔选择加氢催化剂表现出优异的加氢活性、选择性及长周期运行稳定性。
本发明的催化剂可以应用于甲醇制乙烯产物的碳二后加氢及顺序分离工艺流程,其流程图如图3所示。该工艺流程包括:甲醇制烯烃反应器1的底部具有甲醇入口,甲醇制烯烃反应器1顶部的出口通过管线连接分离器3的入口,甲醇制烯烃反应器1下部的催化剂出口通过管线连接于再生塔2的催化剂入口;再生塔2的底部具有空气入口,再生塔2的顶部具有燃料气出口,再生塔2的催化剂出口通过管线连接甲醇制烯烃反应器1的再生后催化剂入口,在再生塔2中甲醇制烯烃催化剂进行再生;分离器3顶部的混合气体出口通过管线连接碱洗塔4的入口,分离器3的底部具有水出口,在分离器3中混合气体中的水、以及可能存在的甲醇等被分离出来;碱洗塔4顶部的混合气体出口通过管线连接干燥塔5的入口,碱洗塔4的上部具有碱液入口,碱洗塔4的底部具有CO2出口,在碱洗塔4中混合气体中的CO2被脱除;干燥塔5的出口通过管线连接脱甲烷塔6的入口,在干燥塔5中混合气体进行进一步脱水、干燥;脱甲烷塔6的顶部具有甲烷出口,脱甲烷塔6的底部混合物料出口通过管线连接脱乙烷塔7的入口,在脱甲烷塔6中甲烷被分离出来;脱乙烷塔7顶部的C2混合气出口通过管线连接于单段绝热式固定床反应器11的入口,脱乙烷塔7底部的C3+混合物料出口通过管线连接于丙烯分离塔9的第一入口,在脱乙烷塔7中C2混合气被分离出来;单段绝热式固定床反应器11的出口通过管线连接于乙烯分离塔8的入口,乙烯分离塔8的顶部具有乙烯出口,乙烯分离塔8的乙烷出口通过管线连接于丙烯分离塔9的第二入口,C2混合气经单段绝热式固定床反应器11进行加氢反应,将乙炔转化为乙烯后,再经乙烯分离塔8后,乙烯被分离出来,可以送往聚乙烯工艺;丙烯分离塔9的顶部具有丙烯出口,丙烯分离塔9底部的混合物料出口通过管线连接于脱丙烷塔10的入口,在丙烯分离塔9中丙烯被分离出来;脱丙烷塔10的顶部具有丙烷出口,脱丙烷塔10的底部具有混合物料出口,在脱丙烷塔10中丙烷被分离出来。

Claims (11)

1.一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂,所述催化剂包括载体和活性组分,所述载体为磷掺杂碳材料,所述活性组分包括主活性组分和助活性组分,所述主活性组分包括Pd,所述助活性组分包括Co,所述主活性组分和所述助活性组分呈原子级分散在所述载体上。
2.根据权利要求1所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂,其中,以所述催化剂的总质量为100%计,其中的主活性组分含量为0.025~0.45%,助活性组分含量为0.01~0.60%,余量为所述载体;
优选地,以所述催化剂的总质量为100%计,其中的主活性组分含量为0.025~0.24%,助活性组分含量为0.01~0.30%,余量为所述载体。
3.根据权利要求1或2所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂,其中,所述催化剂包括载体和活性组分,所述载体为磷掺杂碳材料,所述活性组分包括Pd和Co,Pd和Co呈原子级分散在所述载体上,以所述催化剂的总质量为100%计,其中的Pd含量为0.025~0.45%,Co含量为0.01~0.60%,余量为所述载体;
优选地,以所述催化剂的总质量为100%计,其中的Pd含量为0.025~0.24%,Co含量为0.01~0.30%,余量为所述载体。
4.根据权利要求1-3中任一项所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂,其中,所述催化剂是通过以下步骤制备得到的:
(1)将含磷化合物和碳水化合物在水中混合,然后进行水热反应,再至少经干燥、煅烧后,得到磷掺杂碳材料载体;
(2)将活性组分负载于所述磷掺杂碳材料载体,得到催化剂半成品;
(3)将所述催化剂半成品进行还原,得到还原态的催化剂,即为所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂。
5.一种权利要求1-4中任一项所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂的制备方法,其包括以下步骤:
(1)将含磷化合物和碳水化合物在水中混合,然后进行水热反应,再至少经干燥、煅烧后,得到磷掺杂碳材料载体;
(2)将活性组分负载于所述磷掺杂碳材料载体,得到催化剂半成品;
(3)将所述催化剂半成品进行还原,得到还原态的催化剂,即为所述的甲醇制烯烃产物中的微量乙炔选择加氢催化剂。
6.根据权利要求5所述的制备方法,其中,在步骤(1)中,所述含磷化合物包括磷酸和/或植酸;
优选地,在步骤(1)中,所述碳水化合物包括葡萄糖和/或蔗糖;
优选地,在步骤(1)中,所述含磷化合物和所述碳水化合物的混合摩尔比为0.0001~1000,更优选为0.001~10,进一步优选为0.02~0.4。
7.根据权利要求5所述的制备方法,其中,在步骤(1)中,将含磷化合物和碳水化合物在水中混合是在搅拌条件下进行的,所述搅拌的时间为30~120min;
优选地,在步骤(1)中,所述水热反应的温度为160~300℃,时间为4~12h;
优选地,在步骤(1)中,所述干燥的温度为120~160℃,时间为4~12h;
优选地,步骤(1)还包括:球磨,所述球磨在所述干燥之后、所述煅烧之前进行,所述球磨的时间为3~10min;
优选地,在步骤(1)中,所述煅烧是在惰性气氛下进行的,所述煅烧的温度为600~1000℃,时间为1~5h。
8.根据权利要求5所述的制备方法,其中,步骤(2)具体包括:
(2)-a1将所述磷掺杂碳材料载体加入到主活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到负载主活性组分的载体;
(2)-a2将所述负载主活性组分的载体加入到助活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到所述的催化剂半成品;
或者,步骤(2)具体包括:
(2)-b1将所述磷掺杂碳材料载体加入到助活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到负载助活性组分的载体;
(2)-b2将所述负载助活性组分的载体加入到主活性组分的前驱体水溶液中,混合均匀后,在液氮中冷冻,然后在紫外氙灯下进行光照,再进行冷冻干燥,之后经煅烧后,得到所述的催化剂半成品。
9.根据权利要求8所述的制备方法,其中,在步骤(2)中,所述主活性组分的前驱体包括钯盐;优选地,所述主活性组分的前驱体包括氯化钯、硝酸钯以及硫酸钯中的一种或几种的组合;
优选地,在步骤(2)中,所述助活性组分的前驱体包括钴盐;优选地,所述助活性组分的前驱体包括硝酸钴、硫酸钴、溴化钴以及氯化钴中的一种或几种的组合;
优选地,在步骤(2)中,所述主活性组分的前驱体水溶液中的主活性组分的浓度为0.1~5mgPd/mL Pd前驱体水溶液;
优选地,在步骤(2)中,所述助活性组分的前驱体水溶液中的助活性组分的浓度为0.1~10mgCo/mLCo前驱体水溶液。
10.根据权利要求8所述的制备方法,其中,在步骤(2)中,在紫外氙灯下进行光照的时间为0.5~5.0h;
优选地,在步骤(2)中,所述冷冻干燥的时间为2~7h,所述冷冻干燥的真空度为15~20Pa;
优选地,在步骤(2)中,所述煅烧是在惰性气氛下进行的,所述煅烧的温度为300~500℃,时间为0.5~5h。
11.根据权利要求5所述的制备方法,其中,在步骤(3)中,将所述催化剂半成品进行还原采用H2体积百分数为10~100%的H2和He混合气或者纯氢气,还原温度为50~300℃,还原压力为0.1~2.0MPa,还原时间为0.5~10h;优选地,还原温度为100~200℃,还原压力为0.5~1.0MPa,还原时间为2~6h。
CN202211529737.3A 2022-11-30 2022-11-30 一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法 Pending CN118122355A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211529737.3A CN118122355A (zh) 2022-11-30 2022-11-30 一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211529737.3A CN118122355A (zh) 2022-11-30 2022-11-30 一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN118122355A true CN118122355A (zh) 2024-06-04

Family

ID=91240912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211529737.3A Pending CN118122355A (zh) 2022-11-30 2022-11-30 一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN118122355A (zh)

Similar Documents

Publication Publication Date Title
CN109174085B (zh) 原子级分散钯基纳米金刚石/石墨烯复合材料催化剂及其制备方法和应用
CN111790350B (zh) 一种氮掺杂炭材料的制备方法及其在脱除含硫气体中的应用
CN111644197A (zh) 低温甲烷转化制芳烃的催化体系、制备方法及应用
CN114588910A (zh) 一种用于木质素解聚的Ni-Zn负载型催化剂的制备方法和应用
CN103418442B (zh) 含贵金属低碳烷烃脱氢催化剂载体的制备方法
Umar et al. Modification of ZSM-5 mesoporosity and application as catalyst support in hydrodesulfurization of dibenzothiophene: Experimental and DFT studies
CN113976167A (zh) 一种Pd/HY分子筛的制备方法及其应用和在多级孔分子筛上选择性负载金属的方法
CN111135857B (zh) 还原型催化剂的制备方法及其用途
CN118122355A (zh) 一种甲醇制烯烃产物中的微量乙炔选择加氢催化剂及其制备方法
CN113441140A (zh) 加氢脱氧催化剂及其制备方法和应用
CN109433252B (zh) 一种co2氧化c2h6脱氢制c2h4的催化剂及其制备方法
CN113117691A (zh) 一种钴基催化剂在费托合成反应中的应用
CN118108560A (zh) 一种甲醇制烯烃产物中微量乙炔的选择加氢方法
CN118105997A (zh) 一种甲醇制烯烃产物的加氢除炔催化剂及其制备方法
CN118108563A (zh) 一种甲醇制烯烃产物的加氢除炔方法
CN118108564A (zh) 一种乙烯选择加氢精制方法
CN118122357A (zh) 一种乙烯加氢精制催化剂及其制备方法
Song et al. Millesimal phosphorus promoted Pd/HY for efficient hydrogenation saturation
CN118122354A (zh) 一种碳二后加氢催化剂及其制备方法
CN118108565A (zh) 一种高碳四工况下碳二加氢除炔方法
CN118122356A (zh) 一种高碳四工况下的碳二选择加氢催化剂及其制备方法
CN118125896A (zh) 一种碳二前脱乙烷前加氢工艺的除炔方法
CN118108566A (zh) 一种轻烃裂解工艺中的碳二馏分选择加氢除炔方法
CN117160482A (zh) 一种炔烃选择加氢催化剂
CN118105998A (zh) 一种碳二馏分前脱乙烷前加氢催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination