CN118103554A - 具有复合多晶硅料管的拉晶系统、制备所述管的方法及形成单晶硅锭的方法 - Google Patents

具有复合多晶硅料管的拉晶系统、制备所述管的方法及形成单晶硅锭的方法 Download PDF

Info

Publication number
CN118103554A
CN118103554A CN202280067386.0A CN202280067386A CN118103554A CN 118103554 A CN118103554 A CN 118103554A CN 202280067386 A CN202280067386 A CN 202280067386A CN 118103554 A CN118103554 A CN 118103554A
Authority
CN
China
Prior art keywords
tube
polysilicon
green
dopant
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280067386.0A
Other languages
English (en)
Inventor
R·J·菲利普斯
S·塞佩达
W·卢特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Co Ltd
Original Assignee
GlobalWafers Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Co Ltd filed Critical GlobalWafers Co Ltd
Publication of CN118103554A publication Critical patent/CN118103554A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及具有复合多晶硅料管的拉晶系统、形成所述管的方法及使用所述管形成单晶硅锭的方法。所述复合多晶硅料管包含石英及至少一种掺杂剂。所述复合多晶硅料管可由注浆成型方法制造。

Description

具有复合多晶硅料管的拉晶系统、制备所述管的方法及形成 单晶硅锭的方法
相关申请案的交叉参考
本申请案主张2021年9月14日申请的第63/244,047号美国临时专利申请案的权益,所述美国临时专利申请案的全部内容以引用方式并入本文中。
技术领域
本公开的领域涉及具有复合多晶硅料管的拉晶系统、形成所述管的方法及使用所述管形成单晶硅锭的方法。
背景技术
在用于形成单晶硅锭的连续丘克拉斯基法中,当硅锭从熔体拉出时,多晶硅连续或间歇地添加到熔体以补充熔体。在一些常规方法中,固态多晶硅通过延伸穿过拉锭器外壳的料管添加到熔体。在用于单晶硅锭生长的一些分批模式中,拉晶器系统可保持在温度下,且多晶硅被供给到坩埚以制备可从其生长第二锭的第二硅熔体。
多晶硅可磨损料管,导致杂质进入熔体。料管通常由熔融石英过程制成,从而使管在其整个长度上具有均匀特性。在添加固态多晶硅期间,需要减少进入熔体的杂质量的拉晶系统及/或需要生产能够使管在其整个长度上具有可变特性的料管的方法。
本章节希望向读者介绍可与本公开各个方面相关的技术的各个方面,这些方面在下文中描述及/或主张。本讨论被认为有助于向读者提供背景信息以便于更好地理解本公开的各个方面。因此,应理解,这些陈述应当从此角度来解读,而非作为对现有技术的承认。
发明内容
本公开的一个方面涉及一种用于从硅熔体生长单晶锭的拉晶系统。所述系统包含拉轴且包含外壳,其界定生长室。坩埚组合件安置于所述生长室内用于容纳所述硅熔体。复合多晶硅料管延伸穿过所述外壳进入所述生长室以将多晶硅供给到所述坩埚组合件中。所述复合多晶硅料管由石英及至少一种掺杂剂制成。
本公开的另一方面涉及一种用于制备多晶硅料管的方法。将粉浆引入到模具中。所述粉浆包含二氧化硅、掺杂剂及液体载体。从所述模具移除所述液体载体的至少部分以形成多晶硅料管生坯。将所述多晶硅料管生坯与所述模具分离。将所述多晶硅料管生坯烧结以干燥且致密化所述多晶硅料管生坯以形成所述复合多晶硅料管。
本公开的另一方面涉及一种用于形成单晶硅锭的方法。在坩埚组合件中形成硅熔体。使所述硅熔体与晶种接触。将所述晶种从所述熔体抽出以形成单晶硅锭。通过复合多晶硅料管将多晶硅添加到所述熔体以补充所述熔体。所述复合多晶硅料管包含石英及掺杂剂。
存在关于本公开的上述方面所指出的特征的各种改进。本公开的上述方面还可包含更多特征。这些改进及额外功能可单独存在,或以任何组合存在。例如,下文讨论的与本公开的任何所说明的实施例相关的各种特征可单独或以任何组合并入本公开的上述任何方面。
附图说明
图1是从硅熔体用于生长单晶锭的拉晶系统的横截面图;
图2是拉晶系统的详细横截面图;及
图3是展示导热率随硅料管中Si或AlN掺杂量的增加而变化的图表。
对应参考符号指示所有图式中的对应零件。
具体实施方式
本公开的规定涉及通过连续丘克拉斯基(CZ)法从硅熔体生产单晶硅(即单晶)锭(例如半导体或太阳能级材料)的拉晶系统。本文所公开的系统及方法还可用于通过分批或补注CZ方法生长单晶锭。参考图1实例拉晶系统如示意图所展示,且整体以10指示。拉晶系统10包含拉轴Y10及界定生长室14的外壳12。坩埚组合件16安置于生长室14内。坩埚组合件16含有硅熔体18(例如,半导体或太阳能级材料),单晶锭20由提拉机构22从中拉出,如下文进一步讨论。拉晶系统10包含隔热板24(有时称为“反射器”),所述隔热板界定中心通道26,锭20在锭生长期间穿过所述通道。
图2展示在抽出锭20之前,拉晶系统10的部分。坩埚组合件16包含底部30及从底部30向上延伸的外侧壁32。坩埚组合件16包含中心堰34及从底部30向上延伸的内堰36。中心堰34安置于外侧壁32与内堰36之间。坩埚组合件16包含安置于外侧壁32与中心堰34之间的坩埚熔体区38。坩埚组合件16还含有安置于中心堰34与内堰36之间的中间区40。坩埚组合件16还含有安置于内堰36内的生长区42。坩埚组合件16可由例如石英或使拉晶系统10能够如本文所描述的运行的任何其它合适材料制成。此外,坩埚组合件16可具有任何合适尺寸以使拉晶系统10能够如本文所描述的运行。坩埚组合件16还可包含三个“嵌套”坩埚,其具有单独底部,共同构成底部,坩埚的侧壁为上文描述的堰34、36。在其它实施例中(例如,分批补注系统),坩埚不包含坩埚外侧壁32内的堰。
在锭生长期间,多晶硅被添加到坩埚熔体区38中,在那里硅熔化且补充硅熔体。硅熔体流过中心堰口44,且进入中间区40。接着,硅熔体流过内堰口41到安置于内堰36内的生长区42。各种硅熔体区(例如,外熔体区38、中间区40及生长区42)容许按照连续丘克拉斯基法生长锭,其中多晶硅连续或半连续添加到熔体中,而锭20连续从生长区42拉出。生长区42内的硅熔体18与单晶种75接触(图1)。晶体75由连接到拉线或缆线37的卡盘70固定。拉线37、卡盘70及晶种75通过提拉机构22(例如,电动滚筒、滑轮或线轴)升降。当晶种75从熔体18缓慢升起时,来自熔体18中的原子将其自身与晶种75对准且附接到晶种75,形成锭20。
坩埚组合件16由基座50支撑(图1)。基座50由旋转轴件51支撑。侧加热器52围绕着基座50及坩埚组合件16,为系统10供应热能。一或多个底部加热器62安置于坩埚组合件16及基座50下方。加热器52、62操作以熔化固态多晶硅进料的初始装料,且在初始装料熔化后将熔体18保持在液化状态。加热器52、62还用于熔化锭生长期间穿过多晶硅料管54(图1)添加的固态多晶硅。加热器52、62可为任何合适加热器,使系统10能够按本文描述的运行(例如电阻加热器)。
拉晶系统10包含用于将惰性气体引入生长室14的进气口(未展示),及用于将惰性气体及其它气态及空气中的颗粒从生长室14排出的一或多个排气口(未展示)。进气口供应合适惰性气体,例如氩气。
系统10包含与隔热板24一起安置的圆柱形夹套57。夹套57为流体冷却的,且包含与中心通道26对准的夹套室60。锭20沿着拉轴Y10拉出,穿过中心通道26,且进入夹套室60。夹套57冷却被拉出的锭20。
隔热板24的形状通常为平锥状。隔热板24包含面向坩埚组合件16及熔体18的外表面61。隔热板24可涂覆以防止熔体污染。在一些实施例中,隔热板24由其中包含钼片的两个石墨壳组成。表面61可涂覆(例如SiC)以减少熔体的污染。
隔热板24包含底部58(图2)。隔热板24安置于坩埚组合件16上方,使得中心信道26直接布置于生长区42上方,使得从熔体18取出的锭可被拉过中心通道26。外表面61可覆盖反射涂层,所述涂层将辐射热反射回熔体18及坩埚组合件16。因此,隔热板24有助于保持坩埚组合件16及熔体18内的热量。此外,隔热板24有助于沿拉轴Y10保持大致均匀的温度梯度。
在初始熔融阶段期间,初始量的固态多晶硅被载入到坩埚熔体区38、中间区40及生长区42。初始装料可在约10公斤到约200公斤硅之间。初始装料的质量取决于所需的晶体直径及热区设计。
固态硅的初始装料熔化,且锭20从熔体18拉出。在锭生长期间(或在分批补注系统中之后),固态多晶硅穿过多晶硅料管54(或简称“料管”)添加到坩埚组合件16,所述料管延伸穿过拉晶器外壳12且进入到生长室14。多晶硅料管54包含位于拉晶器装置外壳12的外部的入口71。固态多晶硅可通过掺杂剂进料系统77穿过入口71添加到管54中。通常,容许拉晶器系统10按本文描述的操作的任何合适掺杂剂进料系统77都为合适的,除非另有说明。例如,掺杂剂进料系统77可包含存储容器及振动滑槽(例如,带有连接到滑槽的振动器的滑槽)。振动滑槽将固态多晶硅从存储容器移动到管54的入口。
多晶硅料管54包含生长室14内的出口73。固态硅穿过管54落下,且穿过出口73从管54排出。出口73可安置于坩埚组合件16内(例如,坩埚组合件16的顶部下方),例如外熔体区38内。
多晶硅料管54位于形成于拉晶系统10的外壳12中的多晶硅料管端口59中(即,多晶硅料管54中的一者通过以下描述的注浆成型方法形成)。
穿过料管54进料的固态硅可为例如多晶硅芯片、粒状多晶硅或块状多晶硅或其一组合。块状多晶硅的尺寸通常比芯片多晶硅大,芯片多晶硅的尺寸比粒状多晶硅大。例如,块状多晶硅可通常具有至少15mm的平均标称尺寸(例如,从5mm到110mm的范围),而芯片多晶硅可具有从1mm到15mm的平均标称尺寸。固态硅以足以在锭20的生长期间维持基本恒定的熔体高度位准及体积的速率添加。
根据本公开的实施例,多晶硅料管54的至少部分为复合材料。复合管54由基础材料(例如石英)及至少一种掺杂剂(有时在本文中称为“第二相”)制成。通常,可使用任何合适掺杂剂(例如,修饰或增强料管54特性的掺杂剂)。
合适的掺杂剂包含,例如,SiC、Si3N4、AlN、Si、ZrO2或Y2O3及其组合。复合料管54中掺杂剂的浓度可为任何合适的范围,从而容许料管54及拉晶系统10按照本文描述进行操作。在一些实施例中,管54中掺杂剂的浓度至少为20ppm、至少50ppm或至少100ppm(例如,在20ppm到10,000ppm之间或从100ppm到10,000ppm之间)。一些混合相可具有更高浓度的第二相掺杂剂(例如,第二相的至少30vol%、第二相至少40vol%、至少50%、或至少60vol%或更多)。
在一些实施例中,整个管54由复合材料(例如,石英及分散在石英中的至少一种第二相)形成。在其它实施例中,仅管54的部分由复合材料制成。例如,延伸穿过外壳12的管54的上段63可由复合材料制成,或从上段63垂直向下延伸到坩埚组合件16中的底段65可由复合材质制成。管54的各个段可由复合材料制成,但在一或多个段中掺杂剂的浓度或类型不同。图1所说明的管54为实例管,且管54可具有不同配置(例如,更多或更少区段)。
复合管54可通过注浆成型过程形成。如下文进一步描述,将粉浆(或简称“浆”)倒入模具中,且形成管54的形状的“生坯”。将生坯从模具移除且烧结形成管54。模具通常经塑形为管的负形状(例如,具有外部及内核,形成可填充粉浆的圆柱形间隙)。模具可由两个可分离的段组成。
在一些实施例中,添加到模具内通道的粉浆包含二氧化硅(SiO2)、至少一种掺杂剂及液体载体,例如水。粉浆还可包含其它试剂,例如使二氧化硅颗粒保持悬浮状态的悬浮剂,包含所属领域的技术人员已知的任何悬浮剂。实例悬浮剂包含吸附在颗粒上的聚合物或有机物(例如,长链有机分子或容许表面电荷积聚在二氧化硅颗粒上以减少颗粒间接触的其它试剂)。粉浆还可包含一或多种粘合剂,这些粘合剂可在如下文所描述的烧结期间视情况烧掉。视情况,粉浆可包含一或多种脱模剂以促进管模具与生成的生坯分离。
管模具可由容许液体载体从模具移除(例如,例如通过毛细管作用)以形成生坯的材料制成。在一些实施例中,管模具由石膏,例如石膏泥(例如,CaSO4·nH2O,还可称为熟石膏)制成。在其它实施例中,管模具由多孔二氧化硅制成。管模具通常为多孔体,其通过毛细管作用将液体载体吸入模具。在其它实施例中,液体载体可通过真空抽出。
一旦液体载体从粉浆抽出且进入模具,模具中会保留“生坯”。例如,当与模具分离时,生坯可具有足够结构以保持其形状。例如,生坯的水分含量可小于约50%、小于约45%、至少约30%、至少约35%、至少约40%、至少约45%,从约30wt%到约50wt%或从约35wt%到约45wt%。
可进一步干燥生坯,例如将生坯暴露在相对较低及/或受控湿度周围中(例如,在生坯具有足够强度后,移除模具,且将生坯暴露于相对较低及/或受控湿度周围中)。本文所使用的术语“生坯”或“生坯状态”不应被视为具有限制性意义,且通常指的是在液体载体部分从粉浆抽出之后及结构烧结之前的管的中间状态。
生坯可包含可从生坯或由此产生的多晶硅料管54(图1)研磨或切割的凸起(即,用于形成模具组件形状的凸起)。
一旦多晶硅管生坯从模具移除,可将生坯烧结(例如,在干燥炉中)以干燥及致密化生坯,且形成多晶硅料管54(图1)。可在约1200℃到约1800℃、约1300℃到约1700℃或约1300℃到约1650℃的温度下烧结生坯。在一些实施例中,烧结后多晶管具有小于20wt%、小于15wt%、小于10wt%或小于5wt%的含水量。
可使用其它方法形成管54。例如,在其它实施例中,管54可通过3D打印方法制成。在其它实施例中,使用刮刀成形或挤制。虽然管54被展示且描述为圆柱体,但管54还可具有其它对称或非对称形状。例如,管54可具有槽形。
本公开用于形成由石英及至少一种掺杂剂制成的复合多晶料管的方法可用于生产单晶硅锭。在此方法中,通过向复合管54中添加多晶硅,将多晶硅添加到坩埚组合件16中。所述管由石英及至少一种掺杂剂制成。
与常规多晶硅料管相比,本公开的料管具有若干优点。在管内(例如石英管)使用第二相(即,一或多种掺杂剂)减少由固态硅在管向下移动到坩埚组合件时接触管而引起的磨损。此减少杂质的数量(例如,用于形成管的二氧化硅中存在的氧气及其它杂质)。使用掺杂剂还可降低管内形成的多晶硅阻塞的发生率。使用掺杂剂还容许改变管的导热率及/或容许改变管的不透明度。导热率及不透明度变化容许减少管壁上的多晶硅熔化及/或减少灰尘收集及堵塞。使用注浆成型方法用于形成管(例如,与熔融硅方法相反)容许掺杂剂并入管中,且容许管以非对称形状形成。非对称设计容许减少磨损及回弹效应,借此降低进料系统中的杂质浓度。注浆成型方法还容许对管的某些部分进行定制以适应特定的掺杂程度,例如以改变管的特定区域处的导热率或不透明度。在通过注浆成型制造管的实施例中,所述方法可导致接近管的最终尺寸的净形状及/或准备使用的管(减少或消除机械加工)。
实例
以下实例进一步说明本公开的过程。这些实例不应被视为限制性的。
实例1:具有不同掺杂剂的注浆成型管中的导热率的变动
石英多晶管中掺杂剂(硅或AlN)的量可变动以改变管的导热率。图3展示导热率随掺杂剂浓度的变化。例如,可添加20到30体积百分比的掺杂剂以将石英的导热率(约1.8W/m*K)改变为约3W/m*K。
如本文中所使用,当与尺寸范围、浓度、温度或其它物理或化学性质或特征结合使用时,术语“约”、“实质上”、“基本上”及“大约”希望涵盖性质或特征范围的上限及/或下限可存在的变动,包含,例如,四舍五入、测量方法或其它统计变动导致的变动。
在介绍本公开的元件或其实施例时,冠词“一(a/an)”及“所述(the/said)”希望意味着存在一或多个元件。术语“包括”、“包含”、“含有”及“具有”希望包含,且意味着除所列元件外,可还有额外元件。使用指示特定方向的术语(例如,“顶部”、“底部”、“侧面”等)是为了便于描述,且不需要所描述物品的任何特定方向。
由于可在不背离本公开的范围的情况下对上述结构及方法进行各种变化,因此,上述描述中含有的及附图中展示的所有内容都应解释为说明性而非限制性的。

Claims (10)

1.一种用于从硅熔体生长单晶锭的拉晶系统,所述系统具有拉轴且包括:
外壳,其界定生长室;
坩埚组合件,其安置于所述生长室内用于容纳所述硅熔体;及
复合多晶硅料管,其延伸穿过所述外壳进入所述生长室以将多晶硅供给到所述坩埚组合件中,所述复合多晶硅料管由石英及至少一种掺杂剂制成。
2.根据权利要求1所述的拉晶系统,其中所述掺杂剂选自SiC、Si3N4、AlN、Si、ZrO2及Y2O3
3.根据权利要求1或权利要求2所述的拉晶系统,其中所述掺杂剂的浓度至少为20ppm、至少为50ppm、至少为100ppm、在20ppm到10,000ppm之间及自100ppm至10,000ppm。
4.根据权利要求1到3中任一权利要求所述的拉晶系统,其中所述复合多晶硅料管通过以下制成:
将粉浆引入到模具中,所述粉浆包括二氧化硅、掺杂剂及液体载体;
从所述模具移除所述液体载体的至少部分以形成多晶硅料管生坯;
将所述多晶硅料管生坯与所述模具分离;及
将所述多晶硅料管生坯烧结以干燥且致密化所述多晶硅料管生坯以形成所述复合多晶硅料管。
5.一种用于制备多晶硅料管的方法,所述方法包括:
将粉浆引入到模具中,所述粉浆包括二氧化硅、掺杂剂及液体载体;
从所述模具移除所述液体载体的至少部分以形成多晶硅料管生坯;
将所述多晶硅料管生坯与所述模具分离;及
将所述多晶硅料管生坯烧结以干燥且致密化所述多晶硅料管生坯以形成所述复合多晶硅料管。
6.根据权利要求5所述的方法,其包括将所述多晶硅料管定位在形成于拉晶系统的外壳中的多晶硅料管端口中。
7.一种用于形成单晶硅锭的方法,其包括:
在坩埚组合件中形成硅熔体;
使所述硅熔体与晶种接触;
将所述晶种从所述熔体抽出以形成单晶硅锭;及
通过复合多晶硅料管将多晶硅添加到所述熔体以补充所述熔体,所述复合多晶硅料管包括石英及掺杂剂。
8.根据权利要求7所述的方法,其中所述掺杂剂选自SiC、Si3N4、AlN、Si、ZrO2及Y2O3
9.根据权利要求7或权利要求8所述的方法,其中所述掺杂剂的浓度至少为20ppm、至少为50ppm、至少为100ppm、在20ppm到10,000ppm之间及自100ppm至10,000ppm。
10.根据权利要求7到9中任一权利要求所述的方法,其中所述多晶硅料管通过以下制成:
将粉浆引入到模具中,所述粉浆包括二氧化硅、掺杂剂及液体载体;
从所述模具移除所述液体载体的至少部分以形成多晶硅料管生坯;
将所述多晶硅料管生坯与所述模具分离;及
将所述多晶硅料管生坯烧结以干燥且致密化所述多晶硅料管生坯以形成所述复合多晶硅料管。
CN202280067386.0A 2021-09-14 2022-08-29 具有复合多晶硅料管的拉晶系统、制备所述管的方法及形成单晶硅锭的方法 Pending CN118103554A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163244047P 2021-09-14 2021-09-14
US63/244,047 2021-09-14
PCT/US2022/075574 WO2023044237A1 (en) 2021-09-14 2022-08-29 Crystal pulling systems having composite polycrystalline silicon feed tubes, methods for preparing such tubes, and methods for forming a single crystal silicon ingot

Publications (1)

Publication Number Publication Date
CN118103554A true CN118103554A (zh) 2024-05-28

Family

ID=83448048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280067386.0A Pending CN118103554A (zh) 2021-09-14 2022-08-29 具有复合多晶硅料管的拉晶系统、制备所述管的方法及形成单晶硅锭的方法

Country Status (5)

Country Link
US (1) US20230078325A1 (zh)
CN (1) CN118103554A (zh)
DE (1) DE112022004379T5 (zh)
TW (1) TW202311574A (zh)
WO (1) WO2023044237A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762491A (en) * 1995-10-31 1998-06-09 Memc Electronic Materials, Inc. Solid material delivery system for a furnace
US20070293388A1 (en) * 2006-06-20 2007-12-20 General Electric Company Glass articles and method for making thereof
DE102007004242B4 (de) * 2007-01-23 2018-01-04 Schott Ag Verfahren zum Herstellen eines Formkörpers aus Quarzglas durch Sintern, Formkörper und Verwendung des Formkörpers
US7718559B2 (en) * 2007-04-20 2010-05-18 Applied Materials, Inc. Erosion resistance enhanced quartz used in plasma etch chamber

Also Published As

Publication number Publication date
US20230078325A1 (en) 2023-03-16
WO2023044237A1 (en) 2023-03-23
DE112022004379T5 (de) 2024-06-20
TW202311574A (zh) 2023-03-16

Similar Documents

Publication Publication Date Title
US5242531A (en) Continuous liquid silicon recharging process in czochralski crucible pulling
US7132091B2 (en) Single crystal silicon ingot having a high arsenic concentration
CN102272360A (zh) 制备用于硅晶体生长的硅粉熔体的方法
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
US5499598A (en) Method for producing a silicon rod
US5370078A (en) Method and apparatus for crystal growth with shape and segregation control
US20190078231A1 (en) Hybrid crucible assembly for czochralski crystal growth
CN214218910U (zh) 一种半导体加工用硅材料热熔成锭装置
CN118103554A (zh) 具有复合多晶硅料管的拉晶系统、制备所述管的方法及形成单晶硅锭的方法
US7871590B2 (en) Mass of silicon solidified from molten state and process for producing the same
JPH0788269B2 (ja) シリコン単結晶引上げ用ルツボ
EP0205422A1 (en) Continuously pulled single crystal silicon ingots
CN105887187B (zh) 一种硅单晶生长掺杂剂浓度稳定控制方法
US11767610B2 (en) Use of buffer members during growth of single crystal silicon ingots
US20230142194A1 (en) Use of arrays of quartz particles during single crystal silicon ingot production
CN116783333A (zh) 在单晶硅锭生长期间使用缓冲剂
KR20240100412A (ko) 단결정 실리콘 잉곳 제조 동안의 석영 입자 어레이의 사용
CN117616160A (zh) 石英板在单晶硅锭生长期间的用途
KR100194363B1 (ko) 단결정실리콘의 제조방법과 장치
TW202328509A (zh) 用於涉及矽進料管之惰性氣體控制之單晶矽錠生長之方法
JPH0699226B2 (ja) 単結晶棒の製造方法及び装置
JPS6148418A (ja) 溶融シリコン供給方法とその装置
JPH075429B2 (ja) 結晶成長装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination