CN118063207A - 一种高储能密度的钛酸钡基多层介电材料及其制备方法 - Google Patents

一种高储能密度的钛酸钡基多层介电材料及其制备方法 Download PDF

Info

Publication number
CN118063207A
CN118063207A CN202410007365.0A CN202410007365A CN118063207A CN 118063207 A CN118063207 A CN 118063207A CN 202410007365 A CN202410007365 A CN 202410007365A CN 118063207 A CN118063207 A CN 118063207A
Authority
CN
China
Prior art keywords
energy storage
barium titanate
high energy
electrode
storage density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410007365.0A
Other languages
English (en)
Inventor
朱立峰
韩毅
王�琦
刘�东
王新一
陈晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202410007365.0A priority Critical patent/CN118063207A/zh
Publication of CN118063207A publication Critical patent/CN118063207A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高储能密度的钛酸钡基多层介电材料,所述材料中含有钛酸钡基介电陶瓷的化学式为(LaxBaySrzKuNavCawBik)TiO3,其中x=0~0.05,y=0.05~0.30,z=0~0.3,u=0.05~0.3,v=0.05~0.3,w=0.05~0.3和k=0.1~0.3。该多层介电材料具有高的储能密度和储能效率,及优异的温度和频率稳定性能。本发明还提供了所述高储能密度的钛酸钡基多层介电材料的制备方法,以及具有高储能密度的钛酸钡基多层介电元件。

Description

一种高储能密度的钛酸钡基多层介电材料及其制备方法
技术领域
本发明涉及一种高储能密度的钛酸钡基多层介电材料及其制备方法。所述介电材料可用作电介质储能电容器,属于功能陶瓷技术领域。
背景技术
电介质电容器作为大功率脉冲电源的核心储能器件,其具有高功率密度、超快充放电能力和优异的热稳定性、及抗老化性强等优点,在发展军用装备和实现科学研究技术等领域有着至关重要的地位,如心脏起搏器、相机闪光灯、核效应模拟、金属成型和混合动力电动车辆等领域。
随着脉冲功率器件向小型化和轻量化发展,开发高能量密度的介质材料愈发迫切。在高能量密度材料的研究领域,可用于能量储存的介质材料有线性电介质(LD)、铁电体(FE)、弛豫铁电体(RFE)和反铁电体(AFE)四大类。钛酸钡(BaTiO3)基陶瓷由于具有优异电学性能,包括介电常数高、铁电性优良等特点,是制备陶瓷介质电容器的优质候选材料之一。传统的钛酸钡基陶瓷击穿强度低,其最大击穿场强只有50~80kV/cm;储能密度小,约0.3J/cm3,难以满足现代工业的需求,有必要改善其性能。
掺杂改性是提升BaTiO3基介电陶瓷性能最有效的手段。研究者们在BaTiO3中加入Bi(Li0.5Nb0.5)O3和Bi(Mg0.5Ti0.5)O3复合钙钛矿体系,0.88BT-0.12(1-x)BLN-0.12xBMT基介电陶瓷的击穿强度和储能密度分别为290kV/cm和为2.4J/cm3(Chem.Eng.J.,2021,414:128760);此外,有研究者也使用Ce元素掺杂0.65BaTiO3-0.35Sr0.2Bi0.2TiO3陶瓷,获得了电学性能优异的介电陶瓷,其击穿强度可达为330kV/cm,储能密度约为2.57J/cm3,储能效率为81.30%(Ceram.Int,2021,47(22):32015-32024)。这些工作均表明了BaTiO3基陶瓷在介电储能领域具有较大的应用潜力,但,其击穿场强达不到应用要求,储能效率低,严重限制了其在高功率脉冲电源中的应用。
发明内容
针对上述问题,本发明提供了一种高储能密度的钛酸钡基多层介电材料及其制备方法。通过对BaTiO3基介电陶瓷组分的高熵化设计,提高其耐击穿场强,从而实现储能性能的提升;为满足脉冲电源等高功率介电储能元器件的发展提供了一种高性能材料。
第一方面,本发明提供了一种高储能密度的钛酸钡基多层介电材料,其中含有钛酸钡基介电陶瓷的化学式为(LaxBaySrzKuNavCawBik)TiO3,其中x=0~0.05,y=0.05~0.30,z=0~0.3,u=0.05~0.3,v=0.05~0.3,w=0.05~0.3和k=0.1~0.3。
本发明中,通过镧、锶、钾、钠、钙和铋等元素掺杂的方法构建高熵陶瓷,使得BaTiO3基介电陶瓷的击穿场强和储能密度均得到大幅度提升。
较佳的,所述高储能密度的钛酸钡基多层介电材料的击穿电场为420~910kV/cm。
较佳的,所述高储能密度的钛酸钡基多层介电材料的储能密度为4.4~6.8J/cm3
较佳的,所述高储能密度的钛酸钡基多层介电材料的储能效率为62.7~96.0%。
第二方面,本发明提供了所述高储能密度的钛酸钡基多层介电材料制备方法,包括以下步骤:
(1)选用钛酸钡(BaTiO3)、碳酸钠(Na2CO3)、碳酸钾(K2CO3)、碳酸锶(SrCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、氧化铋(Bi2O3)、氧化镧(La2O3)为原料,按照化学式(LaxBaySrzKuNavCawBik)TiO3,其中x=0~0.05,y=0.05~0.30,z=0~0.3,u=0.05~0.3,v=0.05~0.3,w=0.05~0.3和k=0.1~0.3,称量并混合,然后经过煅烧和细磨,得到陶瓷粉体A;
(2)将所得的陶瓷粉体A与溶剂、分散剂、粘结剂、均匀剂和增塑剂混合均匀后进行流延,得到流延生坯膜B。
(3)将所得的流延生坯膜B进行切片,采用丝网印刷在流延生坯膜B印刷电极,得到印有电极的生坯膜,采用热压叠片技术将印有电极的生坯膜进行热压叠片,得到陶瓷生坯C。
(4)将多层陶瓷生坯C进行排塑和烧结,得到钛酸钡基多层介电陶瓷D。
(5)将钛酸钡基多层陶瓷D进行打磨,涂覆端电极,得到所述钛酸钡基多层介电材料E。
较佳的,步骤(1)中,所述的原料纯度均大于99%;所述混合的方式为球磨混合;无水乙醇或水作为球磨介质,转速为220~300转/分钟,时间为6~12小时,所用磨球为氧化锆球;所述煅烧的温度为1100~1400℃,时间为2~4小时。
较佳的,步骤(2)中,所述的流延浆料配比为粉体以100wt%计,粘结剂PVB加入量为4~10wt%,溶剂为40~60wt%,分散剂为0.8~1.5wt%,增塑剂为4~6wt%,均匀剂为0.5~1.0wt%。其中PVB的分子量为70000~270000;溶剂为对二甲苯(30%)和无水乙醇(70%)的混合溶剂、或丁酮(40%)和无水乙醇(60%)的混合溶剂、或丁酮(88.6%)和水(11.4%)的混合溶剂、或无水乙醇(68%)和甲苯(32%)的混合溶剂、或无水乙醇(27%)和三氯乙烯(63%)的混合溶剂、或正丙酮(88%)和丁酮(12%)的混合溶剂、或丙酮(88%)和甲苯(12%)的混合溶剂、或P-二甲苯(17%)和正丙酮(83%)的混合溶剂,上述百分含量均为体积分数;分散剂为大豆食品油、花生油或鱼油;增塑剂为邻苯二甲酸二丁脂(DBP)和聚乙二醇(PEG-400)的混合物,或邻苯二甲酸丁苄酯(BBP)和聚乙二醇(PEG-400)的混合物,DBP与PEG-400的质量比,以及BBP与PEG-400的质量比均为1:1;均匀剂为环己酮。
较佳的,步骤(3)中,流延膜的厚度为1~50微米;丝网印刷中的电极为Ag-Pd电极、Ni电极或Pt电极;叠片中的热压温度为60~80℃,保温时间1~5min。
较佳的,步骤(4)中,排塑的温度为400~600℃,时间为1~2小时;
较佳的,步骤(4)中,烧结工艺为在室温下以3~4℃/分钟的升温速率升至1000~1050℃,随后以2~4℃/min的升温速率升温至1200~1400℃,保温1~3小时。
较佳的,步骤(5)中,端电极为镍电极、铜电极或银电极。
第三方面,本发明提供了一种具有高储能密度的钛酸钡基多层介电元件,包括上述高储能密度的钛酸钡基介电陶瓷,以及分布在高储能特性钛酸钡基介电陶瓷表面的电极。
有益效果:
与现有技术比较,本发明通过高熵化设计,如采用镧、锶、钾、钠、钙、和铋等元素掺杂,获得了击穿场强大(最大击穿场强可达800kV/cm)和储能密度高(最高储能密度可达6.62J/cm3)及储能效率高(最大储能效率度可达95.92%)的(LaxBaySrzKuNavCawBik)TiO3基多层介电储能材料。所得材料具有耐高压、无铅环保、储能密度和储能效率高等优点,适用于高功率脉冲电源领域,具有非常重要的应用价值。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为(LaxBaySrzKuNavCawBik)TiO3基介电储能材料的XRD图,所有样品均为纯钙钛矿结构。
图2为(La0.05Ba0.18Sr0.18K0.115Na0.115Ca0.18Bi0.18)TiO3基多层介电储能材料的SEM图。
图3为(Ba0.25K0.25Ca0.25Bi0.25)TiO3基多层介电储能材料的SEM图。
图4为(LaxBaySrzKuNavCawBik)TiO3基介电储能材料性能的单极P-E曲线。
图5为(LaxBaySrzKuNavCawBik)TiO3基介电储能材料的介温谱。
具体实施方式
为了使本发明的发明目的、技术方案和有益技术效果更加清晰,以下结合具体实施例对本发明进行详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本发明,并非为了限定本发明。
本发明中,高储能密度的钛酸钡基多层陶瓷材料的分子式为(LaxBaySrzKuNavCawBik)TiO3,其中x=0~0.05,y=0.05~0.30,z=0~0.3,u=0.05~0.3,v=0.05~0.3,w=0.05~0.3和k=0.1~0.3。本发明材料击穿场强和储能特性优异,其击穿电场达800kV/cm,储能密度达6.62J/cm3,储能效率为95.92%。特别地,本发明的(LaxBaySrzKuNavCawBik)TiO3基陶瓷,击穿场强大,储能密度和储能效率高,且价格低廉,是一种低成本、高性能的脉冲高功率电源元件材料。
实施例1:(LaxBaySrzKuNavCawBik)TiO3,其中x=0.05,y=0.18,z=0.18,u=0.115,v=0.115,w=0.18,k=0.18。
采用固相烧结法制备本实施例陶瓷材料,具体按照以下步骤进行:
(1)、按照分子式:(LaxBaySrzKuNavCawBik)TiO3,其中x=0.05,y=0.18,z=0.18,u=0.115,v=0.115,w=0.18,k=0.18进行配料计算,需要原料为:钛酸钡(BaTiO3)、碳酸钠(Na2CO3)、碳酸钾(K2CO3)、碳酸锶(SrCO3)、碳酸钙(CaCO3)、二氧化钛(TiO2)、氧化铋(Bi2O3)、氧化镧(La2O3);采用电子天平进行称量,称量精确至0.001g;
(2)、将称取的原料混合放入尼龙罐中,向罐中加入不高于罐体高度1/3的无水乙醇进行混料,以氧化锆球为介质,将尼龙罐放在卧式球磨机上混合8小时,其氧化锆球粒径为3mm、5mm和8mm三种球,质量比3:4:3。将球磨好的浆料倒入托盘中,放入烘箱中烘干;将烘干后的粉体碾碎放入坩埚中,然后将坩埚放入马弗炉中焙烧,其中焙烧温度1150℃,保温3小时,得到陶瓷粉体;
(3)、将得到的陶瓷粉体放入行星球磨机中球磨,其中转速为300转/分钟,球磨时间为12小时,得到磨细陶瓷粉体。
(4)、按照陶瓷粉体:PVB:溶剂:分散剂:增塑剂:均匀剂为100:6.4:60:1.4:6:0.5的质量比进行配制流延浆料,其中溶剂为丁酮(40%体积)和无水乙醇(60%体积)的混合溶剂,分散剂为鱼油,增塑剂为邻苯二甲酸二丁脂(DBP)和聚乙二醇(PEG-400)质量比为1:1的混合物,均匀剂为环己酮。
(5)、将流延浆料倒入流延机中,其中刀口高度140微米,速度0.7cm/s,得到流延膜。
(6)、将膜带裁剪,并进行丝网印刷铂电极;将印刷好电极的膜带进行叠片处理。
(7)、将叠好后的片进行切片,并进行排塑处理,其中排塑温度为600℃,保温时间为1小时。
(8)、将排塑后的坯体在大气氛围下烧结,烧结温度为1210℃,烧结时间为3小时,自然冷却至室温后取出试样。
将所制备的钛酸钡基陶瓷材料进行打磨,露出内电极;然后在露有内电极测涂覆银或镍或铜端电极,得到钛酸钡基多层介电储能材料,进行结构和性能测试。
实施例2:(LaxBaySrzKuNavCawBik)TiO3,其中x=0.00,y=0.20,z=0.20,u=0.10,v=0.10,w=0.20,k=0.20。除步骤(1)中x,y,z,u,v,w,k取值不同外,其他步骤与实施例1相同。
实施例3:(LaxBaySrzKuNavCawBik)TiO3,其中x=0.00,y=0.25,z=0.00,u=0.125,v=0.125,w=0.25,k=0.25。除步骤(1)中x,y,z,u,v,w,k取值不同外,其他步骤均与实施例1相同。
实施例4(对比):(LaxBaySrzKuNavCawBik)TiO3,其中x=0.00,y=0.25,z=0.00,v=0.00,u=0.25,w=0.25和k=0.25。除步骤(1)中x,y,z,u,v,w,k取值不同外,其他步骤均与实施例1相同。
高熵钛酸钡基介电储能材料实施例1-3与非高熵钛酸钡基介电储能材料实施例4的性能对比,如表1所示。从实施例4至实施例1可知,随着掺杂元素种类增加,熵增加,则(LaxBaySrzKuNavCawBik)TiO3基介电储能材料的击穿场强、储能密度和储能效率均也相应增加。
表1(LaxBaySrzKuNavCawBik)TiO3基介电储能材料性能比较
图1为高熵钛酸钡基介电储能材料实施例1-3与非高熵钛酸钡基介电储能材料实施例4的XRD图对比。所有的样品均为纯的钙钛矿结构,说明这些元素能很好的固溶进钙钛矿晶格。此外从实施例4至实施例1,随着元素种类增加(熵增加),相结构由四方相转变为立方相。
图2为实施例1的SEM图,图3为实施例4的SEM图。从SEM可知,陶瓷样品晶粒发育良好,饱满度高,致密度大,且晶粒分布均匀,每层的厚度为15微米左右。
图3为高熵钛酸钡基介电储能材料实施例1-3与非高熵钛酸钡基介电储能材料实施例4的P-E曲线对比。可以看出,从实施例4至实施例1,随着元素掺杂种类的增加(即熵增加),P-E曲线变细,击穿场强也相应增加,这将有利于获得高的储能密度和储能效率。特别地,(La0.05Ba0.18Sr0.18K0.115Na0.115Ca0.18Bi0.18)TiO3基高熵介电陶瓷具有极其细的P-E曲线。
图4为高熵钛酸钡基介电储能材料实施例1-3与非高熵钛酸钡基介电储能材料实施例4的介温谱对比。可以看出,随着元素掺杂种类的增加(即熵增加),介电峰往低温方向偏移,介电损耗相应减少。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求确定的保护范围为准。

Claims (10)

1.一种高储能密度的钛酸钡基多层介电材料,其特征在于,所述材料中含有钛酸钡基介电陶瓷的化学式为(LaxBaySrzKuNavCawBik)TiO3,其中x=0~0.05,y=0.05~0.30,z=0~0.3,u=0.05~0.3,v=0.05~0.3,w=0.05~0.3和k=0.1~0.3。
2.根据权利要求1所述的高储能密度的钛酸钡基多层介电材料,其特征在于,所述材料的击穿电场为420~910kV/cm,储能密度为4.4~6.8J/cm3,储能效率为62.7~96.0%。
3.根据权利要求1所述高储能密度的钛酸钡基多层介电材料的制备方法,其特征在于,包括以下步骤:
(1)选用钛酸钡、碳酸钠、碳酸钾、碳酸锶、碳酸钙、二氧化钛、氧化铋、氧化镧为原料,按照化学式(LaxBaySrzKuNavCawBik)TiO3,其中x=0~0.05,y=0.05~0.30,z=0~0.3,u=0.05~0.3,v=0.05~0.3,w=0.05~0.3和k=0.1~0.3,称量并混合,然后经过煅烧和细磨,得到陶瓷粉体A;
(2)将所得的陶瓷粉体A与溶剂、分散剂、粘结剂、均匀剂和增塑剂混合均匀后进行流延,得到流延生坯膜B;
(3)将所得的流延生坯膜B进行切片,采用丝网印刷在流延生坯膜B印刷电极,得到印有电极的生坯膜,采用热压叠片技术将印有电极的生坯膜进行热压叠片,得到陶瓷生坯C;
(4)将多层陶瓷生坯C进行排塑和烧结,得到钛酸钡基多层介电陶瓷D;
(5)将钛酸钡基多层陶瓷D进行打磨,涂覆端电极,得到所述钛酸钡基多层介电材料E。
4.根据权利要求3所述高储能密度的钛酸钡基多层介电材料的制备方法,其特征在于,步骤(1)中,所述的原料纯度均大于99%;所述混合的方式为球磨混合;无水乙醇或水作为球磨介质,转速为220~300转/分钟,时间为6~12小时,所用磨球为氧化锆球;所述煅烧的温度为1100~1400℃,时间为2~4小时。
5.根据权利要求3所述高储能密度的钛酸钡基多层介电材料的制备方法,其特征在于,步骤(2)中,所述的流延浆料配比为粉体以100wt%计,粘结剂PVB加入量为4~10wt%,溶剂为40~60wt%,分散剂为0.8~1.5wt%,增塑剂为4~6wt%,均匀剂为0.5~1.0wt%。
6.根据权利要求5所述高储能密度的钛酸钡基多层介电材料的制备方法,其特征在于,PVB的分子量为70000~270000;分散剂为大豆食品油、花生油或鱼油;增塑剂为邻苯二甲酸二丁脂和聚乙二醇的混合物,或者为邻苯二甲酸丁苄酯和聚乙二醇的混合物;均匀剂为环己酮。
7.根据权利要求3所述高储能密度的钛酸钡基多层介电材料的制备方法,其特征在于,步骤(3)中,流延膜的厚度为1~50微米;丝网印刷中的电极为Ag-Pd电极、Ni电极或Pt电极;叠片中的热压温度为60~80oC,保温时间1~5min。
8.根据权利要求3所述高储能密度的钛酸钡基多层介电材料的制备方法,其特征在于,步骤(4)中,排塑的温度为400~600℃,时间为1~2小时;
烧结工艺为在室温下以3~4℃/分钟的升温速率升至1000~1050℃,随后以2~4℃/min的升温速率升温至1200~1400℃,保温1~3小时。
9.根据权利要求3所述高储能密度的钛酸钡基多层介电材料的制备方法,其特征在于,步骤(5)中,端电极为镍电极、铜电极或银电极。
10.一种具有高储能密度的钛酸钡基多层介电元件,其特征在于,包括权利要求1所述的高储能密度的钛酸钡基介电陶瓷,以及分布在高储能特性钛酸钡基介电陶瓷表面的电极。
CN202410007365.0A 2024-01-03 2024-01-03 一种高储能密度的钛酸钡基多层介电材料及其制备方法 Pending CN118063207A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410007365.0A CN118063207A (zh) 2024-01-03 2024-01-03 一种高储能密度的钛酸钡基多层介电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410007365.0A CN118063207A (zh) 2024-01-03 2024-01-03 一种高储能密度的钛酸钡基多层介电材料及其制备方法

Publications (1)

Publication Number Publication Date
CN118063207A true CN118063207A (zh) 2024-05-24

Family

ID=91098211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410007365.0A Pending CN118063207A (zh) 2024-01-03 2024-01-03 一种高储能密度的钛酸钡基多层介电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN118063207A (zh)

Similar Documents

Publication Publication Date Title
CN1118444C (zh) 介电陶瓷组合物及叠层陶瓷电容器
KR102363231B1 (ko) 적층 세라믹 콘덴서, 세라믹 분말, 및 그들의 제조 방법
CN114334447B (zh) 层叠陶瓷电容器
CN101489952B (zh) 电介质陶瓷、及陶瓷电子部件、以及叠层陶瓷电容器
TWI409836B (zh) 適用於銅電極之cog介電組成物
EP0423738B1 (en) Ceramic multilayer chip capacitor and method for making
US6303529B1 (en) Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
CN102060521B (zh) 六方晶系钛酸钡粉末、其制造方法、电介质陶瓷组合物和电子部件
JP5347961B2 (ja) 半導体セラミック粉末、及び半導体セラミック、並びに積層型半導体セラミックコンデンサ
CN1181498C (zh) 介质陶瓷组合物与单片陶瓷电容器
EP3326177B1 (en) Multi-layer ceramic capacitor
EP3326182B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
WO2007139061A1 (ja) 半導体セラミック、積層型半導体セラミックコンデンサ、半導体セラミックの製造方法、及び積層型半導体セラミックコンデンサの製造方法
CN110828170B (zh) 多层陶瓷电容器
WO2016038022A1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP2001307940A (ja) 積層セラミックコンデンサとその製造方法
JP3134024B2 (ja) 積層型セラミックチップコンデンサ
JP5046432B2 (ja) 誘電体磁器および積層型電子部品
CN118063207A (zh) 一种高储能密度的钛酸钡基多层介电材料及其制备方法
JP2002134350A (ja) 積層セラミックコンデンサおよびその製造方法
CN115159984B (zh) 一种钐钽共掺的铌酸银基多层介电储能材料及其制备方法
CN1581388A (zh) 多层陶瓷电容器及其制备方法
CN115108826B (zh) 一种低电场驱动高储能密度和超快放电速率的弛豫铁电陶瓷材料及其制备方法
CN118307319A (zh) 一种高储能的无铅弛豫铁电厚膜陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination