CN118054156A - 一种锂电池隔膜涂层及其制备方法与应用 - Google Patents

一种锂电池隔膜涂层及其制备方法与应用 Download PDF

Info

Publication number
CN118054156A
CN118054156A CN202410196874.2A CN202410196874A CN118054156A CN 118054156 A CN118054156 A CN 118054156A CN 202410196874 A CN202410196874 A CN 202410196874A CN 118054156 A CN118054156 A CN 118054156A
Authority
CN
China
Prior art keywords
phosphorus
bimetallic
source
nitrogen
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410196874.2A
Other languages
English (en)
Inventor
周亮君
张帅
韦伟峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202410196874.2A priority Critical patent/CN118054156A/zh
Publication of CN118054156A publication Critical patent/CN118054156A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂电池隔膜涂层,涉及锂电池技术领域,所述涂层包括磷配位的双金属单原子催化剂材料、粘结剂和导电剂;其中,所述磷配位的双金属单原子催化剂材料的制备方法为:将碳源和氮源煅烧后得到氮掺杂的碳材料,然后将氮掺杂的碳材料、金属源和磷源采用多巴胺包覆的方法煅烧后得到磷配位的双金属单原子催化剂材料。本发明的双金属单原子材料经过磷掺杂配位之后,增强了金属位点对多硫化物的亲和性,能够更好的锚定多硫化物,抑制多硫化物穿梭,增强活性硫的利用率,同时多孔的氮磷双掺杂的碳材料有利于电解液的浸润,调控锂离子均匀分布/传输能力,抑制负极侧的枝晶问题,提升电池的倍率性能以及循环稳定性。

Description

一种锂电池隔膜涂层及其制备方法与应用
技术领域
本发明涉及锂电池技术领域,具体涉及一种锂电池隔膜涂层及其制备方法与应用。
背景技术
锂金属具有超高的理论比能量密度(3861mAh/g)和较低的氧化还原电位(-3.04Vvs标准氢电极)及较小的密度(0.534g/cm3),原子半径亦是碱金属族中半径最小的(145pm),是最具有应用前景的高能量密度电池负极材料。同时以硫作为正极材料可以匹配锂金属负极的高能量密度,使其理论比容量达到1675mAh/g,能量密度高达2600Wh/kg,是下一代锂电池最有希望的候选者。
但其商业化应用仍然受限于多硫化物(Li2Sn)较差的氧化还原反应动力学和严重的溶解穿梭、锂金属负极不可控枝晶生长等瓶颈问题,隔膜介于正负极之间,对隔膜的改性有望同时解决正负极存在的问题。因此,通过对隔膜的进一步修饰来研究和解决正极侧多硫化物的穿梭问题以及负极侧的锂枝晶问题提供了机会。
目前,通常将金属化合物与碳材料复合,利用物理或化学吸附作用来抑制正极侧多硫化物的穿梭效应。然而这种方法由于暴露的活性位点少,在高载量正极以及大倍率条件下仍然存在不能阻止多硫化物从硫正极溶解及扩散,也很难解决锂枝晶问题。
因此,提供一种活性位点多、在高载量大倍率条件下性能优异的锂电池隔膜涂层是本领域亟需解决的技术问题。
发明内容
本发明针对锂金属电池正极侧多硫化物穿梭以及负极侧锂枝晶的问题,提出了磷配位双金属单原子负载的氮磷双掺杂的碳材料的隔膜修饰技术,其所得产品在高载量大倍率条件下性能优异。
为了实现上述目的,本发明采用如下技术方案:
一种锂电池隔膜涂层,所述涂层包括磷配位的双金属单原子催化剂材料、粘结剂和导电剂;
其中,所述磷配位的双金属单原子催化剂材料的制备方法为:
将碳源和氮源煅烧后得到氮掺杂的碳材料,然后将氮掺杂的碳材料、金属源和磷源采用多巴胺包覆的方法煅烧后得到磷配位的双金属单原子催化剂材料。
本发明采用磷配位双金属单原子负载的氮磷双掺杂的碳材料作为隔膜修饰材料,利用磷配位双金属单原子材料的高原子利用率以及高催化活性、高效的多硫化物吸附/转化功能和多孔的氮磷双掺杂的碳材料调控锂离子均匀分布/传输能力,实现了锂金属电池在高载量大倍率条件下的稳定运行。
优选的,所述磷配位的双金属单原子催化剂材料、所述粘结剂和所述导电剂的质量比为6.5-7.5:1.5-2.5:0.8-1.2。
优选的,所述碳源和所述氮源煅烧后还包括采用盐酸浸泡、洗涤和干燥步骤;
其中,所述盐酸的浓度为0.5-1.5M,优选为1M。
优选的,所述碳源为柠檬酸钠、葡萄糖和蔗糖中的任意一种,所述氮源为三聚氰胺或双氰胺,所述金属源为Fe、Co和Ni中的任意一种,所述磷源为三苯基膦、次磷酸钠和磷酸钠中的任意一种。
优选的,所述碳源为柠檬酸钠,所述氮源为三聚氰胺,所述金属源为Fe、Co和Ni中的任意一种,所述磷源为三苯基膦。
优选的,所述金属源为铁源,铁源采用环戊二烯二羰基铁二聚体。
优选的,所述碳源和所述氮源的质量比为10:0.5-1.5,优选为10:1。
优选的,所述煅烧的条件为:600-900℃下1-4h,优选为800℃下2h。
优选的,所述氮掺杂的碳材料、所述金属源、所述磷源和盐酸多巴胺的质量比为2-4:0.5-1:6-10:3-5。
本发明中氮掺杂的碳材料为基体材料,是一种氮磷双掺杂连续的片状结构,通过采用一种有机金属盐作为金属来源,利用多巴胺进行包覆能在热解的过程中与基体材料上的氮和磷进行配位的同时也能形成金属键,也能利用包覆的物理局限效应提升材料上的双金属单原子的含量,相较于现有专利双金属单原子材料有形貌以及方法上的根本区别。
优选的,所述粘结剂为PVDF,所述导电剂为导电炭黑。
根据上述所述一种锂电池隔膜涂层的制备方法,包括以下步骤:
(1)按质量比称取磷配位的双金属单原子催化剂材料、粘结剂和导电剂,备用;
(2)将所述磷配位的双金属单原子催化剂材料、所述粘结剂和所述导电剂加入溶剂中混合均匀即可。
优选的,步骤(2)中所述磷配位的双金属单原子催化剂材料的浓度为0.10-0.15g/mL,所述溶剂为N-甲基吡咯烷酮。
如上述所述锂电池隔膜涂层在制备锂电池中的应用。
优选的,所述隔膜涂层厚度为5-20μm,优选为10μm。
优选的,隔膜的制备方法为:将涂层涂覆在隔膜表面,经烘箱干燥后,得到磷配位的双金属单原子材料改性的隔膜。
与现有技术相比,本发明具有如下有益效果:
本发明的双金属单原子材料经过磷掺杂配位之后,增强了金属位点对多硫化物的亲和性,能够更好的锚定多硫化物,抑制多硫化物穿梭,增强活性硫的利用率,同时多孔的氮磷双掺杂的碳材料有利于电解液的浸润,调控锂离子均匀分布/传输能力,抑制负极侧的枝晶问题,提升电池的倍率性能以及循环稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,本描述中的附图仅仅是本发明的实施例。
图1为本发明实施例1双金属单原子材料SEM图;
图2为本发明实施例1双金属单原子材料TEM图;
图3为本发明实施例1双金属单原子材料EDX能谱图;
图4为本发明实施例1双金属单原子材料HADDF图;
图5为本发明实施例1电池及普通隔膜电池在0.2C下循环100圈的电性能对比图;
图6为本发明实施例1和2电池在0.2C下循环100圈的电性能对比图;
图7为本发明实施例2和3电池在0.2C下循环100圈的电性能对比图;
图8为本发明实施例2和4电池在0.2C下循环100圈的电性能对比图;
图9为本发明实施例4和Celgard2400隔膜电池在1C下循环500圈的电性能对比图;
图10为本发明实施例2、4和Celgard2400隔膜制备的Li/Li对称电池的性能对比图。
具体实施方式
下面描述本发明的实施例,所述实施例的示例在附图中示出,参考附图描述的实施例是示例性的,旨在用于解释本发明,而不理解为对本发明的限制。
实施例1
本发明提供一种锂电池,制备方法具体包括以下步骤:
(1)隔膜涂层的制备:
将1g的三聚氰胺和10g的柠檬酸钠研磨混合均匀,800℃热解2h,得到的产品用1M的盐酸浸泡12h后,洗涤、在60℃干燥8h得到氮掺杂的碳材料;取100mg的上述材料分散在50mL的水中,加入25mg环戊二烯二羰基铁二聚体、150mg的盐酸多巴胺和160mg Tris碱(添加Tris碱使溶液的PH接近8)搅拌6h,洗涤干燥,然后800℃煅烧2h得到双金属Fe单原子材料,其形貌如图1所示,可以看出是一种连续的片状结构;此外,其TEM图像如图2所示,可以看出片的厚度大概在8nm左右,以及从其能谱图(图3)中可以看出Fe、N、C的均匀分布;从图4为HADDF图,可以看到Fe原子成对出现,呈现单分散状态;
按双金属Fe单原子材料、导电炭黑和粘结剂PVDF的质量比8:1:1称取相应质量样品,在行星式混料机中混合9min,加入500μL NMP,调配成一定粘度的浆料,将调配好的浆料涂布在Celgard2400隔膜上,在真空烘箱中80℃烘干后,用打孔器制成直径19mm的隔膜(厚度为35微米);
(2)锂电池的制备:将步骤(1)制备的隔膜与锂硫电解液及直径12mm硫/碳纳米管复合正极(硫/碳纳米管粉:导电炭黑:PVDF=8:1:1(质量比))组装成2032纽扣电池,充放电电压范围1.7-2.8V,测定其在0.2C下的充放电循环;
此外,将普通Celgard2400隔膜与锂硫电解液(1M的LiTFSI在1,3二氧戊环,乙二醇二甲醚按体积比1:1的电解液中加1%的LiNO3)及直径12mm硫/碳纳米管复合正极(硫/碳纳米管粉:导电炭黑:PVDF=8:1:1)组装成2032纽扣电池,充放电电压范围1.7-2.8V,测定隔膜不同涂覆比例的锂硫电池在0.2C下的充放电循环;
经检测,本实施例按双金属Fe单原子材料、导电炭黑和粘结剂PVDF的质量比8:1:1改性的隔膜及普通隔膜对应的锂硫电池循环曲线图如图5所示,按双金属Fe单原子材料、导电炭黑和粘结剂PVDF的质量比8:1:1改性的隔膜100圈电池容量保持率为70%,普通PP隔膜100圈电池容量保持率为56%。
实施例2
本实施例与实施例1的区别为将隔膜涂覆组成中片层双金属Fe单原子材料、导电炭黑和粘结剂PVDF的质量比改为7:2:1,其余操作与实施例1一致,将其组成的电池性能与实施例1进行对比,结果如图6所示,隔膜涂覆比为7:2:1的电池100圈电池容量保持率为80%,而隔膜涂覆比为8:1:1的电池100圈电池容量保持率为70%,因此,作为优选,片层状磷掺杂的双金属Fe单原子材料、导电炭黑和粘结剂PVDF的质量比为7:2:1的隔膜作为隔膜修饰的比例。
实施例3
本实施例与实施例2的区别为将环戊二烯二羰基铁二聚体分别替换为二羰基环戊二烯基钴和环戊二烯基羰基镍二聚体,其余操作与实施例2一致,将其组成的电池性能与实施例2性能进行对比,结果如图7所示,Co与Ni在0.2C的条件下也具有较好的循环保持率。
实施例4
本实施例与实施例2的区别为加入25mg环戊二烯二羰基铁二聚体、三苯基膦(磷源)450mg、150mg的盐酸多巴胺和160mg Tris碱(添加Tris碱使溶液的PH接近8)搅拌6h,其余操作与实施例2一致,将其组成的电池、实施例2的电池和普通隔膜的电池,在充放电电压范围1.7-2.8V下,测定其在0.2C以及1C下的充放电循环效果,结果如图8所示,经磷配位的双金属Fe单原子材料改性的隔膜在0.2C的条件下100圈电池容量保持率为84%,二者长循环性能图如图9所示,磷配位的双金属Fe单原子材料修饰的隔膜在1C循环500次后容量保持率为77%,而未经磷配位的双金属Fe单原子材料修饰的隔膜在1C循环500次后容量保持率为56%,普通隔膜在循环300后只有48%保持率;
同时,将实施例2、4和Celgard2400隔膜分别和锂硫电解液、正负极都为锂片组装成2032纽扣电池,测试电池在0.5mA/cm2,0.5mAh/cm2的条件下的电压时间曲线,其结果如图10所示,经检测,磷配位双金属Fe单原子材料相较于没有磷配位的双金属单原子材料和普通的PP隔膜具有较小的电压以及更长的循环性能。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种锂电池隔膜涂层,其特征在于,所述涂层包括磷配位的双金属单原子催化剂材料、粘结剂和导电剂;
其中,所述磷配位的双金属单原子催化剂材料的制备方法为:
将碳源和氮源煅烧后得到氮掺杂的碳材料,然后将氮掺杂的碳材料、金属源和磷源采用多巴胺包覆的方法煅烧后得到磷配位的双金属单原子催化剂材料。
2.根据权利要求1所述一种锂电池隔膜涂层,其特征在于,所述磷配位的双金属单原子催化剂材料、所述粘结剂和所述导电剂的质量比为6.5-7.5:1.5-2.5:0.8-1.2。
3.根据权利要求1所述一种锂电池隔膜涂层,其特征在于,所述碳源为柠檬酸钠、葡萄糖和蔗糖中的任意一种,所述氮源为三聚氰胺或双氰胺,所述金属源为Fe、Co和Ni中的任意一种,所述磷源为三苯基膦、次磷酸钠和磷酸钠中的任意一种。
4.根据权利要求1所述一种锂电池隔膜涂层,其特征在于,所述碳源和所述氮源的质量比为10:0.5-1.5。
5.根据权利要求1所述一种锂电池隔膜涂层,其特征在于,所述煅烧的条件为:600-900℃下1-4h。
6.根据权利要求1所述一种锂电池隔膜涂层,其特征在于,所述氮掺杂的碳材料、所述金属源、所述磷源和盐酸多巴胺的质量比为2-4:0.5-1:6-10:3-5。
7.根据权利要求1所述一种锂电池隔膜涂层,其特征在于,所述粘结剂为PVDF,所述导电剂为导电炭黑。
8.根据权利要求1-7任一项所述一种锂电池隔膜涂层的制备方法,其特征在于,包括以下步骤:
(1)按质量比称取磷配位的双金属单原子催化剂材料、粘结剂和导电剂,备用;
(2)将所述磷配位的双金属单原子催化剂材料、所述粘结剂和所述导电剂加入溶剂中混合均匀即可。
9.根据权利要求8所述一种锂电池隔膜涂层的制备方法,其特征在于,步骤(2)中所述磷配位的双金属单原子催化剂材料的浓度为0.10-0.15g/mL,所述溶剂为N-甲基吡咯烷酮。
10.如权利要求1-7任一项所述锂电池隔膜涂层在制备锂电池中的应用。
CN202410196874.2A 2024-02-22 2024-02-22 一种锂电池隔膜涂层及其制备方法与应用 Pending CN118054156A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410196874.2A CN118054156A (zh) 2024-02-22 2024-02-22 一种锂电池隔膜涂层及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410196874.2A CN118054156A (zh) 2024-02-22 2024-02-22 一种锂电池隔膜涂层及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN118054156A true CN118054156A (zh) 2024-05-17

Family

ID=91051536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410196874.2A Pending CN118054156A (zh) 2024-02-22 2024-02-22 一种锂电池隔膜涂层及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN118054156A (zh)

Similar Documents

Publication Publication Date Title
CN113942990B (zh) 磷酸锰铁锂前驱体、磷酸锰铁锂正极材料及其制备方法和电极材料、电极以及锂离子电池
Xu et al. Facile fabrication of a vanadium nitride/carbon fiber composite for half/full sodium-ion and potassium-ion batteries with long-term cycling performance
Huang et al. Enhanced polysulfide redox kinetics electro-catalyzed by cobalt phthalocyanine for advanced lithium–sulfur batteries
CN111362254B (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN107256956B (zh) 一种氮掺杂碳包覆氮化钒电极材料及其制备方法与应用
Wan et al. Synergistic enhancement of chemisorption and catalytic conversion in lithium-sulfur batteries via Co3Fe7/Co5. 47N separator mediator
CN111211273A (zh) 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
Yang et al. Nickel cobalt selenides on black phosphorene with fast electron transport for high-energy density sodium-ion half/full batteries
CN115224265A (zh) 一种改性钠离子电池正极材料及其制备方法和应用
He et al. Perovskite transition metal oxide of nanofibers as catalytic hosts for lithium–sulfur battery
US20190089008A1 (en) Aqueous lithium ion secondary battery
CN115064686B (zh) 一种磷化铜/磷/碳纳米管共掺杂硬碳复合材料的制备方法
CN112768840A (zh) 一种锂硫电池多功能隔膜及其制备方法
Ma et al. NiCo2O4@ PPy concurrently as cathode host material and interlayer for high-rate and long-cycle lithium sulfur batteries
CN116683017A (zh) 一种高能量密度的无钠负极钠电池
CN115241446A (zh) 一种钠离子电池正极材料、制备方法及电池
Liu et al. CoP@ C with chemisorption-catalysis effect toward lithium polysulfides as multifunctional interlayer for high-performance lithium-sulfur batteries
CN113943016A (zh) 二元过渡金属硫化物材料及其应用
CN115939361B (zh) 一种磷化铜掺杂硬碳复合材料及其制备方法
CN116435467A (zh) 一种自支撑正极及其制备方法和应用
CN115000426B (zh) 一种二维碳化钛负载的双组份高效锌空气电池催化剂及其制备方法和应用
CN115064790B (zh) 同时优化配位环境和孔结构的金属单原子催化剂、制备方法及其在锂硫电池上的应用
CN114420916B (zh) 一种锂硫电池正极材料及其制备方法和应用
Zhu et al. N doped carbon supported cobalt/tungsten nitride Mott− Schottky heterojunction as an efficient electrocatalyst to enhance adsorption and conversion of lithium polysulfides for high-performance lithium–sulfur batteries
CN116666623A (zh) 正极活性材料及其制备方法、正极极片及钠离子二次电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination