CN118043448A - 使用细胞表面标记物的垂体细胞和下丘脑细胞的分离方法 - Google Patents

使用细胞表面标记物的垂体细胞和下丘脑细胞的分离方法 Download PDF

Info

Publication number
CN118043448A
CN118043448A CN202280065798.0A CN202280065798A CN118043448A CN 118043448 A CN118043448 A CN 118043448A CN 202280065798 A CN202280065798 A CN 202280065798A CN 118043448 A CN118043448 A CN 118043448A
Authority
CN
China
Prior art keywords
cells
cell
pituitary
medium
hormone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280065798.0A
Other languages
English (en)
Inventor
小谷侑
河田美穗
长崎弘
须贺英隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University Corp Donghai National University
Fujita Health University
Original Assignee
National University Corp Donghai National University
Fujita Health University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corp Donghai National University, Fujita Health University filed Critical National University Corp Donghai National University
Publication of CN118043448A publication Critical patent/CN118043448A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/06Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/10Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0613Cells from endocrine organs
    • C12N5/0616Pituitary gland
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/58Adhesion molecules, e.g. ICAM, VCAM, CD18 (ligand), CD11 (ligand), CD49 (ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Endocrinology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Neurology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Neurosurgery (AREA)
  • Wood Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供分离垂体激素产生细胞和/或其前体细胞的方法,所述方法包括由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤。

Description

使用细胞表面标记物的垂体细胞和下丘脑细胞的分离方法
技术领域
本发明涉及在体外由多能干细胞分化诱导的垂体激素产生细胞及其前体细胞以及下丘脑细胞的分离/纯化方法。
背景技术
垂体是与间脑下部相接存在的小的内分泌器官,作为各种激素的调控中枢起到很大的作用。例如,产生以促进维持生命所必需的肾上腺皮质激素的产生的促肾上腺皮质激素(ACTH)、促进儿童生长的生长激素等为代表的各种垂体激素。因此,垂体功能不全会引起全身性的严重疾病。
近年来,开发了由人ES/iPS细胞分化诱导包含功能性垂体激素产生细胞的腺垂体的方法,其在垂体再生医疗中的应用受到期待(专利文献1、非专利文献1和2)。在这些方法中,通过三维培养在1个细胞块中形成下丘脑-垂体的复合组织。在该复合组织中,腺垂体及其前体组织主要位于细胞块的表层,将其剥离并移植到垂体摘除小鼠的肾筋膜下,从而确认到活动性、存活、体重减少的改善等治疗效果(专利文献1、非专利文献1)。然而,在上述方法中,剥离的腺垂体及其前体组织的识别依赖于实验者基于形态作出的主观判断。
现有技术文献
专利文献
专利文献1:国际公开第2016/013669号;
非专利文献
非专利文献1:Nature Communications,7:10351,2016;
非专利文献2:Cell Reports,30,18-24,January 7,2020。
发明内容
发明所要解决的课题
以前,本发明人鉴定了EpCAM作为具有客观可靠性的用于进行垂体激素产生细胞及其前体细胞的分离的细胞表面抗原。发现了可通过以EpCAM为指标的细胞分选,由包含腺垂体和/或其前体组织的细胞聚集块有效地分离/纯化垂体激素产生细胞及其前体细胞。另外,还发现了:分离/纯化的该细胞可再聚集并维持培养,而且即使经过该维持培养,通过生理性垂体激素分泌刺激也会显示优异的垂体激素的分泌能力,在功能上发挥与生物体的垂体激素产生细胞同等的功能。因此,本发明的课题在于:鉴定可由上述细胞聚集块分离、纯化垂体激素产生细胞和/或下丘脑细胞的除EpCAM以外的细胞表面抗原,并提供以这种细胞表面抗原为指标的目标细胞的分离方法。
用于解决课题的手段
本发明人在对构成下丘脑-垂体的复合组织的细胞群进行表面抗原的表达分析时,成功地鉴定了CD49c(整联蛋白α3)作为对垂体细胞和下丘脑细胞的特异性高的表面抗原。深入研究的结果,发现了:通过以作为该鉴定的表面抗原的CD49c为指标的分选,可由来源于人多能干细胞的细胞聚集块同时分离垂体细胞和下丘脑细胞;通过使分离的细胞再聚集,可制作具有相当于生物体的下丘脑-垂体系的激素分泌能力的培养组织。还进一步发现:通过组合了垂体表面抗原(EpCAM)和CD49c的分选,可分别分离垂体细胞和下丘脑细胞,从而完成了本发明。
[1]分离垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的方法,该方法包括由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤。
[2]分离垂体激素产生细胞和/或其前体细胞的方法,该方法包括由包含腺垂体和/或其前体组织的细胞聚集块分离表达CD49c和EpCAM的细胞的步骤。
[3][1]或[2]所述的方法,其中分离表达CD49c的细胞或表达CD49c和EpCAM的细胞的步骤包括以下步骤:
(1)将该细胞聚集块分散成细胞群的第一步骤;
(2)在用层粘连蛋白或其片段包被的培养器上培养第一步骤中得到的细胞群的第二步骤;以及
(3)由第二步骤中得到的细胞群分离表达CD49c的细胞或表达CD49c和EpCAM的细胞的第三步骤。
[4][1]~[3]中任一项所述的方法,该方法包括分离选自CD90、CD29、CD44、CD58和CD166的至少1种细胞表面抗原为阴性的细胞的步骤。
[5][1]~[4]中任一项所述的方法,其中细胞聚集块是通过分化诱导多能干细胞而得到的细胞聚集块。
[6][1]~[5]中任一项所述的方法,其中上述前体组织为垂体基板和/或拉特克囊。
[7]垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的制造方法,该方法包括由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤。
[8]垂体激素产生细胞和/或其前体细胞的制造方法,该方法包括由包含腺垂体和/或其前体组织的细胞聚集块分离表达CD49c和EpCAM的细胞的步骤。
[9]制造包含垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的细胞聚集块或细胞片层的方法,该方法包括以下步骤:
(A)由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤;以及
(B)使上述(A)中得到的群体再聚集的步骤。
[10]制造包含垂体激素产生细胞和/或其前体细胞的细胞聚集块或细胞片层的方法,该方法包括以下步骤:
(a)由包含腺垂体和/或其前体组织的细胞聚集块分离表达CD49c和EpCAM的细胞的步骤;以及
(b)使上述(a)中得到的群体再聚集的步骤。
[11][7]~[10]中任一项所述的方法,其中分离表达CD49c的细胞或表达CD49c和EpCAM的细胞的步骤包括以下步骤,
(1)将该细胞聚集块分散成细胞群的第一步骤;
(2)在用层粘连蛋白或其片段包被的培养器上培养第一步骤中得到的细胞群的第二步骤;以及
(3)由第二步骤中得到的细胞群分离表达CD49c的细胞或表达CD49c和EpCAM的细胞的第三步骤。
[12][7]~[11]中任一项所述的方法,该方法进一步包括分离选自CD90、CD29、CD44、CD58和CD166的至少1种细胞表面抗原为阴性的细胞的步骤。
[13][7]~[12]中任一项所述的方法,其中上述垂体激素产生细胞为选自生长激素(GH)产生细胞、催乳素(PRL)产生细胞、促肾上腺皮质激素(ACTH)产生细胞、促甲状腺激素(TSH)产生细胞、促卵泡激素(FSH)产生细胞、黄体化激素(LH)产生细胞的至少1种。
[14]细胞聚集块或细胞片层,其是通过[9]~[13]中任一项所述的方法制造的。
[15]移植疗法制剂,其包含通过[9]~[13]中任一项所述的方法制造的细胞聚集块或细胞片层。
[16][15]所述的移植疗法制剂,其用于治疗基于腺垂体障碍的疾病和/或腺垂体的损伤状态。
[17][16]所述的移植疗法制剂,其中上述基于腺垂体障碍的疾病选自全垂体功能减退症、垂体性侏儒症、肾上腺皮质功能减退症、部分性垂体功能减退症和垂体前叶激素单独缺损症。
[18]基于腺垂体障碍的疾病或腺垂体的损伤状态的治疗药,其是含有通过[9]~[13]中任一项所述的方法制造的细胞聚集块或细胞片层而成的。
[19]基于腺垂体障碍的疾病或腺垂体的损伤状态的治疗方法,该方法包括将通过[9]~[13]中任一项所述的方法制造的细胞聚集块或细胞片层的有效量移植到需要移植的对象。
[20]用于在基于腺垂体障碍的疾病或腺垂体的损伤状态的治疗中使用的通过[9]~[13]中任一项所述的方法制造的细胞聚集块或细胞片层。
[21]药物组合物,其含有通过[9]~[13]中任一项所述的方法制造的细胞聚集块或细胞片层作为有效成分。
[22]通过[9]~[13]中任一项所述的方法制造的细胞聚集块或细胞片层在制造基于腺垂体障碍的疾病或腺垂体的损伤状态的治疗药中的应用。
发明效果
根据本发明,通过利用CD49c,可由来源于多能干细胞的细胞聚集块有效地分离、纯化包含功能性垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的细胞群。另外,分离、纯化的细胞群通过生理性垂体激素分泌刺激显示出优异的垂体激素分泌能力,并可与下丘脑细胞协调发挥功能,因此可使用该细胞群进行与垂体相关的疾病的治疗等。
附图说明
[图1]显示来源于人ES细胞(hESC)的细胞块(第152天)的免疫染色结果。确认到EpCAM在垂体区和囊泡化区表达。
[图2]显示来源于hESC的细胞块(第152天)的免疫染色结果。确认到CD49c在垂体区和一部分非垂体区(认为主要是下丘脑神经组织)表达。
[图3]显示来源于hESC的细胞块(第152天)的未分化区中的免疫染色结果。确认到EpCAM在未分化细胞区表达,而CD49c没有表达。
[图4]显示来源于hESC的细胞块(第152天)的未分化区的连续切片中的免疫染色结果。用虚线包围的区域因表达下丘脑标记物(Rx::Venus)和/或神经细胞标记物(Tuj1,DCX),而被认为是下丘脑细胞区。确认到在该下丘脑细胞区EpCAM没有表达,而CD49c在宽广范围内表达。
[图5]A:显示采用流式细胞术对Rx::Venus+下丘脑细胞中的EpCAM和CD49c的表达进行分析的结果。B:显示根据图A的分析结果以n=3对Rx::Venus+下丘脑细胞中的EpCAM和CD49c的阳性率进行定量化的结果。确认到CD49c在Rx::Venus+细胞中表达,而EpCAM几乎没有表达。
[图6]显示来源于hESC的细胞块(第152天)的免疫染色结果。确认到CD29(整联蛋白β1)在除囊泡化区以外的整个组织中表达。与图2作对比,认为与CD49c(整联蛋白α3)形成了二聚体(整联蛋白α3/β1)。
[图7]显示使用来源于hESC的细胞块(第161天),利用作为细胞外基质的层粘连蛋白511的重组活性片段(产品名:iMatrix-511)的细胞粘附性进行细胞分离的方法(也称为“iMatrix-511粘附处理”)。A:显示通过将经细胞聚集块的酶处理而分散的细胞在包被有iMatrix-511的培养器中培养2~3小时,分为存在于悬浮细胞级分中的细胞和存在于粘附细胞级分中的细胞。B:显示存在于悬浮细胞级分中的细胞与存在于粘附细胞级分中的细胞的存在比例。C:显示存在于悬浮细胞级分中的细胞与存在于粘附细胞级分中的细胞的免疫染色结果。右侧的图显示悬浮细胞级分和粘附细胞级分中的CD49c阳性细胞和Rx::Venus阳性细胞的比例。确认到CD49c阳性细胞和Rx::Venus阳性细胞作为iMatrix-511粘附细胞级分而被回收。D:显示悬浮细胞级分和粘附细胞级分中的细胞的存活率(viability)。确认到:与悬浮细胞级分相比,iMatrix-511粘附细胞级分的存活率高。通过iMatrix-511粘附处理,可简便地去除死细胞,可仅将存活率高的细胞供于以CD49c为指标的分选。
[图8]显示通过以再聚集能力为指标的iMatrix-511粘附处理提高细胞存活率。A:将通过无饲养分化法诱导的来源于hESC的细胞块(第448天)分散后,利用下述方法A或方法B的任一种方法进行处理,使每15,000个进行再聚集,3天后观察。方法A:使用MACS死细胞去除试剂盒回收活细胞,方法B:回收iMatrix-511粘附细胞级分,虚线显示聚集块的轮廓,聚集块周围的细胞大部分是死细胞。B:聚集块面积的测定结果(n=6-8)。显示使用Welch t检验与平均值作比较时的p值。与以往使用的分选预处理法(方法A)相比,在iMatrix-511粘附细胞级分(方法B)中,死细胞少,确认到形成了更大的聚集块。
[图9]显示iMatrix-511粘附处理后的再聚集块(第7天)中的免疫染色结果。确认到了在再聚集块中表达垂体标记物(ACTH、Lhx3)和下丘脑标记物(Rx::Venus),以及Rx::Venus阳性细胞的多数共表达神经细胞标记物(Tuj1)。根据该结果证实了垂体细胞和下丘脑细胞作为iMatrix-511粘附级分被回收。
[图10]显示iMatrix-511粘附处理后的再聚集块(第7天)中的免疫染色结果。确认到在再聚集块中,细胞块的外侧被增殖性未分化细胞(Lin28a+/Oct4+/SSEA5+/Ki67+)包围。Lin28a和AP2α是囊泡形成细胞(和表面外胚层)的标记物,Lin28a阳性细胞均为Oct4阳性且SSEA5阳性的未分化细胞,确认到不存在AP2a阳性细胞。根据上述结果证实未分化细胞作为iMatrix-511粘附细胞级分被回收,而囊泡形成细胞未被回收。
[图11]显示iMatrix-511粘附处理后的再聚集块(第7天)中的免疫染色结果。确认到在Lin28a阳性区(未分化细胞)没有表达CD49c,而在Lin28a阴性区(包含垂体细胞、下丘脑细胞)表达CD49c。根据该结果,认为通过由iMatrix-511粘附细胞级分分离CD49c阳性细胞,可纯化垂体细胞和下丘脑细胞。
[图12]显示对iMatrix-511粘附处理后的再聚集块在第7天(第7日)和第28天(第28日)进行大小比较。如图10所示,细胞块的外侧被增殖性未分化细胞(Lin28a+/Oct4+/SSEA5+/Ki67+)包围,由此认为通过未分化细胞的增殖,再聚集块变得肥大。
[图13]显示通过磁性细胞分离法(MACS)分离CD49c阳性细胞和CD49c阴性细胞后的ACTH分泌能力。作为试验方法,使用从由hESC分化的样品(也称为“hESC样品”)MACS纯化后再聚集并培养8天而得的细胞块。将5个细胞块转移到1.5ml微型管中,在250μl HBSS(+)(Wako,#084-08965)中于37℃下保温10分钟后,回收HBSS。然后,在含有1μg/ml CRH(Peptide Institute,#4136-s)的250μl HBSS中于37℃下保温10分钟后,回收HBSS。通过临床检查中使用的ECLIA法测定所回收的HBSS中的ACTH浓度。A:显示使通过MACS分离的CD49c阳性细胞和CD49c阴性细胞再聚集的第7天的图像。B:显示CRH刺激前后的ACTH分泌量的测定结果。确认到在CD49c阳性细胞中,ACTH的基础分泌高,与作为生理性分泌刺激因子的CRH反应,ACTH分泌增加,另一方面,在CD49c阴性细胞中,ACTH的基础分泌低,也不与CRH反应。由此证实了ACTH细胞被分离为CD49c阳性细胞。
[图14]显示通过荧光激活细胞分选(FACS)确定CD49c阳性细胞和CD49c阴性细胞的荧光强度范围,分离CD49c阳性细胞和CD49c阴性细胞,在第8天(第8日)和第36天(第36日)比较再聚集块的大小的结果。A:显示实施了FACS的例子。由于细胞本身的荧光,仅以CD49c的荧光染色,不易明确CD49c阳性细胞与CD49c阴性细胞的边界。因此,通过将CD49c和作为未分化细胞的标记物的SSEA5同时进行荧光染色,成为用于确定CD49c阴性细胞的荧光强度范围的指标。高度表达SSEA5的细胞群(虚线区)是未分化细胞。在以后的实验中,使用以不会混入未分化细胞的方式分选CD49c阳性细胞而得到的细胞群。B:显示所分离的CD49c阳性细胞在第8天(第8日)的再聚集块。C:显示再聚集块的大小(面积)的定量化结果。在CD49c阳性细胞中确认到,通过去除以未分化细胞为代表的增殖性细胞,细胞块的肥大化得到显著抑制。需要说明的是,知道在第36天(第36日)CD49c阳性细胞中存在一部分面积变化大的细胞团。认为这些是增殖性细胞残留的细胞块,因此可通过以面积或形态为基准去除这些细胞块,来纯化治疗用细胞。
[图15]显示通过FACS分离CD49c阳性细胞并使细胞再聚集后的ACTH分泌能力。A:显示测定在CRH刺激前后每1个细胞块的ACTH分泌量的结果。确认到与作为生理性分泌刺激因子的CRH反应,ACTH分泌增加。作为试验方法,使用由hESC样品FACS纯化后再聚集并培养了12天的细胞块。将每1个细胞块转移到1.5ml微型管中,在250μl标准葡萄糖培养基(无葡萄糖的DMEM+5.56mM D-葡萄糖+4.44mM D-甘露醇)中于37℃下保温30分钟后,回收培养基。然后,在250μl含有1μg/ml CRH(Peptide Institute,#4136-s)的标准葡萄糖培养基中于37℃下保温30分钟后,回收培养基。通过临床检查中使用的ECLIA法测定所回收的培养基中的ACTH浓度。B:显示在作为生理性分泌抑制因子的皮质醇(氢化可的松)处理前后每1个细胞块的ACTH分泌量的测定结果。确认到通过皮质醇(氢化可的松)处理,ACTH分泌减少。证实了在通过FACS的分选后的CD49c阳性细胞块中,ACTH细胞维持生理性分泌功能。作为试验方法,使用由hESC样品进行FACS纯化后再聚集并培养了13天的细胞块。分泌测定前在含有皮质醇(氢化可的松,20μg/ml)或作为对照的等量溶剂(0.1%DMSO)的维持培养基(gfCDM+20% KSR+2μM SAG)中进行3小时的预处理。将每1个预处理后的细胞块转移到1.5ml微型管中,在250μl标准葡萄糖培养基(无葡萄糖的DMEM+5.56mM D-葡萄糖+4.44mM D-甘露醇)中于37℃下保温30分钟后,回收培养基。在上述标准葡萄糖培养基中,也继续添加皮质醇或DMSO。通过临床检查中使用的ECLIA法测定所回收的培养基中的ACTH浓度。
[图16]作为试验方法,使用由hESC样品进行FACS纯化后再聚集并培养了13-15天的细胞块。分泌测定前在含有安他拉明(Antalarmin,10μM)或作为对照的等量溶剂(0.1%DMSO)的维持培养基(gfCDM+20% KSR+2μM SAG)中进行3小时的预处理。将每1个预处理后的细胞块转移到1.5ml微型管中,在250μl标准葡萄糖培养基(无葡萄糖的DMEM+5.56mM D-葡萄糖+4.44mM D-甘露醇)中于37℃下保温30分钟后,回收培养基。然后,在250μl低葡萄糖培养基(无葡萄糖的DMEM+0.56mM D-葡萄糖+9.44mM D-甘露醇)中于37℃下保温30分钟后,回收培养基。在上述的标准葡萄糖培养基和低葡萄糖培养基中,也继续添加安他拉明或DMSO。显示通过临床检查中使用的ECLIA法测定所回收的培养基中的ACTH浓度的结果。与标准葡萄糖条件(100mg/dL)相比,确认到在低葡萄糖条件(10mg/dL)下ACTH分泌量增加。由此证实了根据生物体进行调节。另外,还确认到通过安他拉明(CRH受体抑制剂)处理,在标准葡萄糖和低葡萄糖这两种条件下ACTH分泌量均下降。认为在1个细胞块中,经由来源于下丘脑细胞的CRH调节来自垂体细胞的ACTH分泌。因此,暗示了在CD49c阳性细胞的再聚集块中下丘脑细胞和垂体细胞的功能性结合被重构的可能性。
[图17]显示使用FACS成为CD49c阳性细胞/EpCAM阳性细胞和CD49c阳性细胞/EpCAM阴性细胞的荧光强度范围。根据本研究结果和本发明人以前的研究结果,推测通过分选CD49c阳性细胞/EpCAM阳性细胞可分离垂体细胞,通过分选CD49c阳性细胞/EpCAM阴性细胞可分离下丘脑细胞。
[图18]显示再聚集块中的Rx::Venus的表达模式。确认到Rx::Venus阳性细胞(=下丘脑细胞)浓缩成CD49c阳性/EpCAM阴性-级分。
[图19]显示FACS后的再聚集块的ACTH分泌能力。作为试验方法,使用由hESC样品进行FACS纯化后再聚集并培养了8天以上的细胞块。将每1个细胞块在250μl维持培养基(gfCDM+20% KSR+2μM SAG)中于37℃下培养24小时后,回收培养基。通过临床检查中使用的ECLIA法测定所回收的培养基中的ACTH浓度。确认到ACTH细胞浓缩成CD49c阳性细胞/EpCAM阳性细胞级分。
[图20]显示由人iPS细胞(hiPSC)分化的样品(也称为“hiPSC样品”)中的表面标记物表达模式。迄今为止的实验均在由hESC分化的样品(也称为“hESC样品”。)中进行,但通过与图14等进行比较,确认到在hiPSC样品中也是同样的表面标记物的表达模式。
[图21]显示基于hiPSC样品的CRH刺激前后的每1个细胞块的ACTH分泌量的测定结果。作为试验方法,使用由hiPSC样品进行FACS纯化后再聚集并培养了21天的细胞块。将每1个细胞块转移到1.5ml微型管中,在250μl标准葡萄糖培养基(无葡萄糖的DMEM+5.56mM D-葡萄糖+4.44mM D-甘露醇)中于37℃下保温30分钟后,回收培养基。然后,在250μl含有1μg/ml CRH(Peptide Institute,#4136-s)的标准葡萄糖培养基中于37℃下保温30分钟后,回收培养基。通过临床检查中使用的ECLIA法测定所回收的培养基中的ACTH浓度。确认到在CD49c阳性细胞中,ACTH的基础分泌高,与作为生理性分泌刺激因子的CRH反应,ACTH分泌增加,另一方面,在CD49c阴性细胞中,ACTH的基础分泌低,也不与CRH反应。由此证实了在hiPSC样品中也与来源于hESC的细胞同样,ACTH细胞被分离成CD49c阳性细胞。
[图22]显示使用了剥离组织的间充质干细胞样增殖性细胞的表面标记物检索结果。该增殖性细胞从培养中的细胞聚集块中以剥离组织的形式出现。回收来源于hiPSC样品的剥离组织,经10×TrypLE select处理、分散(几乎完全成为单细胞),对干细胞系谱的表面标记物进行荧光染色,使用流式细胞仪定量阳性率。在所研究的细胞表面标记物中,在剥离组织中确认到图示的6种标记物的表达。已知这些在间充质干细胞(MSC)中表达,特别是CD90是在MSC中高度表达的主要标记物之一。由该结果确认到:,剥离组织中的增殖性细胞中,表达与间充质干细胞共同的表面抗原。特别是确认到CD29、CD44、CD58、CD90、CD166在90%以上的细胞中表达。
[图23]显示hiPSC样品的再聚集块中的免疫染色结果。确认到在图22所示的表面抗原中,CD90、CD44在间充质干细胞样增殖性细胞(Oct4阳性细胞)中特异性地表达。由该结果证实了,作为用于去除该增殖性细胞的阴性标记物,优选CD90、CD44。
具体实施方式
本发明提供由细胞聚集块(以下有时也称为“细胞分离前的细胞聚集块”)分离垂体激素产生细胞和/或其前体细胞以及任意地进一步分离下丘脑细胞的方法(以下有时称为“本发明的分离方法”),所述细胞聚集块包含腺垂体和/或其前体组织以及任意地进一步包含下丘脑神经上皮组织。本发明的分离方法的特征在于包括以CD49c和/或EpCAM的表达为指标,由上述细胞聚集块分离细胞的步骤。本发明的分离方法中使用的细胞聚集块典型地是可通过培养多能干细胞的聚集块来获得。
(1)多能干细胞
“多能干细胞”是指兼具可分化成构成生物体的所有细胞的能力(分化多能性)和经过细胞分裂产生具有与自己相同的分化能力的子细胞的能力(自我复制能力)的细胞。
分化多能性可通过将评价对象的细胞移植至裸鼠,试验是否形成包含三胚层(外胚层、中胚层、内胚层)的各自的细胞的畸胎瘤来评价。
作为多能干细胞,可列举:胚胎干细胞(ES细胞)、胚胎生殖细胞(EG细胞)、人工多能干细胞(iPS细胞)、胚胎肿瘤细胞(EC细胞)等,只要是兼具分化多能性和自我复制能力的细胞即可,并不限定于此。在本发明中,ES细胞或iPS细胞(更优选人iPS细胞)适合使用。在上述多能干细胞为ES细胞或来源于人胚胎的任意细胞的情况下,该细胞可以是破坏胚胎而制作的细胞,也可以是不破坏胚胎而制作的细胞,优选为不破坏胚胎而制作的细胞。本发明中使用的人ES细胞是由受精14天以内的人胚胎建立的细胞。
ES细胞例如可通过培养着床以前的初期胚胎、构成该初期胚胎的内部细胞块、单一卵裂球等来建立(Manipulating the Mouse Embryo A Laboratory Manual,第二版,Cold Spring Harbor Laboratory Press(1994);Thomson,J.A.等人,Science,282,1145-1147(1998))。作为初期胚胎,可使用通过将体细胞的核进行核移植而制作的初期胚胎(Wilmut等人.(Nature,385,810(1997))、Cibelli等人.(Science,280,1256(1998))、入谷明等人(蛋白核酸酶,44,892(1999))、Baguisi等人.(Nature Biotechnology,17,456(1999))、Wakayama等人.(Nature,394,369(1998);Nature Genetics,22,127(1999);Proc.Natl.Acad.Sci.USA,96,14984(1999))、Rideout III等人.(Nature Genetics,24,109(2000)、Tachibana等人.(Human Embryonic Stem Cells Derived by Somatic CellNuclear Transfer,Cell(2013)in press)。作为初期胚胎,可使用单性发育胚胎。Kim等人.(Science,315,482-486(2007))、Nakajima等人.(Stem Cells,25,983-985(2007))、Kim等人.(Cell Stem Cell,1,346-352(2007))、Revazova等人.(Cloning Stem Cells,9,432-449(2007))、Revazova等人.(Cloning Stem Cells,10,11-24(2008))。
通过ES细胞与体细胞的细胞融合得到的融合ES细胞也包括在本发明的方法所使用的ES细胞中。
ES细胞可从规定的机关获取,另外,还可购入市售品。例如,作为人ES细胞的KhES-1、KhES-2和KhES-3可从京都大学再生医科学研究所获取。
EG细胞可通过在LIF、bFGF、SCF的存在下培养原始生殖细胞等来建立(Matsui等人,Cell,70,841-847(1992)、Shamblott等人,Proc.Natl.Acad.Sci.USA,95(23),13726-13731(1998)、Turnpenny等人,Stem Cells,21(5),598-609,(2003))。
iPS细胞是指通过使核初始化因子与体细胞(例如成纤维细胞、皮肤细胞、淋巴细胞等)接触而人为地获得了分化多能性和自我复制能力的细胞。iPS细胞最初是通过向体细胞(例如成纤维细胞、皮肤细胞等)中引入由Oct3/4、Sox2、Klf4和c-Myc构成的核初始化因子的方法发现的(Cell,126:第663-676页,2006)。之后,由多名研究者推进了对重编程因子的组合或因子的引入法各种改良,报道了各种iPS细胞的制造方法。
核初始化因子只要是可由成纤维细胞等体细胞诱导具有分化多能性和自我复制能力的细胞的物质(组)即可,可由蛋白性因子或编码其的核酸(包括插入至载体的形态)或者小分子化合物等任何物质构成。在核初始化因子为蛋白性因子或编码其的核酸的情况下,优选示例以下的组合(以下仅记载蛋白性因子的名称)。
(1)Oct3/4、Klf4、Sox2、c-Myc(这里,Sox2可用Sox1、Sox3、Sox15、Sox17或Sox18取代。另外,Klf4可用Klf1、Klf2或Klf5取代。而且,c-Myc可用T58A(活性型变体)、N-Myc、L-Myc取代);
(2)Oct3/4、Klf4、Sox2;
(3)Oct3/4、Klf4、c-Myc;
(4)Oct3/4、Sox2、Nanog、Lin28;
(5)Oct3/4、Klf4、c-Myc、Sox2、Nanog、Lin28;
(6)Oct3/4、Klf4、Sox2、bFGF;
(7)Oct3/4、Klf4、Sox2、SCF;
(8)Oct3/4、Klf4、c-Myc、Sox2、bFGF;
(9)Oct3/4、Klf4、c-Myc、Sox2、SCF。
这些组合之中,在考虑将所得的iPS细胞用于治疗用途的情况下,优选(1)的4个因子的组合、(2)的3个因子的组合以及(5)的6个因子。其中,更优选(1)的4个因子的组合以及(2)的3个因子的组合。另一方面,在不考虑将iPS细胞用于治疗用途的情况(例如用作创新药筛选等研究工具的情况等)下,优选Oct3/4、Klf4、Sox2和c-Myc这4个因子或者在其中添加了Lin28或Nanog的5个因子。
在自体移植用途中,适合使用iPS细胞。
利用已知的基因工程学方法修饰染色体上的基因的多能干细胞也可在本发明中使用。多能干细胞也可以是通过已知的方法向编码分化标记物的基因中框内敲入标记基因(例如GFP等荧光蛋白),使得能够以标记基因的表达为指标识别到达对应的分化阶段的细胞。
作为多能干细胞,例如可使用恒温动物、优选哺乳动物的多能干细胞。作为哺乳动物,例如可列举小鼠、大鼠、仓鼠、豚鼠等啮齿类或兔等实验动物;猪、牛、山羊、马、绵羊等家畜;狗、猫等宠物;人、猴、猩猩、黑猩猩等灵长类。多能干细胞优选为啮齿类(小鼠、大鼠等)或灵长类(人等)的多能干细胞,最优选为人多能干细胞。
多能干细胞可通过自身已知的方法进行维持培养。例如,从临床应用的观点来看,多能干细胞优选通过使用了KnockoutTM血清替代品(KSR)等血清替代品的无血清培养或无饲养细胞培养来维持。
本发明中使用的多能干细胞优选被分离。“分离”意指,进行去除除了作为目标的细胞或成分以外的因子的操作,脱离天然存在的状态。“所分离的人多能干细胞”的纯度(人多能干细胞数在总细胞数中所占的百分比)通常为70%以上、优选为80%以上、更优选为90%以上、进一步优选为99%以上、最优选为100%。
(2)多能干细胞的聚集块的形成
对调制多能干细胞的聚集块的方法没有特别限定,可将所分散的多能干细胞以相对于培养器为非粘附性的条件进行培养(即悬浮培养),也可在粘附性的条件下培养(即粘附培养)。
在一个优选方案中,多能干细胞的聚集块可通过将所分散的多能干细胞在相对于培养器为非粘附性的条件下培养(即悬浮培养),使多个多能干细胞集合形成聚集块而获得。
作为用于形成该聚集块的培养器,没有特别限定,例如可列举烧瓶、组织培养用烧瓶、皿、培养皿、组织培养用皿、多重皿、微型板、微孔板、微孔、多重板、多孔板、腔室载玻片、浅皿、管、托盘、培养袋、转瓶。为了可在非粘附性的条件下进行培养,培养器优选为细胞非粘附性。作为细胞非粘附性的培养器,可使用对培养器的表面进行人工处理以使其呈细胞非粘附性的培养器,或未进行出于提高与细胞的粘附性的目的的人工处理(例如用细胞外基质等进行的包被处理)的培养器等。
在形成聚集块时使用的培养基可以是将用于培养哺乳动物细胞的培养基作为基础培养基来调制的。作为基础培养基,例如只要是BME培养基、BGJb培养基、CMRL 1066培养基、Glasgow MEM培养基、改良的MEM Zinc Option培养基、IMDM培养基、Medium 199培养基、Eagle MEM培养基、αMEM培养基、DMEM培养基、Ham培养基、Ham’s F-12培养基、RPMI1640培养基、Fischer’s培养基、Neurobasal培养基和它们的混合培养基(例如:DMEM/F-12培养基(DMEM培养基:Ham’s F-12培养基=1:1的混合培养基)等)等可用于培养哺乳动物细胞的培养基即可,没有特别限定。在一个方案中,使用IMDM培养基和Ham’s F-12培养基的混合培养基。混合比以容量比计例如为IMDM:Ham’s F-12=0.8~1.2:1.2~0.8。
用于培养的培养基可以是含血清培养基或无血清培养基。无血清培养基意指不含未调制或未纯化的血清的培养基,混入有已纯化的来源于血液的成分或来源于动物组织的成分(例如生长因子)的培养基相当于无血清培养基。从避免混入化学上未确定的成分的观点来看,在本发明中适合使用无血清培养基。
在形成聚集块时使用的培养基可含有血清替代品。血清替代品例如可以是适当含有白蛋白、转铁蛋白、脂肪酸、胶原蛋白前体、微量元素、2-巯基乙醇或3’-硫代甘油或者它们的等同物等的物质。这种血清替代品例如可通过WO98/30679记载的方法调制。另外,为了更简便地实施本发明的方法,血清替代品可利用市售品。作为这种市售的血清替代品,例如可列举:KSR(敲除血清替代品)(Invitrogen公司制造)、化学确定的浓缩脂质(Gibco公司制造)、Glutamax(Gibco公司制造)。
用于形成聚集块的培养基可在不会对由多能干细胞向垂体或其部分组织或其前体组织的分化诱导产生不良影响的范围内包含其他添加剂。作为添加剂,例如可列举胰岛素、铁源(例如转铁蛋白等)、矿物质(例如硒酸钠等)、糖类(例如葡萄糖等)、有机酸(例如丙酮酸、乳酸等)、血清蛋白(例如白蛋白等)、氨基酸(例如L-谷氨酰胺等)、还原剂(例如2-巯基乙醇等)、维生素类(例如抗坏血酸、d-生物素等)、抗生素(例如链霉素、青霉素、庆大霉素等)、缓冲剂(例如HEPES等)等,但并不限定于这些。
另外,用于形成聚集块的培养基可以是后述的第1培养步骤中使用的培养基。
在形成多能干细胞的聚集块时,首先,由传代培养回收多能干细胞,将其分散,直至为单一细胞或与其接近的状态。多能干细胞的分散使用适当的细胞解离液来进行。作为细胞解离液,例如可将EDTA、胰蛋白酶、胶原蛋白酶IV、金属蛋白酶等蛋白分解酶等单独或适当组合使用。其中优选细胞毒性少的细胞解离液,作为这样的细胞解离液,例如可获取分散酶(Eidia)、TrypLE(Invitrogen)或Accutase(MILLIPORE)等市售品。分散的多能干细胞悬浮于上述培养基中。
为了抑制通过分散而诱导的多能干细胞(特别是人多能干细胞)的细胞死亡,优选从开始培养时起添加Rho相关卷曲螺旋激酶(ROCK)抑制剂(日本特开2008-99662)。从开始培养起,例如在15天以内、优选10天以内、更优选6天以内添加ROCK抑制剂。作为ROCK抑制剂,可列举Y-27632((+)-(R)-反式-4-(1-氨基乙基)-N-(4-吡啶基)环己烷甲酰胺二盐酸盐)等。用于悬浮培养的ROCK抑制剂的浓度为可抑制通过分散而诱导的多能干细胞的细胞死亡的浓度。例如,关于Y-27632,这样的浓度通常为约0.1~200μM、优选为约2~50μM。在添加期间内可变更ROCK抑制剂的浓度,例如在期间的后半部分可使浓度减半。
将分散的多能干细胞的悬浮液接种在上述培养器中,在相对于培养器为非粘附性的条件下培养分散的多能干细胞,由此使多个多能干细胞集合而形成聚集块。此时,可将分散的多能干细胞接种在如10cm皿这样的较大培养器中,由此在1个培养区室中同时形成多个多能干细胞的聚集块,但这样做会使每个聚集块的大小或其中所含的多能干细胞的数量产生大的偏差,由于该偏差,导致由多能干细胞向垂体或其部分组织或其前体组织的分化程度在聚集块间产生差异,结果是分化诱导的效率降低。因此,优选使分散的多能干细胞快速聚集,在1个培养区室中形成1个聚集块。作为这种使分散的多能干细胞快速聚集的方法,例如可列举以下的方法:
1)将分散的多能干细胞封入体积较小(例如1ml以下、500μl以下、200μl以下、100μl以下)的培养区室中,在该区室中形成1个聚集块的方法。优选在封入分散的多能干细胞后将培养区室静置。作为培养区室,可列举多孔板(384孔、192孔、96孔、48孔、24孔等)、微孔、腔室载玻片等中的孔或管、悬滴法中的培养基的液滴等,但并不限定于这些。封入该区室内的分散多能干细胞受重力促使而沉淀在一个位置,或者细胞彼此粘附,由此在每1个培养区室内形成1个聚集块。多孔板、微孔、腔室载玻片、管等的底的形状优选形成U型底或V形底,使分散的多能干细胞容易在1个位置沉淀。
2)将所分散的多能干细胞装入离心管中,将其离心,使多能干细胞在1个位置沉淀,拥有此在该管中形成1个聚集块的方法。
1个培养区室中接种的多能干细胞的数量只要是在每1个培养区室内形成1个聚集块,且通过本发明的方法可在该聚集块内由多能干细胞向垂体或其部分组织或其前体组织分化诱导即可,没有特别限定,每1个培养区室中通常接种约1×103~约5×104个、优选约1×103~约2×104个、更优选约2×103~约1.2×104个多能干细胞。然后,通过使多能干细胞快速聚集,在每1个培养区室内形成1个通常由约1×103~约5×104个、优选约1×103~约2×104个、更优选约2×103~约1.2×104个多能干细胞构成的细胞聚集块。
到聚集块形成为止的时间可在每1个区室内形成1个聚集块,且按照本发明的方法可在该聚集块内由多能干细胞向垂体或其部分组织或其前体组织分化诱导的范围内适当确定,但通过缩短该时间,可期待高效率地向作为目标的垂体或其部分组织或其前体组织分化诱导,因此优选该时间为短的。优选在24小时以内、更优选在12小时以内、进一步优选在6小时以内、最优选在2~3小时形成多能干细胞的聚集块。到该聚集块形成为止的时间可由本领域技术人员通过调整使细胞聚集的用具或离心条件等适当调节。
另外,形成聚集块时的培养温度、CO2浓度等其他培养条件可适当设定。对培养温度没有特别限定,例如为约30~40℃、优选为约37℃。另外,CO2浓度例如为约1~10%、优选为约5%。
进一步地,可准备多个同一培养条件的培养区室,在各培养区室内形成1个多能干细胞的聚集块,由此得到质量均等的多能干细胞的聚集块的群体。多能干细胞的聚集块质量均等可根据聚集块的大小和细胞数、宏观形态、基于组织染色分析的微观形态及其均等性、分化和未分化标记物的表达及其均等性、分化标记物的表达控制及其同期性、分化效率在聚集块间的重现性等进行评价。在一个方案中,本发明的方法中使用的多能干细胞的聚集块的群体,其聚集块中所含的多能干细胞的数量均等。关于特定的参数,多能干细胞的聚集块的群体“均等”意指,聚集块的群体整体中的90%以上的聚集块在该聚集块的群体中的该参数的平均值±10%的范围内、优选为平均值±5%的范围内。
(3)腺垂体和/或其前体组织的诱导
在一个实施方案中,细胞分离前的细胞聚集块可通过这样的方法获得,其包括在包含骨形成因子信号转导通路激活物质和音猬因子(Shh:Sonic hedgehog)信号通路作用物质的培养基中悬浮培养多能干细胞的聚集块。
本发明中,腺垂体是指包含至少1种垂体前叶或中叶的垂体激素产生细胞的组织。作为垂体激素产生细胞,可列举生长激素(GH)产生细胞、催乳素(PRL)产生细胞、促肾上腺皮质激素(ACTH)产生细胞、促甲状腺激素(TSH)产生细胞、促卵泡激素(FSH)产生细胞、黄体化激素(LH)产生细胞等构成前叶的细胞;促黑素细胞激素(MSH)产生细胞等构成中叶的细胞。这些垂体激素产生细胞除了表达对各细胞种有特异性的垂体激素以外,还能将EpCAM作为标记物进行表达。在一个方案中,腺垂体包含选自GH产生细胞、PRL产生细胞、ACTH产生细胞、TSH产生细胞、FSH产生细胞和LH产生细胞的至少1种、优选2种以上(2、3、4、5或6种)的垂体激素产生细胞。在另一个方案中,腺垂体包含选自GH产生细胞、PRL产生细胞和ACTH产生细胞的至少1种、优选2种、更优选3种垂体激素产生细胞。
本发明中,组织是指具有形态或性质不同的多种细胞以一定的模式进行立体配置而成的结构的细胞群的结构体。
作为腺垂体的前体组织,可列举垂体基板、拉特克囊等。垂体基板是指在胚胎发生过程中在表皮外胚层区域(口腔外胚层)形成的增厚结构,其至少可表达作为垂体前体细胞标记物的EpCAM和Lhx3或Pitx1,优选可表达EpCAM、Lhx3和Pitx1的全部。拉特克囊是指通过垂体基板的陷入形成的袋状结构。与垂体基板一样,拉特克囊也至少可表达作为垂体前体细胞标记物的EpCAM和Lhx3或Pitx1,优选可表达EpCAM、Lhx3和Pitx1的全部。另外,作为垂体前体细胞标记,除上述以外,还可进一步确认Isl1/2、细胞角蛋白等的表达。本说明书中,将至少可表达作为垂体前体细胞标记物的EpCAM和Lhx3或Pitx1的细胞称为垂体前体细胞,该前体细胞优选可表达EpCAM、Lhx3和Pitx1的全部。另外,在本说明书中,将垂体前体细胞也称为垂体激素产生细胞的前体细胞。
作为本说明书中的“细胞分离前的细胞聚集块”,例如可列举选自LHX3、NKX2.1、PITX1和ACTH的至少一种标记物为阳性的细胞聚集体。
另外,作为“细胞分离前的细胞聚集块”,例如可列举LHX3、NKX2.1、PITX1和ACTH阳性的细胞聚集块。
本发明的分离方法和制造方法中使用的细胞分离前的细胞聚集块可通过如下所述的方法来制作。具体而言,在该方法包括在包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中悬浮培养多能干细胞的聚集块,由此得到包含下丘脑神经上皮组织和表皮外胚层(包括口腔外胚层)(以下有时仅简称为表皮外胚层)的细胞聚集块(第1培养步骤);以及在包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中进一步悬浮培养所得的包含下丘脑神经上皮组织和表皮外胚层(包括口腔外胚层)的细胞聚集块,由此得到包含1)下丘脑神经上皮组织和2)垂体基板和/或拉特克囊的细胞聚集块(第2培养步骤)。通过第1培养步骤,诱导由多能干细胞分化为下丘脑神经上皮组织和表皮外胚层(包括口腔外胚层),将所得的包含下丘脑神经上皮组织和表皮外胚层(包括口腔外胚层)的细胞聚集块供于第2培养步骤,由此诱导由表皮外胚层区域(口腔外胚层)进一步分化为垂体基板和/或拉特克囊。
在本发明的分离方法和制造方法中,细胞分离前的细胞聚集块可以是通过培第2养步骤得到的细胞聚集块。
(3.1)第1培养步骤
第1培养步骤中,在包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中悬浮培养多能干细胞的聚集块。
“悬浮培养”多能干细胞的聚集块是指,在培养基中,在相对于培养器为非粘附性的条件下培养多能干细胞的聚集块。由此,现有困难的腺垂体或其前体组织的有效诱导成为可能。
用于悬浮培养的培养基包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质。利用骨形成因子信号转导通路激活物质和Shh信号通路作用物质的作用,诱导由多能干细胞分化为下丘脑神经上皮组织和表皮外胚层。
本发明中,骨形成因子信号转导通路激活物质意指,通过骨形成因子与受体的结合激活信号传导通路的任意物质。作为骨形成因子信号转导通路激活物质的例子,可列举BMP2、BMP4、BMP7、GDF5等。优选地,骨形成因子信号转导通路激活物质为BMP4。以下,主要对BMP4进行记载,但本发明中使用的骨形成因子信号转导通路激活物质并不限定于BMP4。BMP4是已知的细胞因子,其氨基酸序列也已知。用于本发明的BMP4为哺乳动物的BMP4。作为哺乳动物,例如可列举小鼠、大鼠、仓鼠、豚鼠等啮齿类或兔等实验动物;猪、牛、山羊、马、绵羊等家畜;狗、猫等宠物;人、猴、猩猩、黑猩猩等灵长类。BMP4优选为啮齿类(小鼠、大鼠等)或灵长类(人等)的BMP4,最优选为人BMP4。人BMP4意指BMP4具有人在生物体内天然表达的BMP4的氨基酸序列。作为人BMP4的代表性的氨基酸序列,可示例NCBI的登录号为NP_001193.2(2013年6月15日更新)、NP_570911.2(2013年6月15日更新)、NP_570912.2(2013年6月15日更新)、从这些各个氨基酸序列中去除了N末端信号序列(1-24)后的氨基酸序列(成熟型人BMP4氨基酸序列)等。
在本发明中,作为Shh信号通路作用物质,只要是可增强由Shh介导的信号传导的物质即可,没有特别限定。作为Shh信号通路作用物质,例如可列举属于Hedgehog家族的蛋白或其片段(例如Shh、Ihh、Shh(C24II)N-末端、Shh(C25II)N-末端)、Shh受体、Shh受体激动剂、嘌吗啡胺(Purmorphamine)、平滑激动剂(Smoothened Agonist,SAG)(3-氯-N-[反式-4-(甲基氨基)环己基]-N-[[3-(4-吡啶基)苯基]甲基]-苯并[b]噻吩-2-甲酰胺)等,但并不限定于这些。其中,优选SAG。
优选的骨形成因子信号转导通路激活物质与Shh信号通路作用物质的组合为BMP4和SAG。
培养基中的骨形成因子信号转导通路激活物质的浓度可以是在细胞聚集块中在可诱导由多能干细胞向下丘脑神经上皮组织和表皮外胚层分化的范围内适当设定,在使用BMP4作为骨形成因子信号转导通路激活物质的情况下,其浓度通常为0.01nM以上、优选为0.1nM以上、更优选为1nM以上。上限值没有特别限定,只要对向下丘脑神经上皮组织和表皮外胚层分化没有不良影响即可,从培养成本的观点来看,通常为1000nM以下、优选为100nM以下、更优选为10nM以下。在一个方案中,培养基中的BMP4浓度通常为0.01~1000nM、优选为0.1~100nM、更优选为1~10nM(例如5nM)。外源性骨形成因子信号转导通路激活物质特别是有助于:1)积极地形成表皮外胚层;以及2)不是使大脑而是使下丘脑的神经上皮组织在细胞聚集块内分化诱导,因此以可达到这些效果的浓度包含在培养基中。
在第1培养步骤的整个期间,培养基中可不包含骨形成因子信号转导通路激活物质。例如,从多能干细胞的聚集块的悬浮培养开始起2~4天(例如3天)不向培养基内添加骨形成因子信号转导通路激活物质,之后可向培养基中添加骨形成因子信号转导通路激活物质。
培养基中的Shh信号通路作用物质的浓度可在细胞聚集块中在可诱导由多能干细胞向下丘脑神经上皮组织和表皮外胚层分化为的范围内适当设定,在使用SAG作为Shh信号通路作用物质的情况下,其浓度通常为1nM以上、优选为10nM以上、更优选为100nM以上。上限值没有特别限定,只要对向下丘脑神经上皮组织和表皮外胚层分化没有不良影响即可,从培养成本的观点来看,通常为1000μM以下、优选为100μM以下、更优选为10μM以下。在一个方案中,培养基中的SAG浓度通常为1nM~1000μM、优选为10nM~100μM、更优选为100nM~10μM(例如2μM)。外源性Shh信号通路作用物质特别是起到不是使神经视网膜而是使下丘脑(优选腹侧下丘脑)的神经上皮组织在细胞聚集块内分化诱导的作用,因此以可达到该效果的浓度包含在培养基中。
在第1培养步骤的整个期间,培养基中可不包含Shh信号通路作用物质。例如,从多能干细胞的聚集块的悬浮培养开始起5~7天(例如6天)不向培养基中添加Shh信号通路作用物质,之后可向培养基中添加Shh信号通路作用物质。
在一个方案中,将多能干细胞的聚集块在不含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中悬浮培养2~4天,接下来,将所得的聚集块在包含骨形成因子信号转导通路激活物质而不包含Shh信号通路作用物质的培养基中悬浮培养2~4天,再将所得的聚集块在包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中培养,直至下丘脑神经上皮组织和表皮外胚层被诱导。
本发明中使用的BMP4等骨形成因子信号转导通路激活物质优选被分离。“分离”意指,进行去除除作为目标的成分或细胞以外的因子的操作,脱离天然存在的状态。因此,在“所分离的蛋白X”中不含由作为培养对象的细胞或组织产生的内源性蛋白X。“所分离的蛋白X”的纯度(蛋白X在总蛋白重量中所占的重量百分比)通常为70%以上、优选为80%以上、更优选为90%以上、进一步优选为99%以上、最优选为100%。用于悬浮培养的培养基中所含的已被分离的骨形成因子信号转导通路激活物质是外源性地添加到培养基中的。因此,在一个方案中,本发明包括向第1培养步骤中使用的培养基中外源性地添加所分离的骨形成因子信号转导通路激活物质的步骤。
第1培养步骤中使用的培养基优选从培养开始时起添加Rho相关卷曲螺旋激酶(ROCK)抑制剂,用于抑制通过分散诱导的多能干细胞(特别是人多能干细胞)的细胞死亡(日本特开2008-99662)。从培养开始起例如15天以内、优选10天以内、更优选6天以内添加ROCK抑制剂。作为ROCK抑制剂,可列举Y-27632((+)-(R)-反式-4-(1-氨基乙基)-N-(4-吡啶基)环己烷甲酰胺二盐酸盐)等。用于悬浮培养的ROCK抑制剂的浓度是可抑制通过分散诱导的多能干细胞的细胞死亡的浓度。例如,关于Y-27632,这样的浓度通常为约0.1~200μM、优选为约2~50μM。在添加期间内可变更ROCK抑制剂的浓度,例如可在期间的后半部分使浓度减半。
用于细胞聚集块的悬浮培养的培养基可以以用于培养哺乳动物细胞的培养基作为基础培养基进行调制。作为基础培养基,例如只要是BME培养基、BGJb培养基、CMRL 1066培养基、Glasgow MEM培养基、改良的MEM Zinc Option培养基、IMDM培养基、Medium 199培养基、Eagle MEM培养基、αMEM培养基、DMEM培养基、Ham’s培养基、Ham’s F-12培养基、RPMI1640培养基、Fischer’s培养基、Neurobasal培养基和它们的混合培养基(例如:DMEM/F-12培养基(DMEM培养基:Ham’s F-12培养基=1:1的混合培养基)等)等可用于培养哺乳动物细胞的培养基即可,没有特别限定。在一个方案中,使用IMDM培养基和Ham’s F-12培养基的混合培养基。混合比以容量比计例如为IMDM:Ham’s F-12=0.8~1.2:1.2~0.8。
用于培养的培养基可使用含血清培养基或无血清培养基。从避免混入化学上未确定的成分的观点来看,用于细胞聚集块的悬浮培养的培养基优选为无血清培养基。
用于细胞聚集块的悬浮培养的培养基可含有血清替代品。血清替代品例如可以是适当含有白蛋白、转铁蛋白、脂肪酸、胶原蛋白前体、微量元素、2-巯基乙醇或3’-硫代甘油或者它们的等同物等的物质。这种血清替代品例如可通过WO98/30679记载方法进行调制。另外,为了更简便地实施本发明的方法,血清替代品可利用市售品。作为这种市售的血清替代品,例如可列举KSR(敲除血清替代品)(Invitrogen公司制造)、化学确定的浓缩脂质(Gibco公司制造)、Glutamax(Gibco公司制造)。
用于细胞聚集块的悬浮培养的培养基可在不会对由多能干细胞向下丘脑神经上皮组织和表皮外胚层的分化诱导产生不良影响的范围内包含其他添加剂。作为添加剂,例如可列举胰岛素、铁源(例如转铁蛋白等)、矿物质(例如硒酸钠等)、糖类(例如葡萄糖等)、有机酸(例如丙酮酸、乳酸等)、血清蛋白(例如白蛋白等)、氨基酸(例如L-谷氨酰胺等)、还原剂(例如2-巯基乙醇等)、维生素类(例如抗坏血酸、d-生物素等)、抗生素(例如链霉素、青霉素、庆大霉素等)、缓冲剂(例如HEPES等)等,但并不限于这些。
在一个方案中,从不会对向下丘脑神经上皮组织和表皮外胚层的分化诱导产生不良影响的观点来看,用于细胞聚集块的悬浮培养的培养基是在不含除本说明书中特别记载为包含在培养基中的生长因子以外的生长因子的化学合成培养基(不含生长因子的化学确定培养基;gfCDM)中添加了血清替代品(KSR等)的培养基。这里所说的“生长因子”包含Fgf;BMP;Wnt、Nodal、Notch、Shh等模式形成因子;胰岛素和富脂白蛋白。作为不含生长因子的化学合成培养基,例如可列举Wataya等人,Proc Natl Acad Sci USA,105(33):11796-11801,2008中公开的gfCDM。
细胞聚集块的悬浮培养中的培养温度、CO2浓度、O2浓度等其他培养条件可适当设定。培养温度例如为约30~40℃、优选为约37℃。CO2浓度例如为约1~10%、优选为约5%。O2浓度例如为约20%。
在优选方案中,在包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中悬浮培养质量均等的多能干细胞的聚集块的群体。通过使用质量均等的多能干细胞的聚集块的群体,可将聚集块间的关于向腺垂体或其前体组织分化的程度之差抑制在最小限度,提高目标分化诱导的效率。在质量均等的多能干细胞的聚集块的群体的悬浮培养中,包括以下方案。
1)准备多个培养区室,以在1个培养区室中包含1个多能干细胞的聚集块的方式接种质量均等的多能干细胞的聚集块的群体。(例如在96孔板的各孔的每1个孔中装入多能干细胞的聚集块)。然后,在各培养区室中,在包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中悬浮培养1个多能干细胞的聚集块。
2)以在1个培养区室中包含多个多能干细胞的聚集块的方式,在1个培养区室内接种质量均等的多能干细胞的聚集块的群体。(例如,在10cm皿中装入多个多能干细胞的聚集块)。然后,在该区室中,在包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中悬浮培养多个多能干细胞的聚集块。
通过本发明的方法,可采用上述1)和2)中的任一个方案,另外,可在培养过程中变更方案(由1)的方案变更为2)的方案,或者由2)的方案变更为1)的方案)。在一个方案中,在第1培养步骤中采用1)的方案,在第2培养步骤中采用2)的方案。
第1培养步骤在足以诱导由多能干细胞向下丘脑神经上皮组织和表皮外胚层的分化的期间实施。向下丘脑神经上皮组织和表皮外胚层分化例如可通过RT-PCR或使用了下丘脑神经上皮组织或表皮外胚层的标记物特异性抗体的免疫组织化学来检测。例如,实施直至培养中的细胞聚集块中有10%以上、优选30%以上、更优选50%以上的细胞聚集块包含下丘脑神经上皮组织和表皮外胚层。培养期间可根据多能干细胞的动物种类或者骨形成因子信号转导通路激活物质和Shh信号通路作用物质的种类而变动,因此不能一概而论地确定,例如在使用人多能干细胞的情况下,第1培养步骤通常为15~20天(例如18天)。
通过进行第1培养步骤,可得到包含下丘脑神经上皮组织和表皮外胚层(包括口腔外胚层)的细胞聚集块。
下丘脑神经上皮组织是表达下丘脑标记物的神经上皮组织,是指包含以下的组织:可分化成构成下丘脑的细胞(例如神经元、神经胶质细胞等),且具有自我复制能力的下丘脑前体细胞;以及通过分化而失去了自我复制能力的神经元、神经胶质细胞等。在本说明书中,构成下丘脑的细胞也被称为“下丘脑细胞”,作为这样的细胞,例如可列举下丘脑前体细胞、神经元、神经胶质细胞等。构成上述下丘脑神经上皮的细胞下丘脑神经上皮组织中的下丘脑前体细胞和其分化细胞的比例取决于分化的程度,在将多能干细胞长期培养直至腺垂体分化的细胞块中,确认到下丘脑前体细胞的多数分化成了下丘脑神经元(CellReports,30,18-24,January 7,2020)。下丘脑中包含腹侧下丘脑和背侧下丘脑。作为下丘脑标记物,可列举NKx2.1(腹侧下丘脑标记物)、Pax6(背侧下丘脑标记物)等。在一个方案中,腹侧下丘脑神经上皮组织是Rx阳性、Chx10阴性、Pax6阴性且Nkx2.1阳性的神经上皮组织。在一个方案中,背侧下丘脑神经上皮组织是Rx阳性、Chx10阴性、Nkx2.1阴性且Pax6阳性的神经上皮组织。第1培养步骤中得到的细胞聚集块中所含的下丘脑神经上皮组织优选为腹侧下丘脑神经上皮组织。在上述的任一种下丘脑神经上皮组织中,均没有EpCAM表达,这显示在构成下丘脑神经上皮组织的全部细胞(不仅是下丘脑前体细胞,还有在分化并失去了自我复制能力的神经元、神经胶质细胞等中)中,均没有EpCAM表达。
表皮外胚层是在胚胎发生中形成于胚胎表层的外胚层细胞层。作为表皮外胚层标记物,可列举泛细胞角蛋白(pan-cytokeratin)。表皮外胚层通常可向垂体前叶、皮肤、口腔上皮、牙釉质、皮肤腺等分化。在一个方案中,表皮外胚层是E-钙粘蛋白阳性且泛细胞角蛋白阳性的细胞层。
优选地,在第1培养步骤中得到的细胞聚集块中,下丘脑神经上皮组织占据该细胞聚集块的内部,单层的表皮外胚层的细胞构成该细胞聚集块的表面。表皮外胚层可包含其中一部分增厚的表皮基板。
(3.2)第2培养步骤
在第2培养步骤中,将第1培养步骤中得到的包含下丘脑神经上皮组织和表皮外胚层(包括口腔外胚层)的细胞聚集块在包含骨形成因子信号转导通路激活物质和Shh信号通路作用物质的培养基中进一步悬浮培养,从而得到包含1)下丘脑神经上皮组织和2)垂体基板和/或拉特克囊的细胞聚集块。通过骨形成因子信号转导通路激活物质和Shh信号通路作用物质的作用,诱导由表皮外胚层向垂体基板和/或拉特克囊分化。
骨形成因子信号转导通路激活物质和Shh信号通路作用物质的定义如第1培养步骤的说明中所述。
优选地,第2培养步骤中使用的骨形成因子信号转导通路激活物质与第1培养步骤同样为BMP4。优选地,第2培养步骤中使用的Shh信号通路作用物质与第1培养步骤同样为SAG。
优选的骨形成因子信号转导通路激活物质与Shh信号通路作用物质的组合是BMP4和SAG。
培养基中的骨形成因子信号转导通路激活物质的浓度可以在细胞聚集块中在可诱导由表皮外胚层向垂体基板和/或拉特克囊分化的范围内适当设定,在使用BMP4作为骨形成因子信号转导通路激活物质的情况下,其浓度通常为0.01nM以上、优选为0.1nM以上、更优选为1nM以上。对没有特别的上限值,只要对由表皮外胚层向垂体基板和/或拉特克囊分化没有不良影响即可,从培养成本的观点来看,通常为1000nM以下、优选为100nM以下、更优选为10nM以下。在一个方案中,培养基中的BMP4浓度通常为0.01~1000nM、优选为0.1~100nM、更优选为1~10nM(例如5nM)。在添加期间内可变更骨形成因子信号转导通路激活物质的浓度,例如可在第2培养步骤开始时设为上述浓度,每2~4天以一半的比例阶梯性地降低浓度。
培养基中的Shh信号通路作用物质的浓度可以在细胞聚集块中在可诱导由表皮外胚层向垂体基板和/或拉特克囊分化的范围内适当设定,在使用SAG作为Shh信号通路作用物质的情况下,其浓度通常为1nM以上、优选为10nM以上、更优选为100nM以上。对没有特别的上限值,只要对分化为垂体基板和/或拉特克囊没有不良影响即可,从培养成本的观点来看,通常为1000μM以下、优选为100μM以下、更优选为10μM以下。在一个方案中,培养基中的SAG浓度通常为1nM~1000μM、优选为10nM~100μM、更优选为100nM~10μM(例如2μM)。
在优选方案中,第2培养步骤中使用的培养基包含FGF2。FGF2促进由表皮外胚层向垂体基板分化。
FGF2是也被称为碱性成纤维细胞生长因子(bFGF)的已知的细胞因子,其氨基酸序列也已知。用于本发明的FGF2通常为哺乳动物的FGF2。作为哺乳动物,可列举上述的动物。FGF2在多个哺乳动物的种间具有交叉反应性,因此可使用任一种哺乳动物的FGF2,只要可达到本发明的目的即可,优选地,使用与培养的细胞为同一种类的哺乳动物的FGF2。例如使用啮齿类(小鼠、大鼠等)或灵长类(人等)的FGF2。这里,小鼠FGF2意指,FGF2具有小鼠在生物体内天然表达的FGF2的氨基酸序列。在本说明书中,关于其他的蛋白等也同样地解释。作为小鼠FGF2的代表性的氨基酸序列,可示例NCBI的登录号为NP_032032.1(2014年2月18日更新)、从该氨基酸序列中去除了N末端信号序列(1-9)后的氨基酸序列(成熟型小鼠FGF2氨基酸序列)等。作为人FGF2的代表性的氨基酸序列,可示例NCBI的登录号为NP_001997.5(2014年2月18日更新)等。
培养基中的FGF2的浓度只要是可促进由表皮外胚层向垂体基板分化的这样的浓度即可,没有特别限定,通常为1ng/ml以上、优选为10ng/ml以上。没有特别的FGF2浓度的上限值,只要对向垂体基板和/或拉特克囊分化没有不良影响即可,从培养成本的观点来看,通常为1000ng/ml以下、优选为500ng/ml以下。在一个方案中,培养基中的FGF2浓度通常为1~1000ng/ml、优选为10~100ng/ml。
本发明中使用的BMP4等骨形成因子信号转导通路激活物质和FGF2优选被分离。第2培养步骤中使用的培养基中所含的被分离的骨形成因子信号转导通路激活物质和被分离的FGF2是外源性地添加到培养基中的。因此,在一个方案中,本发明包括向第2培养步骤中使用的培养基中外源性地添加所分离的骨形成因子信号转导通路激活物质(和任意地分离的FGF2)的步骤。
第2培养步骤中使用的培养基与第1培养步骤中使用的培养基同样地可以以用于培养哺乳动物细胞的培养基作为基础培养基进行调制。作为基础培养基,例如只要是BME培养基、BGJb培养基、CMRL 1066培养基、Glasgow MEM培养基、改良的MEM Zinc Option培养基、IMDM培养基、Medium 199培养基、Eagle MEM培养基、αMEM培养基、DMEM培养基、Ham’s培养基、Ham’s F-12培养基、RPMI1640培养基、Fischer’s培养基、Neurobasal培养基和它们的混合培养基(例如:DMEM/F-12培养基(DMEM培养基:Ham’s F-12培养基=1:1的混合培养基)等)等可用于培养哺乳动物细胞的培养基即可,没有特别限定。在一个方案中,使用IMDM培养基和Ham’s F-12培养基的混合培养基。混合比以容量比计例如为IMDM:Ham’s F-12=0.8~1.2:1.2~0.8。
用于培养的培养基可以是含血清培养基或无血清培养基。从避免混入化学上未确定的成分的观点来看,用于细胞聚集块的悬浮培养的培养基优选为无血清培养基。
用于细胞聚集块的悬浮培养的培养基可含有血清替代品。血清替代品例如可以是适当含有白蛋白、转铁蛋白、脂肪酸、胶原蛋白前体、微量元素、2-巯基乙醇或3’-硫代甘油或者它们的等同物等的物质。这种血清替代品例如可通过WO98/30679记载的方法来调制。另外,为了更简便地实施本发明的方法,血清替代品可利用市售品。作为这种市售的血清替代品,例如可列举KSR(敲除血清替代品)(Invitrogen公司制造)、化学确定的浓缩脂质(Gibco公司制造)、Glutamax(Gibco公司制造)。
用于细胞聚集块的悬浮培养的培养基可在不会对由表皮外胚层向垂体基板和/或拉特克囊的分化诱导产生不良影响的范围内包含其他添加剂。作为添加剂,例如可列举胰岛素、铁源(例如转铁蛋白等)、矿物质(例如硒酸钠等)、糖类(例如葡萄糖等)、有机酸(例如丙酮酸、乳酸等)、血清蛋白(例如白蛋白等)、氨基酸(例如L-谷氨酰胺等)、还原剂(例如2-巯基乙醇等)、维生素类(例如抗坏血酸、d-生物素等)、抗生素(例如链霉素、青霉素、庆大霉素等)、缓冲剂(例如HEPES等)等,但并不限定于这些。
在一个方案中,从不会对向垂体基板和/或拉特克囊的分化诱导产生不良影响的观点来看,用于细胞聚集块的悬浮培养的培养基是在不含除本说明书中特别记载为包含在培养基中的生长因子以外的生长因子的化学合成培养基(不含生长因子的化学确定的培养基;gfCDM)中添加了血清替代品(KSR等)的培养基。这里所说的“生长因子”包括Fgf;BMP;Wnt、Nodal、Notch、Shh等模式形成因子;胰岛素和富脂白蛋白。作为不含生长因子的化学合成培养基,例如可列举Wataya等人,Proc Natl Acad Sci USA,105(33):11796-11801,2008中公开的gfCDM。
第2培养步骤中的悬浮培养适合在高氧分压条件下进行。通过在高氧分压条件下进一步悬浮培养包含下丘脑神经上皮组织和表皮外胚层的细胞聚集块,使氧到达细胞聚集块内部并实现细胞聚集块的长期维持培养,可有效地进行向垂体基板和/或拉特克囊的分化诱导。
高氧分压条件意指超过空气中的氧分压(20%)的氧分压条件。第2培养步骤中的氧分压例如为30~60%、优选为35~60%、更优选为38~60%。
第2培养步骤中的培养温度、CO2浓度等其他培养条件可适当设定。培养温度例如为约30~40℃、优选为约37℃。CO2浓度例如为约1~10%、优选为约5%。
第2培养步骤在足以诱导由表皮外胚层向垂体基板和/或拉特克囊分化的期间实施。通过实施第2培养步骤,在表皮外胚层中(更具体而言,在口腔外胚层中)形成垂体基板。另外,一部分或全部的垂体基板可向细胞聚集块的内部(即相邻的下丘脑神经上皮)陷入,形成拉特克囊。对于由表皮外胚层向垂体基板和/或拉特克囊的分化而言,表皮外胚层与下丘脑神经上皮组织(优选腹侧下丘脑神经上皮组织)的相互作用是必须的,在本发明中,通过第1培养步骤,在细胞聚集块内同时形成下丘脑神经上皮组织和表皮外胚层,在优选方案中,下丘脑神经上皮组织占据细胞聚集块的内部,单层的表皮外胚层的细胞构成该细胞聚集块的表面。其结果,在细胞聚集块内,彼此相邻的表皮外胚层和下丘脑神经上皮组织可良好地进行相互作用,可在体外重现表皮外胚层中的垂体基板的形成、垂体基板的陷入、拉特克囊的形成等胚胎发生中的垂体的自组织化过程。向垂体基板和/或拉特克囊分化例如可通过使用了对于垂体前体细胞标记物(例如EpCAM、Pitx1、Lhx3等)有特异性抗体的免疫组织化学,通过检测垂体前体细胞标记物阳性的基板或袋状结构的形成来确认。例如,实施第2培养步骤直至在培养中的细胞聚集块中有10%以上、优选30%以上、更优选50%以上的细胞聚集块包含垂体基板和/或拉特克囊。培养期间可根据多能干细胞的动物种类或者骨形成因子信号转导通路激活物质和Shh信号通路作用物质的种类而变更,因此不可一概而论地确定,例如在使用人多能干细胞的情况下,第2培养步骤通常为6天以上、例如6~12天。
通过进行第2培养步骤,可得到包含1)下丘脑神经上皮组织和2)垂体基板和/或拉特克囊的细胞聚集块。在本发明的分离方法和制造方法中,细胞分离前的细胞聚集块可以是通过第2培养步骤得到的细胞聚集块。
(3.3)第3培养步骤
通过将第2培养步骤中得到的包含1)下丘脑神经上皮组织和2)垂体基板和/或拉特克囊的细胞聚集块在包含Shh信号通路作用物质的培养基中进一步悬浮培养,可得到包含腺垂体的细胞聚集块(第3培养步骤)。通过第3培养步骤,诱导由垂体基板和/或拉特克囊向垂体激素产生细胞分化,在垂体基板和/或拉特克囊中生成垂体激素产生细胞,形成腺垂体。
在本发明的分离方法和制造方法中,细胞分离前的细胞聚集块可以是通过第3培养步骤得到的细胞聚集块。
Shh信号通路作用物质的定义如第1培养步骤的说明中所述。
适当地,第3培养步骤中使用的Shh信号通路作用物质与第1和第2培养步骤同样为SAG。
培养基中的Shh信号通路作用物质的浓度可以在细胞聚集块中在可诱导由垂体基板和/或拉特克囊向垂体激素产生细胞分化的范围内适当设定,在使用SAG作为Shh信号通路作用物质的情况下,其浓度通常为1nM以上、优选为10nM以上、更优选为100nM以上。对没有特别的上限值,只要对向垂体激素产生细胞分化没有不良影响即可,从培养成本的观点来看,通常为1000μM以下、优选为100μM以下、更优选为10μM以下。在一个方案中,培养基中的SAG浓度通常为1nM~1000μM、优选为10nM~100μM、更优选为100nM~10μM(例如2μM)。
在优选方案中,第3培养步骤中使用的培养基包含FGF2。FGF2促进由垂体基板和/或拉特克囊向垂体激素产生细胞分化。
FGF2的定义如在第2培养步骤的说明中所述。
培养基中的FGF2的浓度只要是可促进由垂体基板和/或拉特克囊向垂体激素产生细胞分化的这样的浓度即可,没有特别限定,通常为1ng/ml以上、优选为10ng/ml以上。没有特别的FGF2浓度的上限值,只要对向垂体激素产生细胞分化没有不良影响即可,从培养成本的观点来看,通常为1000ng/ml以下、优选为500ng/ml以下。在一个方案中,培养基中的FGF2浓度通常为1~1000ng/ml、优选为10~100ng/ml。
在优选方案中,培养步骤中使用3的培养基包含Notch信号抑制剂。Notch信号抑制剂促进由垂体基板和/或拉特克囊向垂体激素产生细胞(特别是ACTH产生细胞)分化。通过Notch信号抑制剂,进行ACTH产生的上游控制的转录因子Tbx19的表达上升。
Notch信号抑制剂只要是可抑制由Notch介导的信号传导的物质即可,没有特别限定。作为Notch信号抑制剂,例如可列举DAPT(N-[N-(3,5-二氟苯乙酰基)-l-丙氨酰基]-S-苯基甘氨酸叔丁酯)、DBZ、MDL28170等γ分泌酶抑制剂,其中优选DAPT。
培养基中的Notch信号抑制剂的浓度只要是可促进由垂体基板和/或拉特克囊向垂体激素产生细胞(特别是ACTH产生细胞)分化的这样的浓度即可,没有特别限定,例如在DAPT的情况下,通常为0.1μM以上、优选为1μM以上。没有特别的DAPT浓度的上限值,只要对向垂体激素产生细胞分化没有不良影响即可,从培养成本的观点来看,通常为1000μM以下、优选为100μM以下。在一个方案中,培养基中的DAPT浓度通常为0.1~1000μM、优选为1~100μM(例如10μM)。
在第3培养步骤中,无需向培养基中添加骨形成因子信号转导通路激活物质。在一个方案中,第3培养步骤中使用的培养基不含骨形成因子信号转导通路激活物质。
本发明中使用的FGF2优选被分离。第3培养步骤中使用的培养基中所含的分离的FGF2是外源性地向培养基中添加的。因此,在一个方案中,本发明包括向第2培养步骤中使用的培养基中外源性地添加所分离的FGF2的步骤。
在第3培养步骤中,可通过在培养基中添加肾上腺皮质激素类,通过肾上腺皮质激素类对细胞聚集块进行处理。通过肾上腺皮质激素类处理,由垂体基板和/或拉特克囊向除ACTH产生细胞以外的垂体激素产生细胞(即GH产生细胞、PRL产生细胞、TSH产生细胞、LH产生细胞、FSH产生细胞等)的分化得到促进。作为肾上腺皮质激素类,可列举氢化可的松、醋酸可的松、醋酸氟氢可的松等天然糖皮质激素;地塞米松、倍他米松、泼尼松龙、甲泼尼龙、曲安西龙等人工合成的糖皮质激素等,但并不限定于这些。
培养基中的肾上腺皮质激素类的浓度只要可促进由垂体基板和/或拉特克囊向垂体激素产生细胞(但不包括ACTH产生细胞)的分化即可,没有特别限定,另外,可根据肾上腺皮质激素类的种类适当设定,例如,在氢化可的松的情况下,通常为100ng/ml以上、优选为1μg/ml以上。没有特别的氢化可的松浓度的上限值,只要对向垂体激素产生细胞(但不包括ACTH产生细胞)分化没有不良影响即可,从培养成本的观点来看,通常为1000μg/ml以下、优选为100μg/ml以下。在一个方案中,培养基中的氢化可的松浓度通常为100ng/ml~1000μg/ml、优选为1~100μg/ml。在使用地塞米松作为肾上腺皮质激素类的情况下,其在培养基中的浓度可设为氢化可的松的1/25左右。
在第3培养步骤中,向培养基中添加肾上腺皮质激素类的时期没有特别限定,只要可促进由垂体基板和/或拉特克囊向垂体激素产生细胞(但不包括ACTH产生细胞)分化即可,可从第3培养步骤开始时起向培养基中添加肾上腺皮质激素类,也可在第3培养步骤开始后,在未添加肾上腺皮质激素类的培养基中培养一定期间后,向培养基中添加肾上腺皮质激素类。适当地,在第3培养步骤开始后,在细胞聚集块中确认到ACTH产生细胞出现的阶段,向培养基中添加肾上腺皮质激素类。即,在细胞聚集块中确认到ACTH产生细胞出现之前,将细胞聚集块在未添加肾上腺皮质激素类的培养基中培养,在确认到ACTH产生细胞出现后,在包含肾上腺皮质激素类的培养基中继续进行第3培养步骤。ACTH产生细胞的出现可使用针对ACTH的抗体通过免疫组织学染色来确认。在使用人多能干细胞的情况下,通常从第3培养步骤开始起37天以后,可期待ACTH产生细胞的出现,因此在一个方案中,从第3培养步骤开始起37天以后向培养基中添加肾上腺皮质激素类。
利用肾上腺皮质激素类对细胞聚集块进行处理的期间没有特别限定,只要可促进由垂体基板和/或拉特克囊向垂体激素产生细胞(但不包括ACTH产生细胞)分化即可,通常与肾上腺皮质激素类未处理组相比,在肾上腺皮质激素类处理组中,在确认到促进向垂体激素产生细胞(但不包括ACTH产生细胞)分化之前,用肾上腺皮质激素类对细胞聚集块进行处理。处理期间通常为7天以上、优选为12天以上。对处理期间的上限值没有特别限定,与肾上腺皮质激素类未处理组相比,在肾上腺皮质激素类处理组中,可在确认到促进向垂体激素产生细胞(但不包括ACTH产生细胞)分化的阶段从培养基中去除肾上腺皮质激素类。
尚需说明的是,向培养基中添加肾上腺皮质激素类对于ACTH产生细胞的分化诱导而言通过反馈抑制而起到抑制作用。
第3培养步骤中使用的培养基与第1和第2培养步骤中使用的培养基同样,可以以用于培养哺乳动物细胞的培养基作为基础培养基进行调制。作为基础培养基,例如只要是BME培养基、BGJb培养基、CMRL 1066培养基、Glasgow MEM培养基、改良的MEM Zinc Option培养基、IMDM培养基、Medium 199培养基、Eagle MEM培养基、αMEM培养基、DMEM培养基、Ham’s培养基、Ham’s F-12培养基、RPMI1640培养基、Fischer’s培养基、Neurobasal培养基和它们的混合培养基(例如:DMEM/F-12培养基(DMEM培养基:Ham’s F-12培养基=1:1的混合培养基)等)等可用于培养哺乳动物细胞的培养基即可,没有特别限定。在一个方案中,使用IMDM培养基和Ham’s F-12培养基的混合培养基。混合比以容量比计例如为IMDM:Ham’s F-12=0.8~1.2:1.2~0.8。
用于培养的培养基可以是含血清培养基或无血清培养基。从避免混入化学上未确定的成分的观点来看,用于细胞聚集块的悬浮培养的培养基优选为无血清培养基。
用于细胞聚集块的悬浮培养的培养基可含有血清替代品。血清替代品例如可以是适当含有白蛋白、转铁蛋白、脂肪酸、胶原蛋白前体、微量元素、2-巯基乙醇或3’-硫代甘油或者它们的等同物等的物质。这种血清替代品例如可通过WO98/30679记载的方法来调制。另外,为了更简便地实施本发明的方法,血清替代品可利用市售品。作为这种市售的血清替代品,例如可列举KSR(敲除血清替代品)(Invitrogen公司制造)、化学确定的浓缩脂质(Gibco公司制造)、Glutamax(Gibco公司制造)。
用于细胞聚集块的悬浮培养的培养基可在不会对由多能干细胞向垂体基板和/或拉特克囊以及垂体激素产生细胞的分化诱导产生不良影响的范围内包含其他添加剂。作为添加剂,例如可列举胰岛素、铁源(例如转铁蛋白等)、矿物质(例如硒酸钠等)、糖类(例如葡萄糖等)、有机酸(例如丙酮酸、乳酸等)、血清蛋白(例如白蛋白等)、氨基酸(例如L-谷氨酰胺等)、还原剂(例如2-巯基乙醇等)、维生素类(例如抗坏血酸、d-生物素等)、抗生素(例如链霉素、青霉素、庆大霉素等)、缓冲剂(例如HEPES等)等,但并不限定于这些。
在一个方案中,从不会对向垂体激素产生细胞的分化诱导产生不良影响的观点来看,用于细胞聚集块的悬浮培养的培养基是在不含除本说明书中特别记载为包含在培养基中的生长因子以外的生长因子的化学合成培养基(不含生长因子的化学确定培养基;gfCDM)中添加了血清替代品(KSR等)的培养基。这里所说的“生长因子”包括Fgf;BMP;Wnt、Nodal、Notch、Shh等模式形成因子;胰岛素和富脂白蛋白。作为不含生长因子的化学合成培养基,例如可列举Wataya等人,Proc Natl Acad Sci USA,105(33):11796-11801,2008中公开的gfCDM。
第3培养步骤中的悬浮培养适合在高氧分压条件下进行。可通过在高氧分压条件下进一步悬浮培养包含1)下丘脑神经上皮组织和2)垂体基板和/或拉特克囊的细胞聚集块,使得实现氧到达细胞聚集块内部以及细胞聚集块的长期维持培养,有效地进行向垂体激素产生细胞的分化诱导。
高氧分压条件意指超过空气中的氧分压(20%)的氧分压条件。第3培养步骤中的氧分压例如为30~60%、优选为35~60%、更优选为38~60%。
第3培养步骤中的培养温度、CO2浓度等其他培养条件可适当设定。培养温度例如为约30~40℃、优选为约37℃。CO2浓度例如为约1~10%、优选为约5%。
第3培养步骤在足以诱导由垂体基板和/或拉特克囊向垂体激素产生细胞分化的期间实施。通过实施第3培养步骤,诱导由垂体基板和/或拉特克囊向垂体激素产生细胞分化,在垂体基板和/或拉特克囊中产生垂体激素产生细胞,由此形成腺垂体。作为由垂体基板和/或拉特克囊诱导的垂体激素产生细胞,可列举生长激素(GH)产生细胞、催乳素(PRL)产生细胞、促肾上腺皮质激素(ACTH)产生细胞。在优选方案中,该促肾上腺皮质激素(ACTH)产生细胞响应CRH刺激而分泌ACTH,该ACTH分泌通过糖皮质激素被反馈抑制。在一个方案中,诱导由垂体基板和/或拉特克囊向选自生长激素(GH)产生细胞、催乳素(PRL)产生细胞和促肾上腺皮质激素(ACTH)产生细胞的至少1种、优选2种、更优选3种垂体激素产生细胞分化,形成包含选自生长激素(GH)产生细胞、催乳素(PRL)产生细胞和促肾上腺皮质激素(ACTH)产生细胞的至少1种、优选2种、更优选3种垂体激素产生细胞的腺垂体。除了生长激素(GH)产生细胞、催乳素(PRL)产生细胞和促肾上腺皮质激素(ACTH)产生细胞以外,由垂体基板和/或拉特克囊还可诱导促甲状腺激素(TSH)产生细胞、促卵泡激素(FSH)产生细胞、黄体化激素(LH)产生细胞、促黑素细胞激素(MSH)产生细胞等其他垂体激素产生细胞。即,通过第3培养步骤形成的腺垂体除了包含选自生长激素(GH)产生细胞、催乳素(PRL)产生细胞和促肾上腺皮质激素(ACTH)产生细胞的至少1种、优选2种、更优选3种以外,还可包含促甲状腺激素(TSH)产生细胞、促卵泡激素(FSH)产生细胞、黄体化激素(LH)产生细胞、促黑素细胞激素(MSH)产生细胞等其他垂体激素产生细胞。向垂体激素产生细胞分化例如可通过使用了对于垂体激素有特异性的抗体的免疫组织化学,通过检测垂体激素阳性细胞来确认。例如,实施直至培养中的细胞聚集块中有10%以上、优选30%以上、更优选50%以上的细胞聚集块包含垂体激素产生细胞。培养期间可根据多能干细胞的动物种类或者Shh信号通路作用物质的种类来变更,不可一概而论地确定,例如在使用人多能干细胞的情况下,第3培养步骤通常为37天以上、例如37~70天。
通过进行第3培养步骤,可得到包含腺垂体的细胞聚集块。
通过本发明的制造方法,只要可诱导由多能干细胞向腺垂体或其前体组织分化即可,可在饲养细胞的存在下/不存在下的任一种条件下进行聚集块的悬浮培养,但从避免混入未确定因子的观点来看,优选在饲养细胞的不存在下进行细胞聚集块的悬浮培养。
在本发明的制造方法中,作为用于细胞聚集块的悬浮培养的培养器,没有特别限定,例如可列举烧瓶、组织培养用烧瓶、皿、培养皿、组织培养用皿、多重皿、微型板、微孔板、微孔、多重板、多孔板、腔室载玻片、浅皿、管、托盘、培养袋、转瓶。为了使得可在非粘附性的条件下进行培养,培养器优选为细胞非粘附性。作为细胞非粘附性的培养器,可使用对培养器的表面进行人工处理以使其呈细胞非粘附性的培养器,或未进行出于提高与细胞的粘附性的目的的人工处理(例如用细胞外基质等进行的包被处理)的培养器等。
作为用于细胞聚集块的悬浮培养的培养器,可使用氧透过性的培养器。通过使用氧透过性的培养器,对细胞聚集块的氧供给提高,可有助于细胞聚集块的长期维持培养。
在聚集块的悬浮培养时,只要可维持聚集块对培养器的非粘附状态即可,可对聚集块进行静置培养,也可通过旋转培养或振荡培养有意地使聚集块移动,但在本发明中,无需通过旋转培养或振荡培养有意地使聚集块移动。即,在一个方案中,本发明的制造方法中的悬浮培养通过静置培养来进行。静置培养是指在并未有意地使聚集块移动到状态下进行培养的培养方法。即,例如随着局部性的培养基温度的变化,培养基对流,由于该流动,聚集块有时会移动,但不是有意地使聚集块移动,因此也包括这种情况,在本发明中被称为为静置培养。可在悬浮培养的整个期间实施静置培养,也可仅在一部分期间实施静置培养。在优选方案中,在悬浮培养的整个期间进行静置培养。静置培养不需要装置,期待细胞块的损伤也少,还可减少培养液的量,在这一点上有利。
(4)本发明的通过细胞表面标记物的垂体激素产生细胞等的分离方法
在本发明的分离方法的一个方案中,提供分离垂体激素产生细胞和/或其前体细胞以及下丘脑细胞(在本说明书中,有时将这些分离目标的细胞称为“治疗用细胞”)的方法,其包括由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤。在垂体激素产生细胞及其前体细胞以及下丘脑细胞的表面CD49c能够表达,而在未分化细胞和囊泡形成细胞的表面CD49c不能表达。因此,可以以CD49c为标记物,分离垂体激素产生细胞及其前体细胞以及下丘脑细胞与未分化细胞和囊泡形成细胞。另外,在使用本发明的细胞表面标记分离的细胞群中,可包含除下丘脑和垂体系谱以外的细胞(未分化细胞等),因此为了制造治疗效果更高的细胞群或移植组织(细胞聚集体、细胞片层等),优选纯化治疗用细胞。
在使通过本发明的分离方法分离的细胞群再聚集的情况下,确认到可混入增殖速度不同的多种增殖性细胞。即,以通过本发明的分离方法分离的细胞再聚集后第8天的细胞群的面积为基准,发现存在第21天以后增殖超过3倍的细胞群、第28天以后增殖超过3倍的细胞群和直至第36天面积变化少的细胞群。推测上述增殖性细胞是在分离的细胞群中一部分未分化细胞或囊泡形成细胞残留并增殖的结果。因此,从再聚集的细胞聚集块中,可以以细胞群的面积为基准,筛选即使经过规定期间增殖也少的细胞群,由此纯化治疗用细胞。另外,典型的是,早期增殖的细胞通过增殖成为带状形态,而延迟增殖的细胞经过增殖确认到囊泡肥大,因此也可以以细胞群的形态为基准,筛选增殖少的细胞群。而且,由于上述增殖性细胞中的大部分表达SSEA5,因此在本发明的分离方法中,可包含去除SSEA5阳性(特别是SSEA5强阳性)细胞的步骤。这个步骤可与由细胞分离前的细胞聚集块分离表达CD49c的细胞的步骤同时进行,也可在该步骤之前或之后进行。在同时进行的情况下,例如可通过使用荧光激活细胞分选将CD49c和SSEA5同时染色,并将CD49c阳性级分设门以使SSEA5(高)表达群体门控排除来进行,但并不限定于该方法。
另外,本发明人发现了,在垂体激素产生细胞及其前体细胞的表面EpCAM能够表达,而在下丘脑细胞的表面EpCAM不能表达。因而,可以以CD49c和EpCAM为标记物,分离垂体激素产生细胞及其前体细胞和下丘脑细胞。因此,在本发明的分离方法的另一方案中,提供分离垂体激素产生细胞和/或其前体细胞的方法,该方法包括由包含腺垂体和/或其前体组织以及任意地进一步包含下丘脑神经上皮组织的细胞聚集块分离表达CD49c和EpCAM的细胞的步骤。分离表达CD49c和EpCAM的细胞的步骤典型地可通过分离CD49c和EpCAM共阳性(双阳性)细胞来进行。或者,可通过由包含腺垂体和/或其前体组织以及任意地包含下丘脑神经上皮组织分离表达CD49c或EpCAM的细胞,之后由包含该分离的该细胞的细胞群分离表达EpCAM或CD49c的细胞来进行。
而且,如后述的实施例中所示,在由多能干细胞分化诱导的细胞聚集块中,产生类似于间充质干细胞的增殖性细胞,该增殖性细胞有可能混入以CD49c为指标分离的细胞群中。这些增殖性细胞可表达选自CD90、CD29、CD44、CD58和CD166的至少1种细胞表面抗原(有时也称为本发明的阴性标记物),因此可以以该细胞表面抗原为阴性标记物去除增殖性细胞。因此,本发明的分离方法可包括分离不表达本发明的至少1个阴性标记物的细胞的步骤。这个步骤可与由细胞分离前的细胞聚集块分离表达CD49c和/或EpCAM的细胞的步骤同时进行,也可在该步骤之前或之后进行。在同时进行的情况下,典型的是,可通过分离CD49c阳性且本发明的阴性标记物阴性的细胞来进行。作为本发明的阴性标记物,特别优选CD90。
本发明的分离方法中使用的细胞分离前的细胞聚集块可使用通过第2培养步骤得到的细胞聚集块和通过第3培养步骤得到的细胞聚集块的任一个细胞聚集块。作为由上述的多能干细胞向垂体或其部分组织或其前体组织的分化诱导开始后的具体天数,例如为30天~600天、优选为90天~500天、更优选为110~490天、进一步优选为150天~400天、更优选为200天~350天。本发明的分离方法包括以下步骤。
·本发明的分离步骤的概要
本发明的分离方法在(B)分离表达CD49c和/或EpCAM的细胞的步骤之前,可包括(A)使包含腺垂体和/或其前体组织以及任意地进一步包含下丘脑神经上皮组织的细胞聚集块分散而得到单一细胞的群体的步骤。本发明中,分离的细胞可以是单一细胞,但典型的是由多个细胞构成的细胞群。因此,在本说明书中,只要没有特别说明,则“细胞”包括“细胞群”。细胞群可由1种细胞构成,也可由2种以上的细胞构成。因此,以CD49c为指标由细胞聚集块分离的“垂体激素产生细胞和/或其前体细胞以及下丘脑细胞”可被另称为包含单一或多种垂体激素产生细胞和/或其前体细胞和单一或多种下丘脑细胞的细胞群。
具体而言,使该细胞聚集块分散而得到单一细胞的群体的步骤(A)可包括(a1)通过酶处理使细胞分离前的细胞聚集块分散的步骤(后述的(4.2))。在该通过酶处理进行分散的步骤之前,可包括(a2)将细胞分离前的细胞聚集块切碎,或者以物理方式向细胞分离前的细胞聚集块加入切割的步骤(后述的(4.2))。
使细胞聚集块分散而得到单一细胞的群体的该步骤(A)可任意地包括(a-1)将细胞分离前的细胞聚集块用ROCK抑制剂进行处理的步骤。在进行该步骤的情况下,优选在得到单一细胞的群体的步骤的最初进行(后述的(4.1))。
在上述细胞的分离步骤(B)之前,可任意地进行(C)将所得细胞在用层粘连蛋白或其片段包被的培养器上进行培养的步骤(后述的(4.3)。
在通过酶处理进行分散的步骤(a2)之后,进行(B)分离表达EpCAM的细胞的步骤(分离表达EpCAM的细胞和不表达EpCAM的细胞的步骤)(后述的(4.4))。
在上述细胞的分离步骤(B)之后,可任意地进行(D)使所得细胞再聚集的步骤(后述的(4.5))。具体而言,该再聚集步骤(D)可通过(d1)将所得细胞接种于培养器进行粘附培养和/或(d2)将所得细胞接种于培养器进行悬浮培养来进行。
(4.1)通过ROCK抑制剂的预处理步骤
在本发明的分离方法中,首先,可通过ROCK抑制剂对所得的细胞聚集块进行预处理。该预处理优选从该预处理开始前添加ROCK抑制剂,以抑制以后的通过细胞聚集块的分散所诱导的多能干细胞(特别是人多能干细胞)的细胞死亡。ROCK抑制剂例如在该处理开始的至少24小时前、至少12小时前、至少6小时前、至少3小时前、至少2小时前、至少1小时前添加。作为ROCK抑制剂,可列举Y-27632((+)-(R)-反式-4-(1-氨基乙基)-N-(4-吡啶基)环己烷甲酰胺二盐酸盐)等。该处理时使用的ROCK抑制剂的浓度为可抑制以后的通过细胞聚集块的分散所诱导的多能干细胞的细胞死亡的浓度。例如,关于Y-27632,这种浓度通常为约0.1~200μM、优选为约2~50μM。在添加期间内可变更ROCK抑制剂的浓度,例如可在期间的后半部分使浓度减半。在后述的(4.2)~(4.5)的任一个步骤中,关于与细胞接触的溶液,也优选使用以同样的浓度含有ROCK抑制剂的溶液。
用于进行该预处理的培养基在使用通过第2培养步骤得到的细胞聚集块的情况下,可使用第2培养步骤中使用的培养基,在使用通过第3培养步骤得到的细胞聚集块的情况下,可使用第3培养步骤中使用的培养基。需要说明的是,在上述培养基中已经按所希望的浓度添加有ROCK抑制剂的情况下,无需进行该预处理步骤。
(4.2)细胞聚集块的分散步骤
接下来,将进行了上述预处理的细胞聚集块通过酶处理来分散。具体而言,首先,将进行了上述预处理的细胞聚集块转移到包含第2或第3培养步骤中记载的培养基(例如:DMEM/F-12培养基(DMEM培养基:Ham’s F-12培养基=1:1的混合培养基)等)的培养器(例如:管等)中,用同一培养基洗涤。作为用于分散的酶,只要可分散细胞即可,没有特别限定,例如可列举EDTA;胰蛋白酶、胶原蛋白酶(胶原蛋白酶I~VII型)、金属蛋白酶、透明质酸酶、弹性蛋白酶、分散酶、脱氧核糖核酸酶等酶或它们的混合物。作为优选的酶,可列举胶原蛋白酶,更优选为胶原蛋白酶I型。酶处理的条件(温度、时间等)可根据使用的酶等适当设定。另外,为了促进该酶处理,在该处理前可进行以物理方式(例如:手术刀、剪刀等)切碎细胞聚集块,或者以物理方式(例如:手术刀、剪刀等)向细胞聚集块中加入切割的步骤。
在上述酶处理后,回收悬浮细胞,再次进行上述酶处理。该酶处理也可通过上述的酶等来进行,作为优选的酶,可列举EDTA;胰蛋白酶,更优选为EDTA、胰蛋白酶和脱氧核糖核酸酶。另外,可使用TrypLE(Invitrogen)等市售品代替EDTA;胰蛋白酶。酶处理的条件(温度、时间等)可根据使用的酶等适当设定。通过上述一系列的酶处理,可调制单细胞悬浮液。另外,在调制单细胞悬浮液时,可利用自身已知的方法去除死细胞。
(4.3)使用了层粘连蛋白或其片段的培养步骤
如后述的实施例所示,显示了通过以细胞聚集块中包含的细胞所表达的特定的整联蛋白复合体为指标,经过该培养步骤,可容易地从该细胞聚集块中去除死细胞,同时可纯化细胞存活率高的垂体细胞和下丘脑细胞。具体而言,通过在包被有对在垂体细胞和下丘脑细胞中共同表达的整联蛋白α3β1(CD49c/CD29)复合体具有高亲和性的层粘连蛋白或其片段的培养器中培养细胞聚集块,该聚集块中所含的不表达整联蛋白α3β1复合体的细胞的一部分(例如囊泡形成细胞)和死细胞存在于悬浮细胞级分中,包含垂体细胞和下丘脑细胞的剩下的细胞存在于粘附细胞级分中。因此,通过去除上述悬浮细胞级分,可容易地去除死细胞。另外,通过进行这样的步骤,还可提高细胞存活率。步骤(4.3)优选在上述(4.2)细胞聚集块的分散步骤之后进行。
作为步骤(4.3)中使用的层粘连蛋白或片段,只要至少对整联蛋白α3β1复合体具有高亲和性即可,没有特别限定,例如可列举包含层粘连蛋白-111及其E8区的片段、包含层粘连蛋白-211及其E8区的片段(例如:iMatrix-211)、包含层粘连蛋白-121或其E8区的片段、包含层粘连蛋白-221或其E8区的片段、包含层粘连蛋白-332或其E8区的片段、包含层粘连蛋白-3A11或其E8区的片段、包含层粘连蛋白-411或其E8区的片段(例如:iMatrix-411)、包含层粘连蛋白-421或其E8区的片段、包含层粘连蛋白-511或其E8区的片段(例如:iMatrix-511、iMatrix-511silk)、包含层粘连蛋白-521或其E8区的片段、包含层粘连蛋白-213或其E8区的片段、包含层粘连蛋白-423或其E8区的片段、包含层粘连蛋白-523或其E8区的片段、包含层粘连蛋白-212/222或其E8区的片段、包含层粘连蛋白-522或其E8区的片段等。其中,优选包含层粘连蛋白-511或其E8区的片段。在进行该步骤的情况下,粘附培养本身可利用自身已知的方法进行,也可适当使用上述第2培养步骤2和第3培养步骤中记载的内容(例如:培养基组成等)。
作为在包被有层粘连蛋白或其片段的培养器内培养细胞聚集块的具体期间,例如为30分钟~5小时、优选为1小时~3小时。
在上述粘附培养步骤后,通过进行解离酶处理,可剥离、回收粘附细胞。作为解离酶,只要可剥离、回收所期望的细胞即可,没有特别限定,希望用不含来源于动物的成分的酶来进行,作为优选的酶,可列举TrypLE(Invitrogen)等市售品。解离酶处理的条件(温度、时间等)可根据使用的酶等适当设定。
(4.4)CD49c和/或EpCAM阳性细胞的分离步骤
作为由上述调制的单细胞悬浮液中所含的细胞群分离表达CD49c和/或EpCAM的所期望的细胞的方法,可列举使用流式细胞术或质谱流式细胞术的方法、磁性细胞分离法等,这些方法可使用自身已知的方法进行。例如,表达CD49c和/或EpCAM的细胞可通过这样的方法分离,其包括使该细胞和特异性地与CD49c或EpCAM分子结合的物质(例如:抗体等)接触的步骤。上述物质中也包括其自身附加有可检测的标记(例如:GFP、PE)的物质和其自身未附加标记的物质。在上述物质为其自身未附加标记的物质的情况下,通过进一步使用附加有直接或间接地识别该物质的可检测的标记的物质,可进行上述分离。例如,在上述物质为抗体的情况下,在该抗体上直接或间接地担载荧光色素、金属同位素或珠粒(例如:磁性珠),由此可标记细胞表面的标记物,可根据该标记分离细胞。此时使用的抗体可以是仅1种或2种以上的抗体。
在使用流式细胞术分离用荧光色素标记的CD49c阳性细胞和CD49c阴性细胞时,由于细胞的自体荧光(与CD49c的表达无关,细胞自身发出的荧光)的影响,仅用CD49c的荧光染色时,基于荧光强度的CD49c阳性细胞与CD49c阴性细胞的群体分离有时较差。在这种情况下,如后述的实施例所示,通过同时使用其他荧光色素标记CD49c阴性细胞中所含的未分化细胞,确定CD49c阴性细胞的荧光强度范围。将荧光强度比这样确定的CD49c阴性细胞的荧光强度范围强的细胞作为CD49c阳性细胞处理。作为用荧光色素标记未分化细胞的方法,可列举经由针对作为未分化细胞表面抗原的SSEA5的抗体用荧光色素标记的方法。
在本说明书中,“阳性”包括高表达性的情况(也称为“强阳性”)。高表达性有时表示为高(High)、亮(Bright)。例如,SSEA5高度表达细胞有时表示为SSEA5细胞或SSEA5细胞。
高表达性可基于通过流式细胞术法得到的图表来判断。出现在图表中的位置有时根据设备的电压设定、灵敏度设定、使用抗体克隆、染色条件、使用色素等而变动,本领域技术人员可适当进行划线以使不切分在所得图表中被认为是一组的细胞群。
(4.5)所分离的细胞群的再聚集培养步骤
所分离的细胞群可接种于培养器进行粘附培养,例如成为细胞片层,也可接种于培养器进行悬浮培养,由此再聚集而成为细胞聚集块。该细胞群可原样维持培养直至使用前,也可根据所分离的细胞的分化状态进一步诱导分化为所期望的细胞。在进行该维持培养或进一步的分化诱导的情况下,可原样进行上述第3培养步骤中记载的方法,也可根据需要适当地通过自身已知的方法进行修正。另外,在进行该粘附培养的情况下,粘附培养本身也可按照自身已知的方法进行,也可适当采用上述第3培养步骤中记载的内容(例如:培养基组成等)。另外,在粘附培养时,优选用细胞外基质等(例如:层粘连蛋白、胶原蛋白等)包被培养器。
(5)所分离的垂体激素产生细胞、其前体细胞和包含该细胞的组织的用途
通过本发明的分离方法或制造方法得到的垂体激素产生细胞及其前体细胞,以及包含该细胞的细胞聚集体和细胞片层(有时将该细胞聚集体和细胞片层统称为“垂体组织”)可用于移植医疗(换言之,作为移植疗法制剂)。垂体组织中可包含下丘脑细胞。例如,作为基于腺垂体(前叶或中叶,优选前叶)障碍的疾病的治疗药,或者为了在腺垂体(前叶或中叶,优选前叶)的损伤状态下补充相应的损伤部分,可使用通过本发明的方法得到的垂体激素产生细胞、其前体细胞和/或垂体组织。通过对基于腺垂体障碍的疾病或腺垂体的损伤状态的患者移植通过本发明得到的垂体激素产生细胞、其前体细胞和/或垂体组织,可治疗基于腺垂体障碍的疾病或腺垂体的损伤状态。对移植部位没有特别限定,只要移植的垂体激素产生细胞、其前体细胞和/或垂体组织可作为受损腺垂体的替代物发挥功能即可,例如可列举肾筋膜下等。作为基于腺垂体障碍的疾病,可列举全垂体功能减退症、垂体性侏儒症、肾上腺皮质功能减退症、部分性垂体功能减退症、垂体前叶激素单独缺损症等。而且,作为这些腺垂体的损伤状态,可列举腺垂体摘除后的患者的腺垂体状态、对垂体肿瘤照射放射线后的患者的腺垂体状态、腺垂体的外伤。
在移植医疗中,由组织相容性抗原的不同引起的排斥经常成为问题,通过使用由移植的受体的体细胞建立的多能干细胞(例如iPS细胞),可克服该问题。即,在优选方案中,在本发明的方法中,通过使用由受体的体细胞建立的多能干细胞(例如iPS细胞)作为多能干细胞,制造对该受体为自身免疫性的腺垂体或其前体组织,或垂体激素产生细胞,并将其移植到该受体中。或者,还优选使用由与移植部位的个体的HLA基因型相同或实质上相同的体细胞建立的iPS细胞。这里,“实质上相同”是指HLA基因型一致达到了可通过免疫抑制剂抑制移植的细胞的免疫反应的程度,例如,其是具有HLA-A、HLA-B和HLA-DR的3个基因座或加上HLA-C的4个基因座一致的HLA型的体细胞。而且,为了抑制排斥,可使用通过遗传工程学方法修饰HLA基因而得到的细胞。作为这种方法,可列举在来源于普通的HLA异源接合体供体的iPS细胞中,选择性地去除染色体单侧的HLA基因部分,制作HLA拟同源接合体的方法;或者,为了抑制NK细胞的反应,留下染色体单侧的HLA-C,破坏HLA-A和HLA-B基因的方法等。
而且,通过本发明的方法得到的垂体激素产生细胞及其前体细胞以及垂体组织可用于药物的筛选或评价。具体而言,例如可适用于筛选如抑制或促进垂体激素产生的这样的物质,或药品的副作用、毒性试验等。上述筛选或试验等例如可包括:在受试物质的存在下或不存在下(阴性对照)培养包含垂体激素产生细胞和/或其前体细胞的细胞群或垂体组织的步骤;将通过受试物质处理的细胞群或垂体组织中的目标激素的产生量与阴性对照中的产生量作比较的步骤;以及选择抑制或促进垂体激素的产生的受试物质作为候选物质的步骤。
(6)本发明的垂体激素产生细胞、其前体细胞和/或垂体组织的制造方法
本发明提供制造垂体激素产生细胞、其前体细胞和/或垂体组织的方法,其包括由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤。在垂体激素产生细胞及其前体细胞以及下丘脑细胞的表面CD49c能够表达,而在未分化细胞和囊泡形成细胞的表面CD49c不能表达。因此,可将CD49c作为标记物,分离垂体激素产生细胞及其前体细胞以及下丘脑细胞与未分化细胞和囊泡形成细胞。通过采用该分离步骤,可制造以高纯度包含垂体激素产生细胞、其前体细胞和/或垂体组织,或者垂体激素产生细胞、其前体细胞和/或垂体细胞的细胞群(例如:细胞群的80%以上、优选85%以上、更优选90%、进一步优选95%以上、更进一步优选99%以上、最优选100%)。
另外,如上所述,在垂体激素产生细胞及其前体细胞的表面EpCAM能够表达,而在下丘脑细胞的表面EpCAM不能表达。因而,可将CD49c和EpCAM作为标记物,分离垂体激素产生细胞及其前体细胞和下丘脑细胞。因此,在本发明的制造方法的另一个方案中,提供分离垂体激素产生细胞和/或其前体细胞的方法,其包括由包含腺垂体和/或其前体组织以及任意地进一步包含下丘脑神经上皮组织的细胞聚集块分离表达CD49c和EpCAM的细胞的步骤。分离表达CD49c和EpCAM的细胞的步骤典型的是可通过分离CD49c和EpCAM共阳性细胞来进行。或者,可通过由包含腺垂体和/或其前体组织以及任意地包含下丘脑神经上皮组织分离表达CD49c或EpCAM的细胞后,从包含该分离细胞的细胞群中分离表达EpCAM或CD49c的细胞来进行。通过采用该分离步骤,可制造以高纯度包含垂体激素产生细胞、其前体细胞和/或垂体组织,或者垂体激素产生细胞和/或其前体细胞的细胞群(例如:细胞群的80%以上、优选85%以上、更优选90%、进一步优选95%以上、更进一步优选99%以上、最优选100%)。
而且,如上所述,在由多能干细胞分化诱导的细胞聚集块中,产生类似于间充质干细胞的增殖性细胞,该增殖性细胞有可能混入以CD49c为指标分离的细胞群。这些增殖性细胞可以以本发明的阴性标记物为指标来去除。因此,本发明的制造方法可包括分离不表达本发明的阴性标记物的至少1个的细胞的步骤。这个步骤可与由包含腺垂体和/或其前体组织的细胞聚集块分离表达CD49c的细胞的步骤同时进行,也可在该步骤之前或之后进行。在同时进行的情况下,典型的是,可通过分离CD49c阳性且本发明的阴性标记物阴性的细胞来进行。作为本发明的阴性标记物,特别优选CD90。
如上所述,在本发明的制造方法中,也可通过从再聚集的细胞聚集块中以细胞群的面积为基准筛选增殖少的细胞群,制造治疗效果更高的细胞群或移植组织(细胞聚集体、细胞片层等)。另外,典型的是,早期增殖的细胞经过增殖成为带状形态,而延迟增殖的细胞经过增殖确认到囊泡肥大,因此也可以以细胞群的形态为基准,筛选增殖少的细胞群。而且,由于上述增殖性细胞的大部分表达SSEA5,因此在本发明的制造方法中,可包括去除SSEA5阳性(特别是SSEA5强阳性)细胞的步骤。
本发明的制造方法中所含的由细胞分离前的细胞聚集块将表达CD49c和/或EpCAM的细胞和/或将表达本发明的阴性标记物和/或SSEA5的细胞除去的步骤可引用上述“·本发明的分离步骤的概要”中记载的步骤等全部内容。另外,关于各步骤,也可引用上述(4.1)~(4.5)的全部内容。
如上述(4.1)所记载,通过本发明的方法制造的垂体激素产生细胞和/或其前体细胞等可原样维持培养直至使用前,也可根据分离的细胞的分化状态适当地进行培养(例如:第3培养步骤),进一步诱导分化为所期望的细胞。具体而言,例如可将通过本发明的方法制造的垂体激素产生细胞、其前体细胞和/或垂体组织原样移植到需要通过该细胞群或组织进行治疗等的对象中,也可利用自身已知的方法进一步提高纯度(纯化)后再移植到该对象中。另外,如上述(4.5)所记载,可将该纯化的细胞接种于培养器进行粘附培养,例如形成如细胞片层这样的形状,也可接种于培养器进行悬浮培养,由此使其再聚集。可将经过该粘附培养或悬浮培养得到的细胞片层或细胞聚集块移植到上述对象中。另外,该粘附培养或悬浮培养可短期(例如:3~6天)进行,也可长期(例如:7~30天)进行。在本发明的制造方法中,可引用与上述的“(1)多能干细胞”~“(5)包含所分离的垂体激素产生细胞、其前体细胞和该细胞的组织的用途”相关的全部内容。
(7)用于分离垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的试剂
本发明还提供用于分离垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的试剂(以下有时称为“本发明的试剂”),该试剂是包含针对CD49c的抗体而形成的。
另外,在本发明的试剂中,可进一步包含针对EpCAM的抗体。本发明的试剂通过包含抗EpCAM抗体,还可用作垂体激素产生细胞和/或其前体细胞的分离用试剂。在本发明的试剂包含2种以上的抗体的情况下,该试剂可作为在个别试剂中包含各抗体的试剂盒提供。本发明的试剂中所含的抗体根据用于本发明方法的分离手段,例如可以以与荧光色素、金属同位素或珠粒(例如:磁珠)结合的形态提供。而且,在本发明的试剂中,可进一步包含针对选自CD90、CD29、CD44、CD58、CD166和SSEA5的1种以上的各表面抗原的抗体。
通过以下的实施例,更具体地说明本发明,但实施例不过是显示本发明的单纯示例而已,对本发明的范围没有任何限定。
实施例
实施例1:细胞表面抗原的筛选
通过国际公开第2016/013669或Cell Reports,30,18-24,January 7,2020中记载的已知方法,诱导人iPS细胞(201B7株)分化为包含腺垂体或其前体组织的细胞聚集块。将由人iPS细胞(201B7株)分化诱导后第47天的细胞块在Accumax(Innovative CellTechnologies,#AM105)中于37℃下处理5~10分钟进行分散,调制了单细胞悬浮液。用BioLegend公司制造的人表面抗原用PE标记抗体套组(LEGENDScreen人类PE试剂盒,#700007)将细胞染色后,使用IntraStain(Dako,#K2311)进行细胞固定和透膜处理。接着用FITC标记抗细胞角蛋白抗体(Miltenyi,#130-080-101)进行细胞内的细胞角蛋白染色,用Hoechst 33342进行核染色,用HCS CellMask深红染色剂(Invitrogen,#H32721)进行细胞质染色。使用ParkinElmer公司制造的成像分析仪(Opera Phenix)对染色后的细胞进行图像获取、分析,探索与细胞角蛋白阳性细胞的共存率高的表面抗原。其结果,暗示了用CD49c可识别垂体前体细胞的可能性。
实施例2:免疫组织化学
使用分化诱导开始后培养了152天以上的细胞块,或在经iMatrix-511粘附处理或FACS纯化后再聚集并培养了7天以上的细胞块。将细胞块用4%多聚甲醛溶液固定后,阶梯性地浸在10%、20%、30%的蔗糖溶液中,进行蔗糖置換。接着,用OCT化合物包埋,使用低温恒温器制作4~10μm厚的冷冻切片,粘贴在防剥离涂层载玻片(PLATINUM PRO;MatsunamiGlass)上。将切片用PBS洗涤后,用封闭溶液(5%正常驴血清+0.1% TritonX-100的PBS溶液)在室温下进行30~60分钟的封闭处理。接下来,使用经封闭溶液稀释的一抗在4℃下反应一夜。接着,使用荧光标记二抗和DAPI(核染色剂)在室温下反应1小时。将染色后的切片用Fluoromount(Diagnostic BioSystems,#K024)封入后,在共聚焦激光显微镜LSM-710(Zeiss)下进行荧光观察。
实施例3:通过iMatrix-511粘附处理进行悬浮细胞级分和粘附细胞级分的分离
将分化诱导开始后110~490天的细胞块进行酶促分散,在iMatrix-511粘附处理中使用。以下显示步骤。
(1)通过Y27632的预处理
为了抑制因分散处理导致的细胞死亡,在操作开始之前1小时以上以终浓度20μM向培养基中添加Y27632(Wako,#034-24024),对细胞块进行预处理。在以后的操作中,在细胞所暴露于的所有溶液(不包括PBS)中添加20μM的Y27632。
(2)细胞块的分散
为了促进通过酶处理的分散,将细胞块用手术刀切碎或加入切割。接下来,将细胞块转移到50ml管中,用DMEM/F12(Wako,#042-30555)洗涤。接下来,加入1~3ml胶原蛋白酶溶液,在37℃下旋转振荡(140-150rpm)40分钟。胶原蛋白酶溶液的组成是在上述的DMEM/F12中添加了0.2~0.3%胶原蛋白酶I型(Wako,#031-17601)和0.1% BSA(Sigma,#A9418)的组成。
胶原蛋白酶处理结束后,将包含悬浮细胞的上清液转移到新的15ml管中,剩下的细胞块用PBS洗涤(洗涤液和上清液回收到同一个管中)。将回收有上清液的15ml管在4℃、1000rpm下离心5分钟,使悬浮细胞成为团块。在50ml管的细胞块中加入1ml 10×TrypLESelect(Gibco,#25200072)+0.2mg/ml DNA酶I(Roche,#11284932001),在37℃下旋转振荡(140-150rpm)10分钟后,与15ml管的团块合并,用P1000微量移液管移液约20次,使细胞块散开。用10ml gfCDM+20%KSR(细胞块的分化和维持用培养基)悬浮,中和10×TrypLESelect后,在4℃、1000rpm下离心5分钟。在离心后的细胞团块中加入1ml gfCDM+20% KSR+10μg/ml DNA酶I,用P1000微量移液管剧烈移液约30次,使细胞块分散,通过70μm的细胞滤网去除聚集块。通过以上操作,调制了单细胞悬浮液。
(3)iMatrix-511粘附处理
将所分散的细胞接种于包被有iMatrix-511的10cm皿,在37℃下培养2小时。培养后,将培养液和悬浮细胞一同回收,由此得到了悬浮细胞级分。接下来,向皿中添加PBS,洗涤粘附细胞的表面。去除PBS后,加入1ml 10×TrypLE Select+0.2mg/ml DNA酶I,在37℃下保温5分钟。加入2ml gfCDM+20%KSR,用P1000微量移液管移液,剥离细胞,将细胞悬浮液回收到锥形管中。这个时间点,在未剥离的粘附细胞残留于皿的情况下,再次重复上述的剥离步骤,由此回收全部的粘附细胞。通过以上的剥离步骤,得到了粘附细胞级分。
实施例4:通过磁性细胞分离法(磁激活细胞分选;MACS)进行CD49c阳性细胞的纯化
将分化诱导开始后110~490天的细胞块进行酶促分散,在MACS中使用。以下显示步骤。
(1)通过Y27632的预处理
为了抑制因分散处理导致的细胞死亡,在操作开始前1小时以上以终浓度20μM向培养基中添加Y27632(Wako,#034-24024),对细胞块进行预处理。在以后的操作中,向细胞所暴露于的所有溶液(不包括PBS)中添加20μM的Y27632。
(2)细胞块的分散
为了促进通过酶处理的分散,将细胞块用手术刀切碎或加入切割。接下来,将细胞块转移到50ml管中,用DMEM/F12(Wako,#042-30555)洗涤。接下来,加入1~3ml胶原蛋白酶溶液,在37℃下旋转振荡(140-150rpm)40分钟。胶原蛋白酶溶液的组成是在上述的DMEM/F12中添加了0.2~0.3%胶原蛋白酶I型(Wako,#031-17601)和0.1% BSA(Sigma,#A9418)的组成。
胶原蛋白酶处理结束后,将包含悬浮细胞的上清液转移到新的15ml管中,剩下的细胞块用PBS洗涤(洗涤液和上清液回收到同一个管中)。将回收有上清液的15ml管在4℃、1000rpm下离心5分钟,使悬浮细胞成为团块。在50ml管的细胞块中加入1ml 10×TrypLESelect(Gibco,#25200072)+0.2mg/ml DNA酶I(Roche,#11284932001),在37℃下保温5~10分钟后,与15ml管的团块合并,用P1000微量移液管移液约20次,使细胞块散开。用10mlgfCDM+20%KSR(细胞块的分化和维持用培养基)悬浮,中和10×TrypLE Select后,在4℃、1000rpm,下离心5分钟。在离心后的细胞团块中加入1ml gfCDM+20%KSR+10μg/ml DNA酶I,用P1000微量移液管剧烈移液约30次以分散细胞块,通过70μm的细胞滤网,去除聚集块。通过以上操作,调制了单细胞悬浮液。
(3)iMatrix-511粘附处理
将所分散的细胞接种于包被有iMatrix-511的10cm皿,在37℃下培养2小时。培养后,将培养液和悬浮细胞一同废弃后,向皿中添加PBS,洗涤粘附细胞的表面。去除PBS后,加入1ml 10×TrypLE Select+0.2mg/ml DNA酶I,在37℃下保温5分钟。加入2ml gfCDM+20%KSR,用P1000微量移液管移液以剥离细胞,将细胞悬浮液回收到锥形管中。这个时间点,在未剥离的粘附细胞残留于皿的情况下,再次重复进行上述的剥离步骤,回收全部的粘附细胞。通过以上的剥离步骤,得到了粘附细胞级分。
(4)通过MACS的CD49c阳性细胞的分离
将通过iMatrix-511粘附处理回收的细胞悬浮于MACS缓冲液(PBS+0.5% BSA+2mMEDTA),用PE标记抗CD49c抗体(BioLegend,#343803)染色后,用抗PE-微珠(Miltenyi,#130-105-639)进行处理,由此用磁珠标记CD49c阳性细胞。接下来,通过使细胞通过磁性柱(LS柱;Miltenyi,#130-042-401),分离、回收磁珠标记细胞(CD49c阳性细胞)和未标记细胞(CD49c阴性细胞)。
实施例5:通过荧光激活细胞分选(Fluorescence-Activated Cell Sorting;FACS)进行CD49c阳性细胞或CD49c阳性/EpCAM阳性细胞的纯化
将分化诱导开始后110~490天的细胞块进行酶促分散,在FACS中使用。以下显示步骤。
(1)通过Y27632的预处理
为了抑制因分散处理导致的细胞死亡,在操作开始前1小时以上以终浓度20μM向培养基中添加Y27632(Wako,#034-24024),对细胞块进行预处理。在以后的操作中,向细胞所暴露于的所有溶液(不包括PBS)中添加20μM Y27632。
(2)细胞块的分散
为了促进通过酶处理的分散,将细胞块用手术刀切碎或加入切割。接下来,将细胞块转移到50ml管中,用DMEM/F12(Wako,#042-30555)洗涤。接下来,加入1~3ml胶原蛋白酶溶液,在37℃下旋转振荡(140-150rpm)40分钟。胶原蛋白酶溶液的组成是在上述的DMEM/F12中添加了0.2~0.3%胶原蛋白酶I型(Wako,#031-17601)和0.1% BSA(Sigma,#A9418)的组成。
胶原蛋白酶处理结束后,将包含悬浮细胞的上清液转移到新的15ml管中,剩下的细胞块用PBS洗涤(洗浄液也和上清液回收到同一个管中)。将回收有上清液的15ml管在4℃、1000rpm下离心5分钟,使悬浮细胞成为团块。在50ml管的细胞块中加入1ml 10×TrypLESelect(Gibco,#25200072)+0.2mg/ml DNA酶I(Roche,#11284932001),在37℃下保温5~10分钟后,与15ml管的团块合并,用P1000微量移液管移液约20次,使细胞块散开。用10mlgfCDM+20% KSR(细胞块的分化和维持用培养基)悬浮,中和10×TrypLE Select后,在4℃、1000rpm下离心5分钟。在离心后的细胞团块中加入1ml gfCDM+20% KSR+10μg/ml DNA酶I,用P1000微量移液管剧烈移液约30次,将细胞块分散,通过70μm的细胞滤网以去除聚集块。通过以上操作,调制了单细胞悬浮液。
(3)iMatrix-511粘附处理
将分散的细胞接种于包被有iMatrix-511的10cm皿,在37℃下培养2小时。培养后,将培养液和悬浮细胞一同废弃,之后向皿中添加PBS,洗涤粘附细胞的表面。去除PBS后,加入1ml 10×TrypLE Select+0.2mg/ml DNA酶I,在37℃下保温5分钟。加入2ml gfCDM+20%KSR,用P1000微量移液管移液以剥离细胞,将细胞悬浮液回收到锥形管中。这个时间点,在未剥离的粘附细胞残留于皿的情况下,再次重复上述的剥离步骤,由此回收所有的粘附细胞。通过以上的剥离步骤,得到了粘附细胞级分。
(4)通过FACS进行CD49c阳性细胞或CD49c阳性/EpCAM阳性细胞的分离
将通过iMatrix-511粘附处理而回收的细胞悬浮于FACS缓冲液(PBS+0.5% BSA+2mM EDTA)。在分离CD49c阳性细胞的情况下,用APC标记抗CD49c抗体(BioLegend,#343808)和PE标记抗SSEA5抗体(BioLegend,#355203)将细胞染色后,使用Beckman Coulter公司制造的细胞分选仪(MoFlo Astrios)分离、回收CD49c阳性细胞和CD49c阴性细胞。在分离CD49c阳性/EpCAM阳性细胞的情况下,用APC标记抗CD49c抗体和PE标记抗EpCAM抗体(Miltenyi,#130-098-115)将细胞染色后,使用上述的细胞分选仪分离、回收CD49c阳性/EpCAM阳性细胞和CD49阳性/EpCAM阴性细胞。
实施例6:已纯化的细胞的再聚集培养
将已纯化的各细胞群(iMatrix-511粘附细胞、CD49c阳性细胞、CD49c阴性细胞、CD49c阳性/EpCAM阳性细胞、CD49c阳性/EpCAM阴性细胞)接种于低粘附V底96孔板(PrimeSurface plate 96V;Sumitomo Bakelite,#MS-9096V),使其再聚集。每个孔中接种200μl培养基(gfCDM+20% KSR+30μM Y27632)中的15,000个细胞。以后每3天用不含Y27632的培养基进行半量交换。
实施例7:各指标的定量化
(1)Rx::Venus阳性细胞中的EpCAM阳性细胞和CD49c阳性细胞的比例
分散细胞聚集块,调制单细胞悬浮液,用APC标记抗EpCAM抗体(Miltenyi,#130-113-822)或APC标记抗CD49c抗体(BioLegend,#343808)染色后,通过流式细胞术(基于细胞的荧光强度进行定量分析的实验方法)分别测定Rx::Venus阳性细胞级分中的EpCAM阳性细胞和CD49c阳性细胞的比例。
(2)iMatrix-511粘附处理步骤中的悬浮细胞级分中存在的细胞与粘附细胞级分中存在的细胞的存在比例
分散细胞聚集块,调制单细胞悬浮液,用包被有iMatrix-511的培养器培养后,分别回收粘附细胞、悬浮细胞,用血细胞计算板计数。
(3)iMatrix-511粘附处理步骤中的悬浮细胞级分与粘附细胞级分中的CD49c阳性细胞和Rx::Venus阳性细胞的比例
分散细胞聚集块,调制单细胞悬浮液,用包被有iMatrix-511的培养器培养后,用PE标记抗CD49c抗体(BioLegend,#343803)进行染色,使用荧光显微镜(Leica DMI6000B)获取图像。使用图像分析软件Image J的细胞计数器工具,计数CD49c阳性细胞和Rx::Venus阳性细胞,计算在全部细胞中各自的比例。
(4)iMatrix-511粘附处理步骤中的悬浮细胞级分和粘附细胞级分中的细胞的存活率(活力(viability))
分散细胞聚集块,调制单细胞悬浮液,用包被有iMatrix-511的培养器培养后,用APC标记Annexin V(BioLegend,#640919)和碘化丙啶(PI)进行染色,通过流式细胞术算出活细胞(Annexin V阴性/PI阴性细胞)的比例。
(5)使用了剥离组织的间充质干细胞样增殖性细胞的表面标记物检索结果中的阳性率的定量化
回收来源于hiPSC样品的剥离组织,用10×TrypLE select进行处理使其分散,对干细胞系譜的表面标记物进行荧光染色,使用流式细胞仪算出阳性率。
(6)通过iMatrix-511粘附处理的细胞存活率
将通过无饲养分化法诱导的来源于hESC的细胞块(第448天)分散后,使通过方法A(使用MACS死细胞去除试剂盒回收活细胞)和方法B(回收iMatrix-511粘附细胞级分)的各种方法回收的细胞以每15,000个进行再聚集,3天后观察。使用图像分析软件ImageJ,以n=6-8在二维图像上测定聚集块的面积。
(7)iMatrix-511粘附处理后的再聚集块的大小
通过iMatrix-511粘附处理分离、回收CD49c和/或EpCAM阳性细胞后再聚集,在第7天(第7日)和第28天(第28日)观察。使用图像分析软件ImageJ,以n=9在二维图像上测定聚集块的面积。
(8)在iMatrix-511粘附处理后通过FACS进行CD49c阳性细胞和CD49c阴性细胞的分离后再聚集块的大小
在iMatrix-511粘附处理后,使用FACS分离、回收CD49c阳性细胞后再聚集,在第8天(第8日)和第36天(第36日)观察。使用图像分析软件ImageJ在二维图像上测定聚集块的面积。
实施例8:ACTH分泌试验(CRH刺激试验)
使用在通过MACS或FACS的纯化后再聚集并培养了8天以上的细胞块。将1个或5个细胞块用规定的培养基等以规定温度、规定时间保温后,回收培养基等。通过临床检查中使用的ECLIA法测定所回收的培养基等中的ACTH浓度。需要说明的是,在确认分泌抑制因子、CRH受体抑制剂的影响的情况下,在分泌测定前使用包含分泌抑制因子、CRH受体抑制剂的维持培养基进行规定时间的预处理。
产业实用性
本发明的分离方法和制造方法通过利用CD49c作为标记物,可用于有效地由来源于多能干细胞的分化组织分离、纯化功能性垂体激素产生细胞和/或其前体细胞。另外,分离、纯化的垂体激素产生细胞等通过生理性垂体激素分泌刺激显示出优异的垂体激素分泌能力,因此可用于使用了该细胞的垂体相关疾病的治疗等。
本申请以在日本申请的特愿2021-158406(申请日:2021年9月28日)为基础,其全部内容均包含在本说明书中。

Claims (21)

1.分离垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的方法,所述方法包括由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤。
2.分离垂体激素产生细胞和/或其前体细胞的方法,所述方法包括由包含腺垂体和/或其前体组织的细胞聚集块分离表达CD49c和EpCAM的细胞的步骤。
3.根据权利要求1或2所述的方法,其中分离表达CD49c的细胞或表达CD49c和EpCAM的细胞的步骤包括以下步骤:
(1)将该细胞聚集块分散成细胞群的第一步骤;
(2)在用层粘连蛋白或其片段包被的培养器上培养第一步骤中得到的细胞群的第二步骤;以及
(3)由第二步骤中得到的细胞群分离表达CD49c的细胞或表达CD49c和EpCAM的细胞的第三步骤。
4.根据权利要求1~3中任一项所述的方法,所述方法包括分离选自CD90、CD29、CD44、CD58和CD166的至少1种细胞表面抗原为阴性的细胞的步骤。
5.根据权利要求1~4中任一项所述的方法,其中细胞聚集块是通过分化诱导多能干细胞而得到的细胞聚集块。
6.根据权利要求1~5中任一项所述的方法,其中上述前体组织为垂体基板和/或拉特克囊。
7.垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的制造方法,所述方法包括由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤。
8.垂体激素产生细胞和/或其前体细胞的制造方法,所述方法包括由包含腺垂体和/或其前体组织的细胞聚集块分离表达CD49c和EpCAM的细胞的步骤。
9.制造包含垂体激素产生细胞和/或其前体细胞以及下丘脑细胞的细胞聚集块或细胞片层的方法,所述方法包括以下步骤:
(A)由包含腺垂体和/或其前体组织以及下丘脑神经上皮组织的细胞聚集块分离表达CD49c的细胞的步骤;以及
(B)使上述(A)中得到的群体再聚集的步骤。
10.制造包含垂体激素产生细胞和/或其前体细胞的细胞聚集块或细胞片层的方法,所述方法包括以下步骤:
(a)由包含腺垂体和/或其前体组织的细胞聚集块分离表达CD49c和EpCAM的细胞的步骤;以及
(b)使上述(a)中得到的群体再聚集的步骤。
11.根据权利要求7~10中任一项所述的方法,其中分离表达CD49c的细胞或表达CD49c和EpCAM的细胞的步骤包括以下步骤:
(1)将该细胞聚集块分散成细胞群的第一步骤;
(2)在用层粘连蛋白或其片段包被的培养器上培养第一步骤中得到的细胞群的第二步骤;以及
(3)由第二步骤中得到的细胞群分离表达CD49c的细胞或表达CD49c和EpCAM的细胞的第三步骤。
12.根据权利要求7~11中任一项所述的方法,所述方法进一步包括分离选自CD90、CD29、CD44、CD58和CD166的至少1种细胞表面抗原为阴性的细胞的步骤。
13.根据权利要求7~12中任一项所述的方法,其中上述垂体激素产生细胞为选自生长激素(GH)产生细胞、催乳素(PRL)产生细胞、促肾上腺皮质激素(ACTH)产生细胞、促甲状腺激素(TSH)产生细胞、促卵泡激素(FSH)产生细胞、黄体化激素(LH)产生细胞的至少1种。
14.细胞聚集块或细胞片层,其是通过权利要求9~13中任一项所述的方法制造的。
15.移植疗法制剂,其包含通过权利要求9~13中任一项所述的方法制造的细胞聚集块或细胞片层。
16.根据权利要求15所述的移植疗法制剂,其用于治疗基于腺垂体障碍的疾病和/或腺垂体的损伤状态。
17.根据权利要求16所述的移植疗法制剂,其中上述基于腺垂体障碍的疾病选自全垂体功能减退症、垂体性侏儒症、肾上腺皮质功能减退症、部分性垂体功能减退症和垂体前叶激素单独缺损症。
18.基于腺垂体障碍的疾病或腺垂体的损伤状态的治疗药,其是含有通过权利要求9~13中任一项所述的方法制造的细胞聚集块或细胞片层而成的。
19.基于腺垂体障碍的疾病或腺垂体的损伤状态的治疗方法,所述方法包括将通过权利要求9~13中任一项所述的方法制造的细胞聚集块或细胞片层的有效量移植到需要移植的对象。
20.用于在基于腺垂体障碍的疾病或腺垂体的损伤状态的治疗中使用的通过权利要求9~13中任一项所述的方法制造的细胞聚集块或细胞片层。
21.药物组合物,其含有通过权利要求9~13中任一项所述的方法制造的细胞聚集块或细胞片层作为有效成分。
CN202280065798.0A 2021-09-28 2022-09-27 使用细胞表面标记物的垂体细胞和下丘脑细胞的分离方法 Pending CN118043448A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-158406 2021-09-28
JP2021158406 2021-09-28
PCT/JP2022/035857 WO2023054325A1 (ja) 2021-09-28 2022-09-27 細胞表面マーカーを用いた下垂体細胞および視床下部細胞の分離法

Publications (1)

Publication Number Publication Date
CN118043448A true CN118043448A (zh) 2024-05-14

Family

ID=85782718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280065798.0A Pending CN118043448A (zh) 2021-09-28 2022-09-27 使用细胞表面标记物的垂体细胞和下丘脑细胞的分离方法

Country Status (5)

Country Link
EP (1) EP4410961A1 (zh)
JP (1) JPWO2023054325A1 (zh)
CN (1) CN118043448A (zh)
CA (1) CA3234329A1 (zh)
WO (1) WO2023054325A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508302A (ja) 1997-01-10 2001-06-26 ライフ テクノロジーズ,インコーポレイテッド 胚性幹細胞血清置換
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
CA2956130C (en) 2014-07-25 2023-09-26 Riken Method for producing adenohypophysis or precursor tissue thereof
JP2018011527A (ja) * 2016-07-19 2018-01-25 学校法人藤田学園 視床下部前駆細胞の精製方法及びその利用
EP3741844A4 (en) * 2018-01-16 2021-09-15 Keio University METHOD OF DERIVING CORNEAL DOTHELIAN REPLACEMENT CELLS FROM IPS CELLS

Also Published As

Publication number Publication date
WO2023054325A1 (ja) 2023-04-06
EP4410961A1 (en) 2024-08-07
JPWO2023054325A1 (zh) 2023-04-06
CA3234329A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP7088496B2 (ja) 網膜組織の製造方法
JP6995314B2 (ja) 網膜組織の製造法
US12077778B2 (en) Methods of generating human inner ear sensory epithelia and sensory neurons
JP7029144B2 (ja) 腺性下垂体又はその前駆組織の製造方法
JP5721111B2 (ja) 幹細胞の培地及び培養方法
EP1758986B1 (en) Neural stem cells
KR102368751B1 (ko) 모양체 주연부 간세포의 제조 방법
US11959104B2 (en) Methods of differentiating stem cell-derived ectodermal lineage precursors
EP3031906B1 (en) Method for producing anterior eye segment tissue
JP2017504311A (ja) 網膜色素上皮細胞を生成する方法
CN112204134A (zh) 眼细胞的分化方法及其用途
KR20170051497A (ko) 소뇌 선구체 조직의 제조 방법
CN108495929B (zh) 由人多能干细胞向下丘脑神经元的分化诱导
CN111386338B (zh) 包含神经系统细胞或神经组织和非神经上皮组织的细胞团块的制备方法及该细胞团块
US20200199530A1 (en) Methods of differentiating stem cell-derived ectodermal lineage precursors
US20230126237A1 (en) Method for separating pituitary hormone-producing cells and progenitor cells thereof
CN118043448A (zh) 使用细胞表面标记物的垂体细胞和下丘脑细胞的分离方法
JP2022528737A (ja) Abcg2陽性角膜輪部幹細胞を得る又は維持する方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination