CN118006694B - 利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用 - Google Patents

利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用 Download PDF

Info

Publication number
CN118006694B
CN118006694B CN202410418355.6A CN202410418355A CN118006694B CN 118006694 B CN118006694 B CN 118006694B CN 202410418355 A CN202410418355 A CN 202410418355A CN 118006694 B CN118006694 B CN 118006694B
Authority
CN
China
Prior art keywords
clostridium
fermentation
shewanella
hydrogen production
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410418355.6A
Other languages
English (en)
Other versions
CN118006694A (zh
Inventor
刘芳华
宁嘉瑞
曹伏龙
谢章彰
李梁艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Eco Environmental and Soil Sciences of Guangdong Academy of Sciens
Original Assignee
Institute of Eco Environmental and Soil Sciences of Guangdong Academy of Sciens
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Eco Environmental and Soil Sciences of Guangdong Academy of Sciens filed Critical Institute of Eco Environmental and Soil Sciences of Guangdong Academy of Sciens
Priority to CN202410418355.6A priority Critical patent/CN118006694B/zh
Publication of CN118006694A publication Critical patent/CN118006694A/zh
Application granted granted Critical
Publication of CN118006694B publication Critical patent/CN118006694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用。本发明通过将梭菌和希瓦氏菌接种于暗发酵培养基,避光厌氧发酵,得到氢气。本发明提供的方法可以极大缩短延滞期,高效提高梭菌发酵产氢效率;且操作简便,易于实现大规模的工业应用。

Description

利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用
技术领域
本发明属于生物发酵领域,特别涉及一种利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用。
背景技术
氢气是一种高能量密度的能源,其有氧燃烧的产物是水,作为燃料几乎不会对环境造成污染,是公认的清洁能源。目前氢气的主要来源于化石能源重整、电解盐溶液等方式,能量消耗巨大,碳排放高且不可持续。相较于传统的产氢方式,微生物暗发酵产氢具有反应条件温和,全天候进行、性能稳定、碳排放较低,不消耗矿物资源等诸多优点。微生物暗发酵产氢是一种可持续的、环境友好的制氢方式,适宜工业化的应用,在未来有望成为主要制氢方式。然而,目前微生物发酵产氢工业中的产氢成本较高、滞后期较长、反应周期较长、底物发酵转化率较低等是影响其应用的重要原因。
因此,需要研究更有利于微生物发酵产氢的方法。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种利用希瓦氏菌提高梭菌发酵产氢效率的方法。
本发明的另一目的在于提供上述利用希瓦氏菌提高梭菌发酵产氢效率的方法的应用。
本发明的目的通过下述技术方案实现:
一种利用希瓦氏菌提高梭菌发酵产氢效率的方法,包括如下步骤:将梭菌和希瓦氏菌接种于暗发酵培养基,避光厌氧发酵,得到氢气。
所述的避光厌氧发酵包括在静置条件下避光厌氧发酵和在振荡条件下避光厌氧发酵;优选为在振荡条件下避光厌氧发酵。
所述的振荡的转速优选为100~300rpm;更优选为200rpm。
所述的梭菌优选为巴氏梭菌;更优选为巴氏梭菌DSM 525。
所述的梭菌优选为处于对数生长期的梭菌种子液。
所述的梭菌种子液优选通过如下步骤制备得到:将梭菌保藏菌种接种于厌氧种子培养基中,得到培养液,厌氧富集培养,得到梭菌种子液。
所述的梭菌保藏菌种接种的量为厌氧种子培养基体积的1~10%;优选为5%。
所述的厌氧种子培养基的组成优选如下:蛋白胨 0.5~1 g/L,NaCl 4~6 g/L,K2HPO41.8~2.2 g/L,KH2PO40.4~0.6 g/L,半胱氨酸盐酸盐 0.4~0.6 g/L,2-(N-吗啡啉)乙磺酸 38~42mM,微量元素浓缩液 9~11 mL/L,葡萄糖10~30mM,pH=5.8~6.2;更优选如下:NaCl 5 g/L,K2HPO42.1 g/L,KH2PO40.544 g/L,微量元素浓缩液 10 mL/L,半胱氨酸盐酸盐 0.5 g/L,蛋白胨 1 g/L,2-(N-吗啡啉)乙磺酸 40mM,葡萄糖10 mM,pH=6。
所述的厌氧富集培养的条件优选如下:在厌氧条件下于35~40℃避光静置培养;更优选为在厌氧条件下于37℃避光静置培养。
所述的厌氧条件是将装有培养液的容器的顶空气体置换为氮气得到。
所述的厌氧富集培养的培养时间优选为10~14 h;更优选为12 h。
所述的希瓦氏菌优选为奥奈达湖希瓦氏菌MR-1。
所述的希瓦氏菌优选为重悬洗涤后的处于对数生长期的希瓦氏菌种子液。
所述的希瓦氏菌种子液优选通过如下步骤制备得到:将希瓦氏菌保藏菌种接种于好氧种子培养基中,好氧富集培养,固液分离,得到希瓦氏菌菌体;然后用暗发酵培养基重悬洗涤希瓦氏菌,得到希瓦氏菌种子液。
所述的希瓦氏菌保藏菌种接种的量为好氧种子培养基体积的1~10%;优选为5%。
所述的好氧种子培养基的组成优选如下:NaCl 9~12 g/L、蛋白胨9~12g/L、酵母提取物4~6 g/L,pH=6.5~7.5,溶剂为水;更优选如下:NaCl 10 g/L、蛋白胨 10 g/L、酵母提取物 5 g/L,pH=7,溶剂为水。
所述的好氧富集培养的条件优选为:在好氧条件下于28~32℃避光以100~300rpm振荡培养;更优选为:在好氧条件下于30℃避光以200rpm振荡培养。
所述的固液分离的方式优选为离心。
所述的离心的条件优选为于4000~8000rpm离心1~5min;更优选为于5000rpm离心3min。
所述的梭菌的接种量为暗发酵培养基体积1~5%;更优选为暗发酵培养基体积1%。
所述的梭菌和所述的希瓦氏菌优选按生物量1:1~4配比。
所述的暗发酵培养基为磷酸盐缓冲、底物为葡萄糖的培养基;其组成优选如下:NaCl 4~6 g/L、K2HPO420~40mM、KH2PO420~40mM、微量元素浓缩液 9~11 mL/L、半胱氨酸盐酸盐 0.4~0.6 g/L、蛋白胨 0.5~1 g/L、葡萄糖10~30mM,pH=6.5~7.5;更优选如下:NaCl 5 g/L、K2HPO430mM、KH2PO430mM、微量元素浓缩液 10 mL/L、半胱氨酸盐酸盐 0.5 g/L、蛋白胨 1 g/L、葡萄糖10~30mM,pH=7。
微量元素浓缩液的组成如下:CaCl2·2H2O 0.2 g/L、MgCl2·6H2O 2 g/L、FeCl2·4H2O 40 mg/L、ZnCl21mg/L、MnCl2·4H2O 1 mg/L、CuCl2·2H2O 0.6 mg/L、Na2MoO41 mg/L、AlCl31 mg/L、CoCl3·6H2O 4 mg/L、硼酸饱和溶液 20 μL、浓度为12 mol/L的浓盐酸 20 μL、生物素0.04 mg/L、叶酸 0.04 mg/L、维生素B60.2 mg/L、核黄素0.1 mg/L、维生素B1 0.1mg/L、烟酸 0.1 mg/L、维生素B120.1 mg/L、对氨基苯甲酸(4-氨基苯甲酸) 0.1 mg/L、泛酸0.1 mg/L。
所述的厌氧的环境是在将梭菌和希瓦氏菌接种于暗发酵培养基后用氮气除去培养容器中的氧气得到。
所述的避光厌氧发酵的温度优选为35~40℃;更优选为37℃。
所述的避光厌氧发酵的时间优选为24 h以上;更优选为24~48 h。
上述利用希瓦氏菌提高梭菌发酵产氢效率的方法在氢气制备中的应用。
本发明相对于现有技术具有如下的优点及效果
(1)本发明提供的方法,可以极大缩短延滞期,高效提高梭菌发酵产氢效率,有推广潜质;
(2)由于本发明所使用的希瓦氏菌MR-1分布广泛且易于富集,有利于降低发酵产氢的成本;
(3)本发明所提供的方法具有操作简便、实用性强的特点,有利于大规模的工业应用。
附图说明
图1是在静置培养时希瓦氏菌MR-1对巴氏梭菌DSM525的影响结果图;其中,(A)为生物量,(B)为产氢量,(C)为希瓦氏菌MR-1培养情况,(D)为最大产氢速率,(E)为发酵周期;CK为对照组,即不加希瓦氏菌的组别。
图2是在振荡培养时希瓦氏菌MR-1对巴氏梭菌DSM525的影响结果图;其中,(A)为生物量,(B)为产氢量,(C)为平均产氢速率,(D)为发酵周期,(E)为乳酸产量。
图3是在振荡培养时在不同葡萄糖浓度下希瓦氏菌MR-1对巴氏梭菌DSM525的影响结果图;其中,(A)为生物量,(B)为产氢量,(C)为20 mM底物条件最大产氢速率,(D)为30 mM底物条件最大产氢速率。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)以巴氏梭菌(Clostridium pasteurianum)DSM 525(购置于德国微生物菌种保藏中心DSMZ,全称为Deutsche Sammlung von Mikroorganismen und Zellkulturen)为菌种,按5%(v/v)种子培养基的接种量将DSM 525接种于种子培养基,得到培养液,培养体系为20 mL培养液/120mL西林瓶,顶空气体置换为氮气,培养条件为37℃避光静置培养12 h,获得梭菌种子液。
种子培养基,其配方如下:
NaCl 5 g/L,K2HPO42.1 g/L,KH2PO40.544 g/L,微量元素浓缩液 10 mL/L,L-半胱氨酸盐酸盐 0.5 g/L,蛋白胨 1 g/L,2-(N-吗啡啉)乙磺酸 40mM,葡萄糖10 mM,pH=6,溶剂为去离子水。
微量元素浓缩液(1L)成分如下:
CaCl2·2H2O 0.2 g/L,MgCl2·6H2O 2 g/L,FeCl2·4H2O 40 mg/L,ZnCl21mg/L,MnCl2·4H2O 1 mg/L,CuCl2·2H2O 0.6 mg/L,Na2MoO41 mg/L,AlCl31 mg/L,CoCl3·6H2O 4mg/L,硼酸饱和溶液 20 μL,浓盐酸(12 mol/L) 20 μL,生物素0.04 mg/L,叶酸 0.04 mg/L,维生素B60.2 mg/L,核黄素0.1 mg/L,维生素B10.1 mg/L,烟酸 0.1 mg/L,维生素B120.1mg/L,对氨基苯甲酸0.1 mg/L,泛酸 0.1 mg/L,溶剂为去离子水。
(2)以奥奈达湖希瓦氏菌(Shewanella oneidensis)MR-1(在ATCC的编号为700550)按5%(v/v)种子培养基的接种量将MR-1接种于好氧种子培养基,得到培养液,培养体系为20 mL培养液/70 mL西林瓶,培养条件为30℃避光、200rpm摇床培养12 h,获得希瓦氏菌种子液。
好氧种子培养基,其配方如下:NaCl 10 g/L,蛋白胨 10 g/L,酵母提取物 5 g/L,pH=7,溶剂为去离子水。
(3)将梭菌种子液按1%培养基体积比接种到梭菌暗发酵培养基,按梭菌/希瓦氏菌的生物量比1:1、1:2、1:4接种不同比例经离心重悬洗涤的希瓦氏菌,得到培养液。培养体系为40 mL培养液/120 mL西林瓶,顶空气体置换为氮气,培养条件为37℃避光静置培养。所述的离心重悬洗涤的条件为:6000rpm下离心3分钟,用暗发酵培养基重悬;该操作重复两次。
暗发酵培养基(1L),其配方如下:
NaCl 5 g/L,K2HPO430mM,KH2PO430mM,微量元素浓缩液 10 mL/L,L-半胱氨酸盐酸盐 0.5 g/L,蛋白胨 1 g/L,葡萄糖10mM,pH=7,溶剂为去离子水。
微量元素浓缩液(1L)成分如下:CaCl2·2H2O 0.2 g/L,MgCl2·6H2O 2 g/L,FeCl2·4H2O 40 mg/L,ZnCl21mg/L,MnCl2·4H2O 1 mg/L,CuCl2·2H2O 0.6 mg/L,Na2MoO41mg/L,AlCl31 mg/L,CoCl3·6H2O 4 mg/L,硼酸饱和溶液 20 μL,浓盐酸(12 mol/L) 20 μL,生物素0.04 mg/L,叶酸 0.04 mg/L,维生素B60.2 mg/L,核黄素0.1 mg/L,维生素B10.1 mg/L,烟酸 0.1 mg/L,维生素B120.1 mg/L,对氨基苯甲酸 0.1 mg/L,泛酸 0.1mg/L,溶剂为去离子水。
(4)通过测定培养液OD600反映混菌生物量,通过稀释涂布法测定混菌中希瓦氏菌随发酵持续的浓度变化,通过气相色谱测定梭菌产氢量。
气相色谱分析方法:从西林瓶中取0.2 mL气体,利用气相色谱仪(安捷伦7820)对H2浓度进行测定。气相色谱仪以N2为载气,流速为10 mL·min-1,TCD检测器、进样口和柱温箱各温度设置分别为: 150℃、80℃和80℃。
产氢量计算方法:根据理想气体状态方程PV=nRT(P:气体分压;V:气体体积;n:气体物质的量;R:普适气体常数;T:气体温度),将气相色谱测定的数据换算成氢气摩尔质量。
最大产氢速率计算方法:根据Gompertz发酵模型H=Pexp{-exp[Rme(λ-t)/P+1]}(H:累积产氢量;P:氢势;Rm:最大产氢速率;λ:滞后期),将氢气随时间的变化趋势进行拟合获得最大产氢速率。
平均产氢速率计算方法:根据最大产氢量与达到最大产氢量所需时间的比值获得平均产氢速率。
(5)结果如图1所示:反应26 h,纯培养梭菌的对照组(CK)和添加1%、2%、4%希瓦氏菌的实验组的氢气产量依次为0.52、0.53、0.54、0.54 mmol,分别在18 h、14 h、14 h、14 h达到产氢平台期;混菌发酵时希瓦氏菌菌体浓度维持在约2.2×107个/mL,无明显增加,这一结果说明总生物量变化反映的是梭菌生物量变化;相比于纯培养梭菌的对照组,额外添加希瓦氏菌使发酵时间缩短约23.3%,添加1%、2%、4%希瓦氏菌的实验组的最大产氢速率依次为0.11、0.12、0.13 mmol/h,相较对照组的最大产氢速率(0.09 mmol/h)提升了22.2%~44.4%。这一结果说明希瓦氏菌能够提高巴氏梭菌DSM525的暗发酵制氢速率,且混合培养时希瓦氏菌无法生长繁殖。
实施例2
(1)梭菌和希瓦氏菌菌种、富集方法及种子培养基配方同实施例1,暗发酵培养基配方同实施例1。
(2)将梭菌种子液按1%培养基体积比接种到梭菌暗发酵培养基,按梭菌/希瓦氏菌的生物量1:2添加经离心重悬洗涤的希瓦氏菌,得到培养液。培养体系为40 mL培养液/120mL西林瓶,顶空气体置换为氮气,培养条件为37℃避光200rpm振荡培养。同时,设置只有梭菌(即未添加希瓦氏菌)的组别为对照组。
(3)通过液相色谱测定梭菌乳酸产量。
液相色谱分析方法:从西林瓶中取0.2 mL液体,7200rpm、5min离心后取上清液经0.22μm滤膜过滤到液相色谱瓶。利用液相色谱仪(安捷伦1260)对乳酸浓度进行测定。色谱柱的温度保持在50℃,流速为 0.5 mL/min。使用所分析的有机酸钠盐(乳酸钠:S817880,上海麦克林)溶液作为外标。
(4)梭菌生物量及产氢量的测定方法同上,结果如图2所示:培养到30 h 后,添加或未添加希瓦氏菌实验组氢气产量均为0.7mmol左右;分别在约18 h和24 h 达到产氢平台期;延滞期分别为0 h和6 h。相比于梭菌纯菌对照组,额外添加希瓦氏菌使梭菌发酵结束时间缩短约25%,平均产氢速度增加约33.3%;额外添加希瓦氏菌时,发酵体系乳酸产量极低(约0.01mM),无法满足希瓦氏菌的厌氧生长需求。结合实施例1,这一结果说明振荡可以提升巴氏梭菌发酵产氢量,但是会抑制其生长,延长发酵周期。希瓦氏菌的加入可以大幅度改善这一情况,显著提升梭菌产氢速率,且希瓦氏菌无法以消耗梭菌的有机酸代谢产物的方式增强发酵产氢。
实施例3
(1)梭菌和希瓦氏菌菌种、富集方法及种子培养基配方同实施例1。
(2)分别制备含20 mM葡萄糖的暗发酵培养基和含30 mM葡萄糖的暗发酵培养基,此处的暗发酵培养基与实施例1的暗发酵培养基的区别仅在于葡萄糖浓度不同。将梭菌种子液按1%培养基体积比分别接种到含20 mM葡萄糖的暗发酵培养基和含30 mM葡萄糖的暗发酵培养基。按梭菌/希瓦氏菌生物量1:2接种经离心重悬洗涤的希瓦氏菌,得到培养液。培养体系为40 mL培养液/120 mL西林瓶,顶空气体置换为氮气,培养条件为37℃避光200rpm振荡培养。同时,设置只有梭菌(即未添加希瓦氏菌)的组别为对照组。
(3)梭菌生物量及产氢量的测定方法同上,结果如图3所示:培养40 h后,底物为20mM葡萄糖并接种希瓦氏菌的实验组到达产氢平台期所需时间约为15h,相比于梭菌纯菌对照组的约30h缩短了52.3%,实验组最大产氢速率为0.32 mmol/h,相比纯梭菌对照组的最大产氢速率0.11 mmol/h,增大161.7%;底物为30mM葡萄糖并接种希瓦氏菌的到达产氢平台期所需时间为约20 h,相比于纯梭菌对照组(约33h)缩短了39.0%,实验组最大产氢速率为0.30 mmol/h,相比纯梭菌对照组(0.18 mmol/h)增大67.4%。结合实施例2,这一结果说明振荡反应条件,不同底物浓度下希瓦氏菌均具有提升梭菌发酵最大产氢速率、缩短反应周期的效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种利用希瓦氏菌提高梭菌发酵产氢效率的方法,其特征在于包括如下步骤:将梭菌和希瓦氏菌接种于暗发酵培养基,避光厌氧发酵,得到氢气;
所述的梭菌的接种量为暗发酵培养基体积1~5%;
所述的梭菌和所述的希瓦氏菌按生物量1:1~4配比;
所述的暗发酵培养基为的组成如下:NaCl 4~6 g/L、K2HPO4 20~40mM、KH2PO4 20~40mM、微量元素浓缩液 9~11 mL/L、半胱氨酸盐酸盐 4~0.6 g/L、蛋白胨 0.5~1 g/L、葡萄糖10~30 mM,pH=6.5~7.5;
微量元素浓缩液的组成如下:CaCl2·2H2O 0.2 g/L、MgCl2·6H2O 2 g/L、FeCl2·4H2O40 mg/L、ZnCl2 mg/L、MnCl2·4H2O 1 mg/L、CuCl2·2H2O 0.6 mg/L、Na2MoO4 1 mg/L、AlCl31 mg/L、CoCl3·6H2O 4 mg/L、硼酸饱和溶液 20 μL、浓度为12 mol/L的浓盐酸 20 μL、生物素0.04 mg/L、叶酸 0.04 mg/L、维生素B6 0.2 mg/L、核黄素0.1 mg/L、维生素B1 0.1 mg/L、烟酸 0.1 mg/L、维生素B12 0.1 mg/L、对氨基苯甲酸0.1 mg/L、泛酸 0.1 mg/L;
所述的希瓦氏菌为奥奈达湖希瓦氏菌MR-1;
所述的梭菌为巴氏梭菌DSM 525;
所述的厌氧的环境是在将梭菌和希瓦氏菌接种于暗发酵培养基后用氮气除去培养容器中的氧气得到;
所述的避光厌氧发酵的温度为37℃;
所述的避光厌氧发酵的时间为24~48 h。
2.根据权利要求1所述的利用希瓦氏菌提高梭菌发酵产氢效率的方法,其特征在于:
所述的避光厌氧发酵是在振荡条件下避光厌氧发酵;
所述的振荡的转速为100~300 rpm。
3.根据权利要求1或2所述的利用希瓦氏菌提高梭菌发酵产氢效率的方法,其特征在于:
所述的梭菌为处于对数生长期的梭菌种子液;
所述的希瓦氏菌为重悬洗涤后的处于对数生长期的希瓦氏菌种子液。
4.根据权利要求3所述的利用希瓦氏菌提高梭菌发酵产氢效率的方法,其特征在于:
所述的梭菌种子液通过如下步骤制备得到:将梭菌保藏菌种接种于厌氧种子培养基中,得到培养液,厌氧富集培养,得到梭菌种子液;
所述的厌氧种子培养基的组成如下:蛋白胨 0.5~1 g/L,NaCl 4~6 g/L,K2HPO4 1.8~2.2 g/L,KH2PO4 0.4~0.6 g/L,半胱氨酸盐酸盐 0.4~0.6 g/L,2-(N-吗啡啉)乙磺酸38~42 mM,微量元素浓缩液 9~11 mL/L,葡萄糖10~30 mM,pH=5.8~6.2;
所述的希瓦氏菌种子液通过如下步骤制备得到:将希瓦氏菌保藏菌种接种于好氧种子培养基中,好氧富集培养,固液分离,得到希瓦氏菌菌体;然后用暗发酵培养基重悬洗涤希瓦氏菌,得到希瓦氏菌种子液;
所述的好氧种子培养基的组成如下:NaCl 9~12 g/L、蛋白胨9~12 g/L、酵母提取物4~6 g/L,pH=6.5~7.5,溶剂为水。
5.根据权利要求4所述的利用希瓦氏菌提高梭菌发酵产氢效率的方法,其特征在于:
所述的厌氧富集培养的条件如下:在厌氧条件下于35~40 ℃避光静置培养;
所述的好氧富集培养的条件为:在好氧条件下于28~32 ℃避光以100~300 rpm振荡培养;
所述的固液分离的方式为离心。
6.根据权利要求2所述的利用希瓦氏菌提高梭菌发酵产氢效率的方法,其特征在于:所述的振荡的转速为200 rpm。
7.权利要求1或2所述的利用希瓦氏菌提高梭菌发酵产氢效率的方法在氢气制备中的应用。
CN202410418355.6A 2024-04-09 2024-04-09 利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用 Active CN118006694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410418355.6A CN118006694B (zh) 2024-04-09 2024-04-09 利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410418355.6A CN118006694B (zh) 2024-04-09 2024-04-09 利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用

Publications (2)

Publication Number Publication Date
CN118006694A CN118006694A (zh) 2024-05-10
CN118006694B true CN118006694B (zh) 2024-07-05

Family

ID=90954372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410418355.6A Active CN118006694B (zh) 2024-04-09 2024-04-09 利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用

Country Status (1)

Country Link
CN (1) CN118006694B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988075A (zh) * 2010-12-14 2011-03-23 东南大学 一种利用专性厌氧巴氏梭菌发酵制氢的方法
CN114703233A (zh) * 2022-06-06 2022-07-05 广东省科学院生态环境与土壤研究所 一种提高梭菌发酵产氢效率的方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217023B (zh) * 2017-07-26 2020-05-05 中国科学院烟台海岸带研究所 多功能双酶梭菌及其应用
CN107904263B (zh) * 2017-12-19 2021-03-05 中国科学院烟台海岸带研究所 一种提高产氢菌氢产量的方法
AU2019253784B2 (en) * 2018-10-30 2022-03-31 Indian Oil Corporation Limited Engineered electrode for electrobiocatalysis and process to construct the same
CN109825459B (zh) * 2019-03-29 2021-09-14 天津科技大学 一株偶联产氢的异化铁还原细菌
CN114032253B (zh) * 2021-11-11 2024-04-05 哈尔滨工业大学 一种基于水凝胶包覆细菌聚集制氢的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988075A (zh) * 2010-12-14 2011-03-23 东南大学 一种利用专性厌氧巴氏梭菌发酵制氢的方法
CN114703233A (zh) * 2022-06-06 2022-07-05 广东省科学院生态环境与土壤研究所 一种提高梭菌发酵产氢效率的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Respiratory electrogen Geobacter boosts hydrogen production efficiency of fermentative electrotroph Clostridium pasteurianum;Yuechao Zhang等;Chemical Engineering Journal;20230115;第456卷;第1页摘要、第2页右栏和第8页右栏 *

Also Published As

Publication number Publication date
CN118006694A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
Zhang et al. Uptake and mass balance of trace metals for methane producing bacteria
KR20110033193A (ko) 혐기성 미생물 발효에 의한 부탄디올의 생산 방법
Xie et al. The kinetic characterization of photofermentative bacterium Rhodopseudomonas faecalis RLD-53 and its application for enhancing continuous hydrogen production
CN106554931B (zh) 一株拜氏羧菌及其应用
CN107663529B (zh) 一种藻菌共培养提高光合微藻产氢量的方法
CN103045652B (zh) 利用微生物将褐煤转化为甲烷的方法
CN107746861B (zh) 一种(r)-1-(2-三氟甲基苯基)乙醇的生物制备方法
CN114703233B (zh) 一种提高梭菌发酵产氢效率的方法及其应用
Beckers et al. Fermentative hydrogen production by Clostridium butyricum CWBI1009 and Citrobacter freundii CWBI952 in pure and mixed cultures
Xu et al. Buffering action of acetate on hydrogen production by Ethanoligenens harbinense B49
Wang et al. Efficiency enhancement of H2 production by a newly isolated maltose-preferring fermentative bio-hydrogen producer of Clostridium butyricum NH-02
Zhao et al. An anaerobic sequential batch reactor for enhanced continuous hydrogen production from fungal pretreated cornstalk hydrolysate
Herzog et al. Novel synthetic co‐culture of Acetobacterium woodii and Clostridium drakei using CO2 and in situ generated H2 for the production of caproic acid via lactic acid
CN112358986B (zh) 一种丁酸梭菌及其在固定化发酵生产1,3-丙二醇的应用
CN118006694B (zh) 利用希瓦氏菌提高梭菌发酵产氢效率的方法及其应用
Wang et al. Research on separation, identification, and kinetic characterization of mixed photosynthetic and anaerobic culture (MPAC) for hydrogen production
CN102041274A (zh) 一种利用专性厌氧丁酸梭菌发酵制氢的方法
CN117965645B (zh) 一种提升梭菌发酵产氢速率及产氢量的方法及应用
CN111411135B (zh) 嘌呤的发酵生产工艺
WO2019072955A1 (en) PROCESS FOR THE PRODUCTION OF ALCOHOLS
WO2019041567A1 (zh) 一株高产丁醇梭菌及其筛选与应用
CN114015602A (zh) 一种生物质光合产氢混合菌群的制备方法
CN112522327A (zh) 一种利用多底物代谢特性微生物连续制备甲醇的方法
CN112725233A (zh) 一株生产2,5-呋喃二甲醇的菌株及其应用
Oliveira et al. Insights Into the effect of carbon and nitrogen source on hydrogen production by photosynthetic bacteria

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant