CN107217023B - 多功能双酶梭菌及其应用 - Google Patents

多功能双酶梭菌及其应用 Download PDF

Info

Publication number
CN107217023B
CN107217023B CN201710616105.3A CN201710616105A CN107217023B CN 107217023 B CN107217023 B CN 107217023B CN 201710616105 A CN201710616105 A CN 201710616105A CN 107217023 B CN107217023 B CN 107217023B
Authority
CN
China
Prior art keywords
clostridium
strain
clostridium bifermentans
bifermentans
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710616105.3A
Other languages
English (en)
Other versions
CN107217023A (zh
Inventor
刘芳华
张月超
王欧美
杨翠云
肖雷雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Institute of Coastal Zone Research of CAS
Original Assignee
Yantai Institute of Coastal Zone Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Institute of Coastal Zone Research of CAS filed Critical Yantai Institute of Coastal Zone Research of CAS
Priority to CN201710616105.3A priority Critical patent/CN107217023B/zh
Publication of CN107217023A publication Critical patent/CN107217023A/zh
Application granted granted Critical
Publication of CN107217023B publication Critical patent/CN107217023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明属于微生物技术领域,具体涉及一种多功能新型双酶梭菌及其在发酵产氢、提高乙酸产量中的应用。菌株为双酶梭菌Clostridium bifermentans EZ‑1,保藏号为CGMCC NO.13913。本发明所得菌能利用葡萄糖产生清洁燃料氢气以及乙酸和丁酸等代谢产物。适当浓度纳米磁铁矿和水铁矿的添加可以调节该菌代谢途径从而增加乙酸产量。通过微生物燃料电池检测发现,该菌株具有产电能力,最大电流输出密度可达6.3mA/m2。该菌株是目前报道的首例多功能新型双酶梭菌,可应用于生物质发酵产氢、乙酸和丁酸等生物制品且具有产电潜力,具有广阔的应用前景。

Description

多功能双酶梭菌及其应用
技术领域
本发明属于微生物技术领域,具体涉及一种多功能新型双酶梭菌及其在发酵产氢、提高乙酸产量中的应用。
背景技术
双酶梭菌是一种严格厌氧的发酵产氢菌,可以利用葡萄糖等发酵底物产生氢气和挥发性短链脂肪酸,其革兰氏染色为阳性。
随着化石燃料使用带来的气候变化和空气污染问题日益凸显,生物氢因其清洁可再生且具有高燃烧热(122kJ/g)等特点,因此,具有巨大的应用前景。生物氢主要由产氢微生物通过暗发酵产生,这类微生物主要有梭菌属Clostridium、肠杆菌属Enterobacter和芽孢杆菌属Bacillus 等,其中梭菌属因其底物多样,易于培养,产氢量高等特点受到广泛关注和研究。然而,氢气产量低、速率慢仍是制约大规模生物制氢产业发展的瓶颈,因此,新型高效产氢菌的分离是走出当前困境的重要途径。
异化铁还原菌是一类具备将胞内有机物氧化和胞外变价金属矿物中高价金属还原藕联发生能力的微生物,在此藕联过程中,胞外矿物作为电子受体接收来自胞内有机物氧化产生的电子从而完成电子的传递过程。根据胞外传递的电子能否用于微生物的能量代谢,异化铁还原菌可分为,呼吸型异化铁还原菌和发酵型异化铁还原菌,前者胞外电子传递过程藕联呼吸链产生能量,而后者没有能量的储存。这种微生物氧化有机物产生的电子传递到胞外还原变价矿物中高价金属离子的过程称为胞外电子传递。相比革兰氏阳性发酵型的异化铁还原菌,革兰氏阴性呼吸型的异化铁还原菌胞外电子传递的机制研究已经取得了重大进展,而革兰氏阳性菌因其具有较厚的细胞壁及荚膜结构,胞外电子传递过程的研究相对困难。
电活性微生物是一类能够产生电流或接收电流从而完成生命代谢活动的微生物,已有的研究结果表明,尽管很多异化铁还原菌具有电活性,但并不是所有的异化铁还原菌都具有产生电流的能力。目前发现的电活性微生物主要集中于革兰氏阴性地杆菌属Geobacter和希瓦氏菌属 Shewanella,而具有电化学活性的革兰氏阳性梭菌Clostridium却很少有报道。
发明内容
本发明的目的在于提供一种多功能双酶梭菌及其应用。
为实现上述目的,本发明采用技术方案为:
一种多功能双酶梭菌,菌株为双酶梭菌Clostridium bifermentans EZ-1,已于2017年3月22日保藏于中国微生物菌种保藏管理委员会普通微生物中心,地址:北京市朝阳区北辰西路1号院3号,保藏号为 CGMCC NO.13913。所述双酶梭菌EZ-1株,Clostridiumbifermentans strain EZ-1,分离自黄河三角洲土壤。
所述菌株厌氧培养于PYG培养基中,培养基PYG成分为:蛋白胨: 0.2~5g/L,胰蛋白胨:0.2~5g/L,酵母提取物:0.2~10g/L,葡萄糖:5~10g/L,CaCl2:0.008g/L,MgSO4·7H2O:0.016g/L,K2HPO4: 0.04g/L,KH2SO4:0.04g/L,NaHCO3:0.04g/L,NaCl:5g/L,L-cysteine: 0.25g/L;温度:30℃;PH:6.3(±0.2)。
一种多功能双酶梭菌的应用,所述双酶梭菌在发酵产生氢气和挥发性短链脂肪酸中的应用。
所述双酶梭菌能够利用葡萄糖为底物快速生长并产生氢气、挥发性短链脂肪酸(乙酸和丁酸)。
一种多功能双酶梭菌的应用,所述双酶梭菌在还原三价铁中的应用。所述三价铁可为可溶性的(如,柠檬酸铁)、无定形的(如,水铁矿)、晶型的(如,磁铁矿)三价铁。
所述双酶梭菌作为异化铁还原菌在代谢产乙酸中的应用。
一种多功能双酶梭菌的应用,所述菌株在微生物燃料电池中的应用。
进一步的说是30℃,黑暗条件下,该菌在微生物燃料电池中具有电流输出的能力,最大电流输出密度可达6.3mA/m2
一种产氢气的方法,将双酶梭菌Clostridium bifermentans EZ-1 在利用葡萄糖于30~37℃厌氧发酵培养4~48h,即获得氢气和挥发性短链脂肪酸。
所述菌株以1~10%的接种量接种于PYG培养基中厌氧培养。
一种产乙酸的方法,将培养至对数生长期的双酶梭菌Clostridium bifermentansEZ-1接种至含纳米铁氧化物的PYG培养基中于30~37℃下黑暗培养4~48h,即获得乙酸。
所述纳米铁氧化物为磁铁矿和水铁矿,其中,培养基中磁铁矿(Fe3O4) 终浓度为2.5~10mm/L;水铁矿(FeOOH)终浓度为5.0~10mm/L;所述菌株(OD600=2)的接种量为1~10%。
本发明所具有的优点:
本发明中分离得到的双酶梭菌同时具备发酵产氢、产电和异化铁还原能力,是一株多功能新型菌株,具有广阔的应用领域,并且通过添加纳米铁氧化物,从而可改变该菌株代谢途径进而增强发酵产物乙酸途径;具体为:
1)本发明分离获得的能快速生长产氢的革兰氏阳性双酶梭菌Clostridiumbifermentans EZ-1,其特点在于易于培养,生长快且产氢速率高。同时具有异化铁还原和产电能力,是研究胞外电子传递的合适材料。此外,将有机质转换为电能具有广阔的应用前景。
2)本发明分离得到的双酶梭菌在适当浓度的金属氧化物、磁铁矿和水铁矿的存在下,可以调节代谢途径,增强发酵产物乙酸途径,这种通过添加金属氧化物来调节菌株代谢途径进而增强目标产物产量的方法具有较强的应用潜势。
附图说明
图1为本发明获得菌株(CGMCC NO.13913)在PYG固体培养皿上形成的单菌落形态图;
图2为本发明获得菌株(CGMCC NO.13913)在显微镜下(400×)形态图;
图3为本发明获得菌株(CGMCC NO.13913)的生长曲线(OD600)图;
图4为本发明获得菌株(CGMCC NO.13913)发酵产氢图;
图5为本发明获得菌株(CGMCC NO.13913)还原柠檬酸铁中三价铁图;
图6为本发明获得菌株(CGMCC NO.13913)还原纳米磁铁矿和水铁矿中的三价铁生成二价铁图;
图7为本发明获得菌株(CGMCC NO.13913)在不同浓度铁氧化物添加条件下,乙酸的生成情况图;
图8为本发明获得菌株(CGMCC NO.13913)在微生物燃料电池中产生电流图。
具体实施方式
通过附图说明和具体实施例对本发明的内容作进一步详细说明。
实施例1
双酶梭菌Clostridium bifermentans EZ-1的分离鉴定:
1)取富集的黄河三角洲土壤上清,按10-106倍梯度稀释,接种环蘸取稀释106倍的土壤上清,在含有2%琼脂糖PYG培养皿上进行分区划线, 30℃厌氧培养箱中培养24h~48h,得到单菌落,菌落呈圆形白色如图1 所示。
2)挑选单菌落移入20μL无菌水,取2μL菌悬液用于PCR扩增,剩余的18μL接入10mlPYG液体培养基中于30℃条件下暗培养24~48h,在倒置显微镜下观察细菌形态如图2所示。
3)PCR体系:2μL buffer缓冲液;2μLdNTP底物;0.5μLTaq酶; 0.5μLBa907r反向引物;0.5μLBa27F正向引物;2μL单菌落悬浊液模板;2.5μL无菌水。
PCR程序:95℃,5min,细菌裂解,DNA解链;55℃,30s,复性,引物及酶结合;72℃,1.5min,延伸;循环30次。
引物:反向引物Ba907r:5’-AGA GTT TGA TCC TGG CTC AG-3’;正向引物Ba27F:5’-CCG TCA ATT CCT TTR AGT TT-3’。
4)16SrDNA测序,将测序结果在Greengens上进行序列比对,结果显示该菌与双酶梭菌Clostridium bifermentans有97.99%的相似性。
实施例2
双酶梭菌Clostridium bifermentans EZ-1厌氧发酵及产物鉴定:
1)培养基PYG:蛋白胨:0.2~5g/L,胰蛋白胨:0.2~5g/L,酵母提取物:0.2~10g/L,葡萄糖:5~10g/L,CaCl2:0.008g/L, MgSO4·7H2O:0.016g/L,K2HPO4:0.04g/L,KH2SO4:0.04g/L,NaHCO3: 0.04g/L,NaCl:5g/L,L-cysteine:0.25g/L;PH 6.3(±0.2)
2)将上述PYG培养基分装于25ml血清瓶中,每瓶10ml,加硅胶塞。除氧:抽真空6min,冲氮气30s;抽真空3min,冲氮气30s;抽真空1min,冲氮气30s。铝盖密封,121℃,20min高压蒸汽灭菌。
3)向除氧注射器中接种双酶梭菌Clostridium bifermentans EZ-1,接种量为1%,进行生长情况测定,结果如图3所示。取200μL顶部气体进行气相色谱(GC)检测,检测结果如图4所示;取100μL液体,去离子水稀释10×后进行高效液相色谱检测(HPLC),检测结果如图5所示。
由上述各图可见,该双酶梭菌在PYG液体培养基37℃暗培养条件下,能快速发酵葡萄糖产生氢气、乙酸和丁酸生物制品,相比已报道的暗发酵产氢梭菌,该菌可将发酵延滞期缩短到4h以内。
实施例3
双酶梭菌Clostridium bifermentans EZ-1异化铁还原能力检测:
1)向高压蒸汽灭菌后的PYG培养基中分别添加:磁铁矿(Fe3O4)终浓度为2.5~10mm/L;水铁矿(FeOOH)终浓度为5.0~10mm/L;柠檬酸铁终浓度为10~40mm/L。
2)而后接种在PYG液体培养基中培养至对数期的双酶梭菌,接种量为1%,30℃,黑暗培养48h。
3)用菲啰嗪法检测培养前后培养基中二价铁浓度的变化情况如图6 所示。
由上述各图可见,该双酶梭菌具有较强的铁还原能力,不仅能将可溶性和无定形铁还原,还能将纳米磁铁矿中的晶型铁还原。可见该菌株革兰氏阳性菌双酶梭菌均有对三价铁的还原能力,尤其是对晶型铁纳米磁铁矿的还原能力显著。
实施例4
纳米铁氧化物调节双酶梭菌Clostridium bifermentans EZ-1代谢途径,增强乙酸产量:
1)向高压蒸汽灭菌后的PYG培养基中分别添加:磁铁矿(Fe3O4)终浓度为2.5~10mm/L;水铁矿(FeOOH)终浓度为5.0~20mm/L。
2)而后接种在PYG液体培养基中培养至对数期的双酶梭菌,接种量为1%,30℃,黑暗培养48h。
3)HPLC检测不同浓度铁氧化添加对乙酸生成量的影响情况结果如图 7所示。
由上述各图可见,纳米铁氧化物可以调节该双酶梭菌的代谢途径,在磁铁矿(Fe3O4)终浓度为2.5~10mm/L,水铁矿(FeOOH)终浓度为5.0~ 20mm/L时,这两种纳米铁氧化物可以增强产乙酸代谢途径,从而提高乙酸的产量;而当铁氧化物的浓度过高时则会抑制双酶梭菌的发酵过程,如添加20mm/L水铁矿,48h后葡萄糖有残留。
实施例5
双酶梭菌Clostridium bifermentans EZ-1电化学活性检测:
1)组建“H”型微生物燃料电池,以石墨片(30mm×25mm×3mm)作为电极,外电路连接1KΩ电阻,以质子交换膜将阴阳两室隔开,阳极为 PYG液体培养基,阴极为铁氰化钾溶液。
2)微生物燃料电池阳极室接种1%的在PYG液体培养基中培养至指数期的双酶梭菌,将连有多行扫描器的数字电压表的正负极分别连接到微生物燃料电池的阳极和阴极,每30s记录一次电压,结果如图8所示。
由图8可见,该双酶梭菌具有产电能力,最大电流输出密度可达 6.3mA/m2。可见菌株双酶梭菌Clostridium bifermentans具有一定的电活性。

Claims (10)

1.一种多功能双酶梭菌,其特征在于:菌株为双酶梭菌Clostridium bifermentans EZ-1,已于2017年3月22日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏号为 CGMCC NO.13913。
2.按权利要求1所述的多功能双酶梭菌,其特征在于:所述菌株厌氧培养于PYG培养基中,培养基PYG成分为:蛋白胨:0.2~5 g/L,胰蛋白胨 :0.2~5 g/L,酵母提取物 :0.2~10g/L,葡萄糖 :5~10 g/L,CaCl2 :0.008 g/L,MgSO4·7H2O :0.016 g/L,K2HPO4:0.04g/L,KH2SO4 :0.04 g/L,NaHCO3 :0.04 g/L,NaCl :5g/L,L-cysteine :0.25 g/L;温度:30℃;PH:6.3±0.2。
3.一种权利要求1所述的多功能双酶梭菌的应用,其特征在于:所述双酶梭菌在发酵产生氢气和挥发性短链脂肪酸中的应用。
4.一种权利要求1所述的多功能双酶梭菌的应用,其特征在于:所述双酶梭菌在还原三价铁中的应用。
5.一种权利要求2所述的多功能双酶梭菌的应用,其特征在于:所述双酶梭菌作为异化铁还原菌在代谢产乙酸中的应用。
6.一种权利要求1所述的多功能双酶梭菌的应用,其特征在于:所述菌株在微生物燃料电池中的应用。
7.一种产氢气的方法,其特征在于:将双酶梭菌Clostridium bifermentans EZ-1在利用葡萄糖于30~37℃厌氧发酵培养4~48h,即获得氢气和挥发性短链脂肪酸。
8.按权利要求7所述的产氢气的方法,其特征在于:所述菌株以1~10%的接种量接种于PYG培养基中厌氧培养。
9.一种产乙酸的方法,其特征在于:将培养至对数生长期的双酶梭菌Clostridium bifermentans EZ-1接种至含纳米铁氧化物的PYG培养基中于30~37℃下黑暗培养4~48h,即获得乙酸。
10.按权利要求9所述的产乙酸的方法,其特征在于:所述纳米铁氧化物为磁铁矿Fe3O4和水铁矿FeOOH,其中,培养基中磁铁矿Fe3O4终浓度为2.5~10mm/L;水铁矿FeOOH终浓度为5.0~10mm/L;所述菌株的OD600=2,菌株的接种量为1~10%。
CN201710616105.3A 2017-07-26 2017-07-26 多功能双酶梭菌及其应用 Active CN107217023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710616105.3A CN107217023B (zh) 2017-07-26 2017-07-26 多功能双酶梭菌及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710616105.3A CN107217023B (zh) 2017-07-26 2017-07-26 多功能双酶梭菌及其应用

Publications (2)

Publication Number Publication Date
CN107217023A CN107217023A (zh) 2017-09-29
CN107217023B true CN107217023B (zh) 2020-05-05

Family

ID=59953540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710616105.3A Active CN107217023B (zh) 2017-07-26 2017-07-26 多功能双酶梭菌及其应用

Country Status (1)

Country Link
CN (1) CN107217023B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904263B (zh) * 2017-12-19 2021-03-05 中国科学院烟台海岸带研究所 一种提高产氢菌氢产量的方法
WO2020014868A1 (zh) * 2018-07-17 2020-01-23 厦门昶科生物工程有限公司 一种双酶梭菌的高密度发酵的方法及双酶梭菌菌剂及其制备方法
CN110184310B (zh) * 2019-06-06 2023-03-14 中国科学院烟台海岸带研究所 一种调控厌氧污泥降解产乙酸和丁酸的方法
CN110408561B (zh) * 2019-07-08 2021-08-17 康美华大基因技术有限公司 一种丁酸梭菌及其应用与含有该丁酸梭菌的组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308789A (ja) * 1989-05-22 1990-12-21 Pub Works Res Inst Ministry Of Constr クロストリジウム・バイファーメンタンス
WO2005118775A1 (en) * 2004-06-04 2005-12-15 Kam Biotechnology Ltd. Methods and bacterial strains for producing hydrogen from biomass
WO2010056304A1 (en) * 2008-11-11 2010-05-20 University Of Maryland, College Park Process for producing lower alkyl alcohols from cellulosic biomass using microorganisms
CN103898031A (zh) * 2014-04-21 2014-07-02 南京工业大学 一株高产电的拜氏梭菌及其应用
WO2015095241A3 (en) * 2013-12-16 2015-10-15 Seres Therapeutics, Inc. Bacterial compositions and methods of use thereof for treatment of immune system disorders
CN105441356A (zh) * 2015-12-09 2016-03-30 河北省科学院生物研究所 一种双酶梭菌z-13及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308789A (ja) * 1989-05-22 1990-12-21 Pub Works Res Inst Ministry Of Constr クロストリジウム・バイファーメンタンス
WO2005118775A1 (en) * 2004-06-04 2005-12-15 Kam Biotechnology Ltd. Methods and bacterial strains for producing hydrogen from biomass
WO2010056304A1 (en) * 2008-11-11 2010-05-20 University Of Maryland, College Park Process for producing lower alkyl alcohols from cellulosic biomass using microorganisms
WO2015095241A3 (en) * 2013-12-16 2015-10-15 Seres Therapeutics, Inc. Bacterial compositions and methods of use thereof for treatment of immune system disorders
CN103898031A (zh) * 2014-04-21 2014-07-02 南京工业大学 一株高产电的拜氏梭菌及其应用
CN105441356A (zh) * 2015-12-09 2016-03-30 河北省科学院生物研究所 一种双酶梭菌z-13及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
异化铁还原梭菌Clostridium bifermentans EZ-1 产氢与电化学特性;张月超等;《微生物学报》;20180208;第58卷(第4期);第525-537页 *

Also Published As

Publication number Publication date
CN107217023A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
CN107217023B (zh) 多功能双酶梭菌及其应用
Yu et al. Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2
Wang et al. Isolation of Fe (III)-reducing fermentative bacterium Bacteroides sp. W7 in the anode suspension of a microbial electrolysis cell (MEC)
Zhao et al. Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108
Gunaseelan et al. Blending of microbial inocula: An effective strategy for performance enhancement of clayware Biophotovoltaics microbial fuel cells
Rahimnejad et al. Low voltage power generation in a biofuel cell using anaerobic cultures
Najafpour et al. Bioconversion of whey to electrical energy in a biofuel cell using Saccharomyces cerevisiae
Zhang et al. Effects of the ecological factors on hydrogen production and [Fe–Fe]-hydrogenase activity in Ethanoligenens harbinense YUAN-3
CN101892180B (zh) 腐殖质还原棒杆菌及其应用
Han et al. Exploring power generation of single-chamber microbial fuel cell using mixed and pure cultures
Wang et al. Efficiency enhancement of H2 production by a newly isolated maltose-preferring fermentative bio-hydrogen producer of Clostridium butyricum NH-02
Im et al. Clostridium ljungdahlii as a biocatalyst in microbial electrosynthesis–effect of culture conditions on product formation
Yoganathan et al. Electrogenicity assessment of Bacillus subtilis and Bacillus megaterium using microbial fuel cell technology
US8003344B2 (en) Microbial hydrogen-producing process and system thereof
Borah et al. Construction of double chambered microbial fuel cell (MFC) using household materials and Bacillus megaterium isolate from tea garden soil
El-Rab et al. Costless and huge hydrogen yield by manipulation of iron concentrations in the new bacterial strain Brevibacillus invocatus SAR grown on algal biomass
Zhang et al. Synthetic biology strategies to improve electron transfer rate at the microbe–anode interface in microbial fuel cells
Hu et al. Research on the electrocatalytic reduction of CO2 by microorganisms with a nano-titanium carburizing electrode
CN108285881B (zh) 一种具有同步产电和反硝化活性的分支杆菌及其应用
Li et al. Improved hydrogen production of the downstream bioreactor by coupling single chamber microbial fuel cells between series-connected photosynthetic biohydrogen reactors
JP7359309B2 (ja) エンサイファおよびその生物発電における用途
US20130209986A1 (en) Method for enhancing butyrate production by clostridium tyrobutyricum
Hyun et al. Isolation and identification of an anaerobic dissimilatory Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1
Jeon et al. Electrochemical and biochemical analysis of ethanol fermentation of zymomonas mobilis KCCM11336
Mathuriya et al. Electricity generation by saccharomyces cerevisiae and clostridium acetobutylicumvia, microbial fuel cell technology: A comparative study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant