CN117795121A - 一种气相沉积设备及沉积薄膜的方法 - Google Patents

一种气相沉积设备及沉积薄膜的方法 Download PDF

Info

Publication number
CN117795121A
CN117795121A CN202180100853.0A CN202180100853A CN117795121A CN 117795121 A CN117795121 A CN 117795121A CN 202180100853 A CN202180100853 A CN 202180100853A CN 117795121 A CN117795121 A CN 117795121A
Authority
CN
China
Prior art keywords
deposited
baffle
vapor deposition
insulating
deposition apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180100853.0A
Other languages
English (en)
Inventor
范荣伟
林军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN117795121A publication Critical patent/CN117795121A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本申请的实施例提供一种气相沉积设备及沉积薄膜的方法,涉及半导体技术领域,可以解决利用现有的气相沉积设备沉积薄膜时,后续工艺中待沉积件边缘区域需要去除的薄膜容易残留,进而成为各类缺陷的源头的问题。该气相沉积设备包括壳体、基座、原料放置台、绝缘挡板和挡板固定架。壳体内部形成有密闭的空腔,基座位于空腔内,基座具有承载面,承载面用于承载待沉积件;原料放置台位于所述空腔内,用于固定待沉积材料;绝缘挡板设置于基座和原料放置台之间,用于遮挡待沉积件的边缘区域;挡板固定架与绝缘挡板连接,用于固定绝缘挡板。

Description

一种气相沉积设备及沉积薄膜的方法 技术领域
本申请涉及半导体技术领域,尤其涉及一种气相沉积设备及沉积薄膜的方法。
背景技术
气相沉积设备例如物理气相沉积(physical vapor deposition,PVD)设备、化学气相沉积(chemical vapor deposition,CVD)设备等是制备薄膜的重要设备之一,目前已广泛应用于各个领域中。例如,在半导体领域,制备半导体器件中晶体管的金属栅(metal gate)时,可以利用物理气相沉积设备形成金属薄膜,再对金属薄膜进行刻蚀形成金属栅。
然而,利用现有的气相沉积设备在待沉积件上沉积薄膜,例如制作金属栅,在晶圆上沉积金属薄膜Al(铝)时,由于金属薄膜Al在晶圆的中间区域和晶边区域都会沉积,而沉积在晶边区域的Al在后续工艺过程中不易去除,往往容易残留。这主要是由于光刻洗边、前段工艺的化学机械研磨(chemical mechanical polish,CMP)和刻蚀工艺等的工艺窗口偏差共同作用导致的,不可避免。而晶边残留的Al在后续工艺中,尤其是在接触孔回路(contact loop,CT loop)工艺中,受到干刻、湿法以及热应力作用等,其往往成为各类缺陷的源头,比如颗粒物缺陷、晶边薄膜剥落(peeling)缺陷、机械划伤(scratch)缺陷等。
发明内容
本申请的实施例提供一种气相沉积设备及沉积薄膜的方法,可以解决利用现有的气相沉积设备沉积薄膜时,后续工艺中待沉积件边缘区域需要去除的薄膜容易残留,进而成为各类缺陷的源头的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种气相沉积设备,该气相沉积设备包括壳体、基座、原料放置台、绝缘挡板和挡板固定架。其中,壳体内部形成有密闭的空腔,基座位于空腔内,基座具有承载面,承载面用于承载待沉积件;原料放置台位于所述空腔内,用于固定待沉积材料;绝缘挡板设置于基座和原料放置台之间,用于遮挡待沉积件的边缘区域;挡板固定架与绝缘挡板连接,用于固定绝缘挡板。本申请实施例提供的气相沉积设备例如可以是物理气相沉积设备、化学气相沉积设备或等离子体气相沉积设备等。由于气相沉积设备包括绝缘挡板,绝缘挡板可以遮挡放置在基座的承载面上的待沉积件的边缘区域,因而利用气相沉积设备在待沉积件上形成沉积材料时,在不影响边缘区域以外的其它区域沉积材料的正常沉积的同时,绝缘挡板可以阻挡沉积材料沉积在待沉积件的边缘区域,这样一来,便可以减少或避免因沉积在待沉积件的边缘区域的沉积材料在后续工艺过程不易去除,残留在待沉积件的边缘区域导致的各种缺陷问题。
在第一方面可能的实施方式中,绝缘挡板的形状为环状。在绝缘挡板的形状为环状的情况下,可以根据待沉积件的边界围成的图形的形状设计绝缘挡板的形状,这样一来,可以利用绝缘挡板将待沉积件的所有边缘区域均进行遮挡,从而可以减少或避 免待沉积件的所有边缘区域待沉积材料的沉积。
在第一方面可能的实施方式中,绝缘挡板为一体化结构,即绝缘挡板是一个整体,这样可以简化绝缘挡板的制作工序。或者,绝缘挡板包括多个子挡板,由于多个子挡板是相互独立的,因而通过调整多个子挡板的相对位置,便可以调整绝缘挡板遮挡的待沉积件的边缘区域的面积。此外,由于多个子挡板是相互独立的,因而在将待沉积件放置在基座的承载面上时,通过调整多个子挡板向远离基座的方向移动,从而便于将待沉积件放置在基座的承载面上。
在第一方面可能的实施方式中,绝缘挡板和挡板固定架可拆卸连接。这样可以根据需要更换绝缘挡板。例如,可以根据待沉积件的尺寸以及需要被绝缘挡板遮挡的区域面积更换可以与待沉积件匹配的绝缘挡板。又例如,为了避免沉积材料长时间沉积在绝缘挡板上导致绝缘挡板本身成为缺陷源,因而也可以更换绝缘挡板。
在第一方面可能的实施方式中,挡板固定架设置在绝缘挡板靠近基座的一侧,且挡板固定架与绝缘挡板的第一部分连接;其中,第一部分为绝缘挡板中远离用于遮挡待沉积件的部分。由于挡板固定架与绝缘挡板的第一部分连接,而第一部分为绝缘挡板中远离用于遮挡待沉积件的部分,这样可以避免因挡板固定架与待沉积件的距离太近,影响待沉积材料的走向,从而导致待沉积件上沉积的材料厚度不均匀的问题。
在第一方面可能的实施方式中,上述气相沉积设备还包括:支撑板,支撑板设置在绝缘挡板和挡板固定架之间;其中,挡板固定架在支撑板上的投影位于支撑板的边界内,且支撑板在绝缘挡板上的投影位于绝缘挡板的边界内或与绝缘挡板的边界重叠。由于挡板固定架在支撑板上的投影位于支撑板的边界内,因而支撑板在绝缘挡板上的投影的面积大于挡板固定架在绝缘挡板上的投影的面积,这样一来,相对于挡板固定架,支撑板可以增加对绝缘挡板的支撑面积,减缓绝缘挡板的弯曲。
在第一方面可能的实施方式中,支撑板的厚度为h1,绝缘挡板的厚度为h2;其中,0<h1≤10×h2。当支撑板和绝缘挡板的厚度满足关系0<h1≤10×h2时,可以避免因支撑板的厚度太大,影响待沉积材料的走向,从而导致待沉积件上沉积的材料厚度不均匀的问题。
在第一方面可能的实施方式中,挡板固定架设置在绝缘挡板靠近原料放置台的一侧;或者,挡板固定架设置在绝缘挡板靠近壳体的侧壁的一侧。在此情况下,挡板固定架可以与壳体的侧壁固定连接。
在第一方面可能的实施方式中,气相沉积设备还包括:升降支架,升降支架与绝缘挡板连接,升降支架用于带动绝缘挡板沿第一方向移动;其中,第一方向垂直于承载面。由于升降支架可以带动绝缘挡板沿第一方向X移动,因而升降支架可以根据需要调整绝缘挡板到基座的承载面的距离,也就是说,可以调整绝缘挡板到放置在基座的承载面上的待沉积件的距离。
在第一方面可能的实施方式中,挡板固定架复用为升降支架,此时,升降支架和挡板固定架可以集成在一起,为一体化结构,这样可以简化气相沉积设备的结构。或者,升降支架通过挡板固定架与绝缘挡板连接,升降支架用于带动挡板固定架和绝缘挡板同步沿第一方向移动,此时,升降支架和挡板固定架是相互独立的两个部件,在升降支架或挡板固定架损坏的情况下,便于更换升降支架或挡板固定架。
在第一方面可能的实施方式中,气相沉积设备还包括:至少一条气体管路;其中,气体管路用于提供气体流通路径,且气体管路中排出的气体用于防止待沉积材料沉积在待沉积件的边缘区域。由于气体管路中排出的气体会产生冲击力,该冲击力可以对待沉积材料作用,从而可以防止待沉积材料沉积在待沉积件的边缘区域。
在第一方面可能的实施方式中,气体管路的至少部分位于绝缘挡板靠近基座的一侧。由于位于绝缘挡板靠近基座的一侧的气体管路可以被绝缘挡板遮挡,从而可以防止待沉积材料沉积到气体管路上,不易清理,从而可以提高气体管路的寿命
在第一方面可能的实施方式中,挡板固定架包括腔体,气体管路的至少部分位于挡板固定架的腔体内。这样一来,位于挡板固定架的腔体内的气体管路可以被挡板固定架保护,从而可以提高气体管路的寿命。
在第一方面可能的实施方式中,绝缘挡板在承载面所在平面上的投影与承载面的边缘区域具有重叠区域。由于绝缘挡板用于遮挡待沉积件的边缘区域,因而待沉积件的部分必然伸入到绝缘挡板的下方,当绝缘挡板在承载面所在平面上的投影与承载面的边缘区域具有重叠区域的情况下,基座的承载面可以对待沉积件的全部或大部分进行支撑,可以减弱部分待沉积件因没有被承载面支撑导致的弯曲现象,从而可以减弱待沉积件因弯曲导致的待沉积件断裂、沉积材料厚度不均等问题。
在第一方面可能的实施方式中,气相沉积设备还包括:伸缩支架,伸缩支架与绝缘挡板连接,用于带动绝缘挡板沿第二方向移动;其中,第二方向平行于承载面。由于伸缩支架可以带动绝缘挡板沿第二方向移动,因而可以调整绝缘挡板遮挡的待沉积件的边缘区域的面积以及遮挡的待沉积件的位置。在此基础上,在绝缘挡板包括多个子挡板的情况下,通过伸缩支架调整多个子挡板向远离基座的方向移动,从而便于将待沉积件放置在基座的承载面上。
在第一方面可能的实施方式中,挡板固定架复用为伸缩支架,此时,伸缩支架和挡板固定架可以集成在一起,为一体化结构,这样可以简化气相沉积设备的结构。或者,伸缩支架通过挡板固定架与绝缘挡板连接,伸缩支架用于带动挡板固定架和绝缘挡板同步沿第二方向移动,此时,伸缩支架和挡板固定架是相互独立的两个部件,在伸缩支架或挡板固定架损坏的情况下,便于更换伸缩支架或挡板固定架。
在第一方面可能的实施方式中,气相沉积设备还包括:电磁线圈,电磁线圈设置于空腔内,电磁线圈用于产生磁场,磁场用于防止待沉积材料沉积在待沉积件的边缘区域。在待沉积材料沉积的过程中,磁场可以控制待沉积材料的走向,使待沉积材料沉积在待沉积件上,且可以防止待沉积材料沉积在待沉积件的边缘区域。另外,电磁线圈产生的磁场还可以对沉积到待沉积件上的沉积材料的均匀性进行调节,以使在待沉积件上形成的薄膜的厚度是均匀的。
在第一方面可能的实施方式中,挡板固定架包括腔体,电磁线圈设置于挡板固定架的腔体内,在此情况下,由于电磁线圈设置于挡板固定架的腔体内,因而挡板固定架可以对电磁线圈进行保护,提高电磁线圈的使用寿命。或者,电磁线圈绕挡板固定架设置,此时,电磁线圈设置在挡板固定架外,这样可以避免或减小到挡板固定架对电磁线圈产生的磁场的影响。
在第一方面可能的实施方式中,气相沉积设备还包括:射频线圈,射频线圈设置 于空腔内,射频线圈用于产生射频脉冲,射频脉冲用于防止待沉积材料沉积在待沉积件的边缘区域。在待沉积材料沉积的过程中,射频脉冲可以通过控制待沉积材料的走向,使待沉积材料沉积在待沉积件上,且防止待沉积材料沉积在待沉积件的边缘区域。另外,射频线圈还可以通过控制待沉积材料的走向,来提高沉积到待沉积件上的薄膜的厚度的均匀性。
在第一方面可能的实施方式中,挡板固定架包括腔体,射频线圈设置于挡板固定架的腔体内,在此情况下,由于射频线圈设置于挡板固定架的腔体内,因而挡板固定架可以对射频线圈进行保护,提高射频线圈的使用寿命。或者,射频线圈绕挡板固定架设置,此时,射频线圈设置在挡板固定架外,这样可以避免或减小到挡板固定架对射频线圈产生的射频脉冲的影响。
在第一方面可能的实施方式中,气相沉积设备还包括:移动支架,移动支架与原料放置台连接,用于带动原料放置台在空腔内移动,以调整待沉积件和放置在原料放置台上的待沉积材料的相对位置。在待沉积材料的沉积过程中,利用移动支架调整待沉积件和待沉积材料的相对位置,这样可以提高沉积到待沉积件上的沉积材料的均匀性。
第二方面,提供一种利用气相沉积设备在待沉积件上沉积薄膜的方法,气相沉积设备包括基座、原料放置台和绝缘挡板,绝缘挡板设置于基座和原料放置台之间;利用气相沉积设备在待沉积件上沉积薄膜的方法包括:首先,对放置在原料放置台上的待沉积材料进行处理,使待沉积材料形成原子、分子、离子或等离子体;接下来,利用绝缘挡板遮挡放置在基座上的待沉积件的边缘区域,以使原子、离子或等离子体沉积在待沉积件的未被绝缘挡板遮挡的区域。由于利用气相沉积设备在待沉积件上沉积薄膜的方法具有与上述第一方面提供的气相沉积设备相同的技术效果,因而可以参考上述第一方面的相关描述,此处不再赘述。
在第二方面可能的实施方式中,上述气相沉积设备还包括:升降支架,升降支架与绝缘挡板连接;对放置在所述原料放置台上的待沉积材料进行处理之前,上述方法还包括:利用升降支架带动绝缘挡板沿第一方向移动,调节绝缘挡板和待沉积件沿第一方向的相对位置;其中,第一方向垂直于基座的承载面,承载面用于承载待沉积件。可以参考上述第一方面的相关描述,此处不再赘述。
在第二方面可能的实施方式中,上述气相沉积设备还包括:伸缩支架;伸缩支架与绝缘挡板连接;对放置在原料放置台上的待沉积材料进行处理之前,上述方法还包括:利用伸缩支架带动绝缘挡板沿第二方向移动,调节被绝缘挡板遮挡的待沉积件的边缘区域的面积;其中,第二方向平行于基座的承载面,承载面用于承载待沉积件。可以参考上述第一方面的相关描述,此处不再赘述。
在第二方面可能的实施方式中,上述气相沉积设备还包括:至少一条气体管路;利用绝缘挡板遮挡放置在基座上的待沉积件的边缘区域之后,上述方法还包括:利用气体管路中排出的气体防止原子、离子或等离子体沉积在待沉积件的边缘区域。可以参考上述第一方面的相关描述,此处不再赘述。
在第二方面可能的实施方式中,上述气相沉积设备还包括:电磁线圈;利用绝缘挡板遮挡放置在基座上的待沉积件的边缘区域之后,上述方法还包括:利用电磁线圈 产生的磁场防止原子、离子或等离子体沉积在待沉积件的边缘区域。可以参考上述第一方面的相关描述,此处不再赘述。
在第二方面可能的实施方式中,上述气相沉积设备还包括:射频线圈;利用绝缘挡板遮挡放置在基座上的待沉积件的边缘区域之后,上述方法还包括:利用射频线圈产生的射频脉冲防止原子、离子或等离子体沉积在待沉积件的边缘区域。可以参考上述第一方面的相关描述,此处不再赘述。
在第二方面可能的实施方式中,上述气相沉积设备还包括:移动支架,移动支架与原料放置台连接;利用绝缘挡板遮挡放置所述基座上的待沉积件的边缘区域之后,上述方法还包括:利用移动支架带动原料放置台移动,以调整待沉积件和放置在原料放置台上的待沉积材料的相对位置。可以参考上述第一方面的相关描述,此处不再赘述。
附图说明
图1为相关技术提供的一种气相沉积设备的结构示意图;
图2为现有技术提供的晶边残留的Al导致的晶边薄膜剥落缺陷的示意图;
图3a为现有技术提供的沉积金属薄膜Al之前的晶圆的结构示意图;
图3b为现有技术提供的在晶圆的中间区域和晶边区域沉积金属薄膜Al的结构示意图;
图3c为现有技术提供的利用化学机械研磨工艺去除多余的Al的结构示意图;
图3d为现有技术提供的在金属Al上形成内介电层的结构示意图;
图3e为现有技术提供的利用化学机械研磨工艺去除多余的内介电层的结构示意图;
图3f为现有技术提供的位于Al上层的内介电层和位于Al下层的晶圆衬底Si分离的结构示意图;
图4为现有技术提供的晶边残留的Al导致的机械划伤缺陷的示意图;
图5为本申请的实施例提供的一种气相沉积设备的结构示意图;
图6为本申请的实施例提供的一种绝缘挡板的结构示意图;
图7为本申请的另一实施例提供的一种绝缘挡板的结构示意图;
图8a为本申请的又一实施例提供的一种绝缘挡板的结构示意图;
图8b为本申请的又一实施例提供的一种绝缘挡板的结构示意图;
图9a为本申请的实施例提供的一种沉积金属薄膜Al之前的晶圆的结构示意图;
图9b为本申请的实施例提供的一种沉积金属薄膜Al的结构示意图;
图9c为本申请的实施例提供的一种利用化学机械研磨工艺去除多余的Al的结构示意图;
图10为本申请的另一实施例提供的一种气相沉积设备的结构示意图;
图11a为本申请的又一实施例提供的一种气相沉积设备的结构示意图;
图11b为本申请的又一实施例提供的一种气相沉积设备的结构示意图;
图12a为本申请的又一实施例提供的一种气相沉积设备的结构示意图;
图12b为本申请的实施例提供的一种绝缘挡板和支撑板的结构示意图;
图13为本申请的又一实施例提供的一种气相沉积设备的结构示意图;
图14为本申请的又一实施例提供的一种气相沉积设备的结构示意图;
图15为图14中A处的放大示意图一;
图16为图14中A处的放大示意图二;
图17为本申请的又一实施例提供的一种气相沉积设备的结构示意图;
图18为本申请的实施例提供的一种利用气相沉积设备在待沉积件上沉积薄膜的方法的流程图。
附图标记:1-气相沉积设备;10-壳体;20-基座;30-绝缘挡板;40-挡板固定架;50-原料放置台;60-待沉积件;70-基座支撑架;80-待沉积材料;90-支撑板;100-升降支架;110-伸缩支架;120-射频线圈;130-气体管路;140-电磁线圈;150-移动支架;160-电源;201-承载面;301-子挡板。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“连接”可以是直接连接,也可以是通过中间媒介间接连接。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或“例如”等词旨在以具体方式呈现相关概念。
气相沉积设备是制备薄膜的重要设备之一,目前已广泛应用于各个领域中。图1为相关技术提供的一种气相沉积设备的剖面示意图,参考图1,该气相沉积设备的主要结构包括壳体、基座(pedestal)以及磁体(magnet)。壳体内部形成有密闭的空腔,空腔用于提供真空环境与沉积环境;基座用于放置待沉积件,例如晶圆;磁体用于固定靶材(target),靶材用于提供待沉积材料。利用相关技术提供的气相沉积设备在待沉积件上形成薄膜时,在待沉积件的中间区域和边缘区域都会沉积薄膜。相关技术提供的气相沉积设备只能调节中间区域和边缘区域沉积的薄膜的厚度均匀性,或者,调节边缘区域沉积的薄膜的厚度,而无法阻挡待沉积件边缘区域薄膜的沉积。然而,沉积在边缘区域的薄膜在后续工艺过程不易去除,往往容易残留,这主要是由于光刻洗边、前段工艺的化学机械研磨和刻蚀工艺等的工艺窗口偏差共同作用导致的,不可避免,边缘区域残留的薄膜在后续工艺中会成为各类缺陷的源头。
例如,在制备半导体器件中晶体管的金属栅时,与28LP(28nm low power process,28纳米低功耗工艺)相比,28HK(28nm high-K metal gate process,28纳米高介电常数金属栅工艺)引入了高介电常数(high-K,HK)金属栅工艺,由于Al的介电常数较高,因而Al是最常用的金属栅的材料之一。在制备半导体器件中晶体管的金属栅时,利用相关技术提供的气相沉积设备在晶圆上形成金属薄膜Al,由于金属薄膜Al在晶圆的中间区域和晶边区域都会沉积,而沉积在晶边区域的Al在后续工艺过程中不易去除,往往容易残留。而晶边区域残留的Al在后续工艺中,尤其是在接触孔回路(contact loop,CT loop)工艺中,受到干刻、湿法以及热应力作用等,其往往成为各类缺陷的源头,比如颗粒物缺陷、晶边薄膜剥落缺陷、机械划伤缺陷等。此外,在制备半导体器件中晶体管的其它膜层时,可能也会用到气相沉积设备,例如,可以利用物理气相 沉积设备形成接触孔中的阻挡层和粘结层。又例如,可以利用化学气相沉积设备形成晶体管中的介电层等。利用气相沉积设备制备半导体器件中晶体管的其它膜层时,同样也会存在因薄膜在晶边区域残留而成为各类缺陷的源头的问题。以下以利用气相沉积设备制备半导体器件中晶体管的金属栅为例,详细说明晶边区域残留的Al会导致各类缺陷的原因。
图2示意出了在利用CT loop工艺制作接触孔的过程中,由于受到干刻、湿法以及热应力作用等,晶边残留的Al导致的晶边薄膜剥落缺陷,即晶边残留的Al导致位于Al上层的薄膜和位于Al下层的薄膜分离。图3a~图3f说明了晶边残留的Al导致的晶边薄膜剥落缺陷的具体过程。在沉积金属薄膜Al之前,晶圆衬底Si上已经形成了很多层,需要说明的是,图3a~图3f中只示意出晶圆衬底Si,未示意其它层。图3a示意出了沉积金属薄膜Al之前的晶圆形貌图,由于在沉积金属薄膜Al之前,已经经过了多道工序,因此晶圆的晶边区域会不平整。图3b表示在晶圆的中间区域和晶边区域沉积金属薄膜Al。中间区域也可以称为有源区(active area,AA)。图3c表示利用化学机械研磨工艺去除多余的Al,从图3c可以看出,由于晶圆的晶边区域不平整,因而利用化学机械研磨工艺去除多余的Al时,晶边区域会残留Al。图3d表示在金属薄膜Al上形成内介电层(inter layer dielectric,ILD)。图3e表示利用化学机械研磨工艺去除多余的内介电层。图3f表示在利用CT loop工艺制作接触孔的过程中,晶边残留的Al导致位于Al上层的内介电层和位于Al下层的晶圆衬底Si分离。
图4示意出了在利用CT loop工艺制作接触孔的过程中,晶边残留的Al导致的机械划伤缺陷,这种机械划伤缺陷可能会导致不同的接触孔电连接在一起,从而会影响最终制备的半导体器件的性能。
为了解决晶边区域Al残留的问题,相关技术提供了两种解决方案,第一种:在沉积金属薄膜Al之前,先对晶圆的晶边区域进行晶边刻蚀(bevel etch)以使晶圆的晶边区域呈平整的状态,再形成二氧化硅(SiO 2)。由于在沉积金属薄膜Al之前,晶圆的晶边区域是平整的,因此在去除多余的Al的工序中,晶边的Al可以被去除掉,减少或避免晶边Al的残留。另外,二氧化硅可以增强Al与晶圆的粘附性,防止晶边残留的Al导致的剥落缺陷。第二种:如图3b所示在沉积完金属薄膜Al之后,如图3c所示在利用化学机械研磨工艺去除多余的Al之前,或者,如图3c所示在利用化学机械研磨工艺去除多余的Al之后,如图3d所示在金属Al上形成内介电层之前,增加一步晶边区域刻蚀过程,将晶边区域残留的Al刻蚀掉。
虽然第一种方案和第二种方案可以解决晶边区域Al残留的问题,但是这两种方案都需要增加额外的工艺步骤和设备,从而导致生产成本增加。此外,晶边区域刻蚀本身也会引入其他问题或具有引入缺陷的风险,例如,采用第一种方案对晶圆的晶边区域进行刻蚀时,会导致晶圆的晶边厚度均匀性调整变得困难,采用第二种方案对晶边残留的Al进行刻蚀时会存在引入铜析出的风险、可能会刻蚀掉中间区域的Al,工艺控制难度较大等。
为了解决利用相关技术提供的气相沉积设备在待沉积件上沉积薄膜时,在待沉积件的中间区域和边缘区域都会沉积薄膜,进而后续工艺中待沉积件边缘区域需要去除的薄膜容易残留,进而成为各类缺陷的源头的问题。本申请实施例提供一种气相沉积 设备,该气相沉积设备例如可以为物理气相沉积设备、化学气相沉积设备、等离子体化学气相沉积(plasma chemical vapor deposition,PCVD)设备等。本申请实施例对气相沉积设备的具体形式不作特殊限制。
以气相沉积设备为物理气相沉积设备为例,对利用物理气相沉积设备进行气相沉积的技术原理进行介绍。物理气相沉积设备是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使待沉积材料例如靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在待沉积件例如晶圆上。物理气相沉积技术的基本原理可以包括以下工艺步骤:首先,对待沉积材料进行处理,使待沉积材料形成原子、分子或离子,也就是使待沉积材料形成气化源;接下来,待沉积材料的原子、分子或离子的迁移,由气化源供出原子、分子或离子经过碰撞后,产生多种反应;接下来,待沉积材料的原子、分子或离子在待沉积件上沉积。
图5为本申请实施例提供的气相沉积设备1的剖面图,参考图5,本申请实施例提供的气相沉积设备1的主要结构包括:壳体10、基座20、绝缘挡板30、挡板固定架40和原料放置台50。
其中,上述壳体10内部形成有密闭的空腔,空腔用于提供真空环境与沉积环境。
上述基座20位于空腔内,基座20具有承载面201,承载面201用于承载待沉积件60,待沉积件60例如可以为晶圆。
在一些示例中,如图5所示,气相沉积设备1还包括基座支撑架70,基座支撑架70与基座20连接,用于支撑基座20。
此处,基座支撑架70可以设置在基座20背离承载面201的一侧。
此外,基座支撑架70可以是全部位于上述壳体10形成的空腔内,也可以是部分位于上述壳体10形成的空腔内,部分位于上述壳体10形成的空腔外。图5是以基座支撑架70全部位于壳体10形成的空腔内为例进行示意的。
另外,基座20和基座支撑架70可以是相互独立的结构件,也可以是一体化结构。在基座20和基座支撑架70为一体化结构的情况下,可以简化气相沉积设备1的制作工序。
上述原料放置台50位于空腔内,用于固定待沉积材料80,原料放置台50例如可以为磁体(magnet)、固定架等,以能固定和固定待沉积材料80为准。例如,在原料放置台50为磁体的情况下,可以利用磁体产生的磁场吸引待沉积材料80,以达到固定待沉积材料80的目的。又例如,在原料放置台50为固定架的情况下,固定架可以包括夹持部,可以利用固定架上的夹持部夹住待沉积材料80,以达到固定待沉积材料80的目的。此外,待沉积材料80例如可以为靶材(target)。
需要说明的是,原料放置台50可以设置于基座20的正上方,也可以不设置在基座20的正上方,例如靠近壳体10的侧壁设置。
上述绝缘挡板30设置于基座20和原料放置台50之间,用于遮挡待沉积件60的边缘区域。在待沉积件60为晶圆的情况下,绝缘挡板30用于遮挡晶圆的边缘区域,即晶圆的晶边区域。
可以理解的是,“绝缘挡板30设置于基座20和原料放置台50之间”,绝缘挡板30在原料放置台50所在平面上的投影与原料放置台50可以有重叠区域,也可以无重 叠区域;同样的,绝缘挡板30在基座20的承载面所在平面上的投影与基座20的承载面可以有重叠区域,也可以无重叠区域。
需要说明的是,对于绝缘挡板30遮挡的待沉积件60的边缘区域的面积不进行限定,可以根据需要进行设置。可以通过调整绝缘挡板30的尺寸、绝缘挡板30和待沉积件60沿平行于基座20的承载面的方向上的相对位置等,来调整绝缘挡板30遮挡的待沉积件60的边缘区域的面积,以实现对边缘区域不同范围的沉积屏蔽效果。以待沉积件60为晶圆为例,例如在晶圆的半径为150mm的情况下,可以遮挡晶圆的晶边区域宽度为2mm的圆环,或3mm的圆环等。
此处,绝缘挡板30可以对待沉积件60的部分边缘区域进行遮挡,也可以对待沉积件60的所有边缘区域均进行遮挡。
在绝缘挡板30对待沉积件60的所有边缘区域均进行遮挡的情况下,在一些示例中,绝缘挡板30的形状可以为环状,环状例如可以为圆环状、方环状、其它规则形状或不规则形状的环状。可以理解的是,环状的具体形状与待沉积件60的边界围成的图形的形状有关,可以根据待沉积件60的边界围成的图形的形状设计绝缘挡板30的形状。示例的,如图6所示,在待沉积件60为晶圆的情况下,由于晶圆的边界围成的图形为圆形,因而绝缘挡板30的形状可以为圆环状。
在一些示例中,如图6所示,上述绝缘挡板30为一体化结构,即上述绝缘挡板30是一个整体。在此情况下,可以简化绝缘挡板30的制作工序。
在另一些示例中,如图7所示,上述绝缘挡板30包括多个子挡板301,即包括两个或两个以上子挡板301。在绝缘挡板30为圆环状的情况下,绝缘挡板30可以由两个半圆环构成,也可以由多个扇形环构成。图7以绝缘挡板30由两个半圆环构成为例进行示意。此外,在绝缘挡板30由两个半圆环构成的情况下,两个半圆环的尺寸可以相同,也可以不相同;同样的,在绝缘挡板30由多个扇形环构成的情况下,多个扇形环的尺寸可以相同,也可以不相同。
在上述绝缘挡板30包括多个子挡板301的情况下,由于多个子挡板301是相互独立的,因而如图8a所示,通过调整多个子挡板301的相对位置,便可以调整绝缘挡板30遮挡的待沉积件60的边缘区域的面积。此外,由于多个子挡板301是相互独立的,因而在将待沉积件60放置在基座20的承载面201上时,可以如图8b所示,通过调整多个子挡板301向远离基座20的方向移动,从而便于将待沉积件60放置在基座20的承载面201上。
在本申请实施例中,由于气相沉积设备1包括绝缘挡板30,绝缘挡板30可以遮挡放置在基座20的承载面201上的待沉积件60的边缘区域,因而利用气相沉积设备1在待沉积件60上形成沉积材料时,在不影响边缘区域以外的其它区域沉积材料的正常沉积的同时,绝缘挡板30可以阻挡沉积材料沉积在待沉积件60的边缘区域,这样一来,便可以减少或避免因沉积在待沉积件60的边缘区域的沉积材料在后续工艺过程不易去除,残留在待沉积件60的边缘区域导致的各种缺陷问题。可以理解的是,虽然绝缘挡板30可以遮挡待沉积件60的边缘区域,但是在待沉积材料80的沉积过程中,可能还会有少量的待沉积材料80沉积在待沉积件60的边缘区域。然而,由于沉积在待沉积件60的边缘区域的待沉积材料80的量非常的少,因而对后续工序的影响可以 忽略不考虑。
在此基础上,利用本申请实施例提供的气相沉积设备1在待沉积件60上形成沉积材料时,由于绝缘挡板30可以阻挡沉积材料沉积在待沉积件60的边缘区域,因而在制备待沉积件60的过程中,无需增加刻蚀工序以去除待沉积件60的边缘区域的沉积材料,或者,无需增加刻蚀工序以使待沉积件60的边缘区域平整,因此利用本申请实施例提供的气相沉积设备1在待沉积件60上形成沉积材料,可以降低制备待沉积件60的工艺复杂性,节约成本。
在本申请实施例提供的气相沉积设备1为物理气相沉积设备的情况下,例如,在制备半导体器件中晶体管的金属栅过程中,可以利用本申请实施例提供的气相沉积设备1在待沉积件60即晶圆上沉积金属薄膜Al,由于绝缘挡板30可以遮挡晶圆的晶边区域,避免金属薄膜Al沉积在晶圆的晶边区域,这样一来,便可以减少或避免沉积在晶圆的晶边区域的金属薄膜Al在后续工艺过程不易去除,残留在晶圆的晶边区域,成为各类缺陷的源头。
示例的,在待沉积件60为晶圆,绝缘挡板30的形状为圆环状的情况下,若晶圆的半径为150mm,绝缘挡板30的圆环宽度为3mm,则利用本申请实施例提供的气相沉积设备1在晶圆上形成沉积材料例如金属时,以晶圆的中心为中心,在半径为147mm范围以内的区域可以正常形成沉积材料,在边缘区域3mm以外可以实现没有沉积材料形成或减少沉积材料的形成。
图9a为沉积金属薄膜Al之前的晶圆的结构示意图。图9b为沉积金属薄膜Al的结构示意图,由于晶圆的晶边区域被绝缘挡板30,因而晶圆的晶边区域没有沉积金属薄膜Al,只有中间区域,即有源区AA沉积有金属薄膜Al。图9c为利用化学机械研磨工艺去除多余的金属薄膜Al的结构示意图。由于晶边区域没有沉积金属薄膜Al,因而利用化学机械研磨工艺去除多余的金属薄膜Al的过程中可以将多余的金属薄膜Al完全去除掉。
相对于相关技术中,为了解决晶边区域Al残留的问题,在沉积金属薄膜Al之前,对晶圆的晶边区域进行晶边刻蚀以使晶圆的晶边区域呈平整的状态,或者,在沉积完金属薄膜Al之后,增加一步晶边区域刻蚀过程,将晶边区域残留的Al刻蚀掉而言,由于利用本申请实施例提供的气相沉积设备1在晶圆上沉积金属薄膜Al时,可以避免金属薄膜Al沉积在晶圆的晶边区域,因而无需增加晶边区域刻蚀的工序,因此可以简化半导体器件的制作工序,且避免了晶边区域刻蚀带来的其它风险。
在一些示例中,如图5所示,上述绝缘挡板30在承载面201所在平面上的投影与承载面201的边缘区域具有重叠区域。在另一些示例中,如图10所示,图10为本申请实施例提供的气相沉积设备1的剖面图,上述绝缘挡板30在承载面201所在平面上的投影与承载面201无重叠区域。若绝缘挡板30在承载面201所在平面上的投影与承载面201无重叠区域,则承载面201在待沉积件60上的投影位于待沉积件60的边界以内,在此情况下,待沉积件60的部分未被基座20支撑。
由于绝缘挡板30用于遮挡待沉积件60的边缘区域,因而待沉积件60的部分必然伸入到绝缘挡板30的下方,当绝缘挡板30在承载面201所在平面上的投影与承载面201的边缘区域具有重叠区域的情况下,基座20的承载面201可以对待沉积件60的 全部或大部分进行支撑,可以减弱部分待沉积件60因没有被承载面201支撑导致的弯曲现象,从而可以减弱待沉积件60因弯曲导致的待沉积件60断裂、沉积材料厚度不均等问题。
可以理解的是,在本申请实施例中,气相沉积设备1中的挡板固定架40与绝缘挡板30连接,用于起固定绝缘挡板30的作用。
此处,挡板固定架40与绝缘挡板30可以是固定连接,也可以是可拆卸连接。在挡板固定架40与绝缘挡板30是可拆卸连接的情况下,绝缘挡板30可以根据需要进行更换,例如,可以根据待沉积件60的尺寸以及需要被绝缘挡板30遮挡的区域面积更换可以与待沉积件60匹配的绝缘挡板30。又例如,为了避免沉积材料长时间沉积在绝缘挡板30上导致绝缘挡板30本身成为缺陷源,因而也可以更换绝缘挡板30。
此外,挡板固定架40与绝缘挡板30可以直接连接,也可以通过其它结构件间接连接。
在本申请实施例中,可以是挡板固定架40全部设置在壳体10形成的空腔内;也可以是挡板固定架40部分设置在壳体10形成的空腔内,部分设置在壳体10形成的空腔外。本申请说明书附图均以挡板固定架40全部设置在壳体10形成的空腔内为例进行示意。在挡板固定架40部分设置在壳体10形成的空腔内,部分设置在壳体10形成的空腔外的情况下,这样一方面,可以避免挡板固定架40占用壳体10形成的空腔的空间,另一方面,挡板固定架40中位于壳体10形成的空腔外的部分可以避免沉积材料的沉积。
可以理解的是,在绝缘挡板30为一体化结构的情况下,气相沉积设备1可以包括一个或多个挡板固定架40。在气相沉积设备1可以包括一个挡板固定架40的情况下,挡板固定架40可以绕基座20设置一圈,也可以设置在基座20的一侧。在绝缘挡板30包括多个子挡板301的情况下,气相沉积设备1包括多个挡板固定架40,每个子挡板301至少与一个挡板固定架40连接。
对于挡板固定架40的设置位置,示例性地,可以采用以下几种实现方式:
第一种实现方式,如图11a所示,挡板固定架40设置在绝缘挡板30靠近原料放置台50的一侧。
第二种实现方式,如图11b所示,挡板固定架40设置在绝缘挡板30靠近壳体10的侧壁的一侧。
需要说明的是,图11a和图11b均为本申请实施例提供的气相沉积设备1的剖面图。在上述第一种实现方式和第二种实现方式中,挡板固定架40可以与壳体10的侧壁固定连接。
第三种实现方式,如图5所示,挡板固定架40设置在绝缘挡板30靠近基座20的一侧。
在挡板固定架40设置在绝缘挡板30靠近基座20的一侧的情况下,考虑到若挡板固定架40与待沉积件60的距离太近,则挡板固定架40可能会影响待沉积材料的走向,从而导致待沉积件60上沉积的材料厚度不均匀。基于此,在一些示例中,挡板固定架40设置在绝缘挡板30靠近基座20的一侧,且挡板固定架40与绝缘挡板30的第一部分连接;其中,第一部分为绝缘挡板30中远离用于遮挡待沉积件60的部分。
在挡板固定架40设置在绝缘挡板30靠近基座20的一侧,且挡板固定架40与绝缘挡板30的第一部分连接,第一部分为绝缘挡板30中远离用于遮挡待沉积件60的部分的情况下,由于第一部分没有被挡板固定架40支撑,而绝缘挡板30中没有被挡板固定架40支撑的部分由于重力的原因会向靠近基座20的方向弯曲,一方面可能会导致绝缘挡板30遮挡的待沉积件60边缘区域的面积与预设遮挡面积有偏差,另一方面,绝缘挡板30由于长期弯曲,可能会降低绝缘挡板30的使用寿命。为了解决该问题,在一些示例中,如图12a所示,图12a为本申请实施例提供的气相沉积设备1的剖面图,上述气相沉积设备1还包括:支撑板90,支撑板90设置在绝缘挡板30和挡板固定架40之间;其中,挡板固定架40在支撑板90上的投影位于支撑板90的边界内,且支撑板90在绝缘挡板30上的投影位于绝缘挡板30的边界内或与绝缘挡板30的边界重叠。
由于挡板固定架40在支撑板90上的投影位于支撑板90的边界内,因而支撑板90在绝缘挡板30上的投影的面积大于挡板固定架40在绝缘挡板30上的投影的面积,这样一来,相对于挡板固定架40,支撑板90可以增加绝缘挡板30的支撑面积,减缓绝缘挡板30的弯曲。
基于上述,在设计支撑板90时,考虑到若支撑板90的厚度太大,则支撑板90可能会影响到待沉积材料的走向,从而导致待沉积件60上沉积的材料厚度不均匀。因此,在一些示例中,如图12b所示,支撑板90的厚度为h1,绝缘挡板30的厚度为h2;其中,0<h1≤10×h2。
在一些示例中,如图13所示,图13为本申请实施例提供的气相沉积设备1的剖面图,上述气相沉积设备1还包括:升降支架100,升降支架100与绝缘挡板30连接,用于带动绝缘挡板30沿第一方向X移动;其中,第一方向X垂直于承载面201。
此处,升降支架100与绝缘挡板30可以直接连接,也可以通过其它结构件间接连接。
需要说明的是,升降支架100和挡板固定架40可以集成在一起,为一体化结构,也就是说,挡板固定架40可以复用为升降支架100,这样可以简化气相沉积设备1的结构。当然,升降支架100和挡板固定架40还可以是相互独立的两个部件,此时升降支架100可以通过挡板固定架40与绝缘挡板30连接,升降支架100可以用于带动挡板固定架40和绝缘挡板30同步沿第一方向X移动。在升降支架100或挡板固定架40损坏的情况下,便于更换升降支架100或挡板固定架40。
可以理解的是,在气相沉积设备1包括支撑板90的情况下,升降支架100可以用于带动挡板固定架40、绝缘挡板30和支撑板90同步沿第一方向X移动。
由于本申请实施例提供的气相沉积设备1包括升降支架100,而升降支架100可以带动绝缘挡板30沿第一方向X移动,因而升降支架100可以根据需要调整绝缘挡板30到基座20的承载面201的距离,也就是说,可以调整绝缘挡板30到放置在基座20的承载面201上的待沉积件60的距离。
在此基础上,在基座20上放置待沉积件60时,由于升降支架100可以调整绝缘挡板30到基座20的承载面201的距离,因而可以利用升降支架100将绝缘挡板30到基座20的承载面201的距离调整的较大,以便于在基座20上放置待沉积件60,从 而可以提高气相沉积设备1的灵活性。
此处,对于升降支架100可以调节的沿第一方向X,绝缘挡板30到基座20的承载面201的距离h范围不进行限定。在一些示例中,升降支架100可以调节的沿第一方向X,绝缘挡板30到基座20的承载面201的距离h范围为0~300mm。
此外,在挡板固定架40设置在绝缘挡板30靠近基座20的一侧的情况下,在一些示例中,如图13所示,升降支架100可以设置在挡板固定架40远离绝缘挡板30的一侧。
在一些示例中,如图13所示,上述气相沉积设备1还包括:伸缩支架110,伸缩支架110与绝缘挡板30连接,用于带动绝缘挡板30沿第二方向Y移动,第二方向Y平行于承载面201。
此处,伸缩支架110与绝缘挡板30可以直接连接,也可以通过其它结构件间接连接。
需要说明的是,伸缩支架110和挡板固定架40可以集成在一起,为一体化结构,也就是说,挡板固定架40可以复用为伸缩支架110,这样可以简化气相沉积设备1的结构。当然,当伸缩支架110和挡板固定架40还可以是相互独立的两个部件,此时,伸缩支架110可以通过挡板固定架40与绝缘挡板30连接,伸缩支架110用于带动挡板固定架40和绝缘挡板30同步沿第二方向Y移动。在伸缩支架110或挡板固定架40损坏的情况下,便于更换伸缩支架110或挡板固定架40。
可以理解的是,在气相沉积设备1包括支撑板90的情况下,伸缩支架110可以用于带动挡板固定架40、绝缘挡板30和支撑板90同步沿第二方向Y移动。
在此基础上,在升降支架100和挡板固定架40是相互独立的两个部件,伸缩支架110和挡板固定架40是相互独立的两个部件的情况下,伸缩支架110和升降支架100可以是相互独立的结构件,也可以集成在一起,为一体化结构。图13以挡板固定架40、升降支架100和伸缩支架110为相互独立的结构件为例进行示意。
在气相沉积设备1包括伸缩支架110的情况下,由于伸缩支架110可以带动绝缘挡板30沿第二方向Y移动,因而可以调整绝缘挡板30遮挡的待沉积件60的边缘区域的面积以及遮挡的待沉积件60的位置。在此基础上,在绝缘挡板30包括多个子挡板301的情况下,通过伸缩支架110调整多个子挡板301向远离基座20的方向移动,从而便于将待沉积件60放置在基座20的承载面201上。
另外,上述的升降支架100和伸缩支架110可以全部设置在壳体10形成的空腔内;也可以全部设置在壳体10形成的空腔外;当然还可以是,升降支架100和伸缩支架110中的各自部分设置在壳体10形成的空腔内,部分设置在壳体10形成的空腔外。
为了使待沉积材料80可以更多地沉积到待沉积件60上,避免沉积到空腔的其它地方造成浪费,因此在一些示例中,如图14所示,图14为本申请实施例提供的气相沉积设备1的剖面图,上述气相沉积设备1还包括:射频线圈(radio frequency coil,RF coil)120,射频线圈120设置于壳体10形成的空腔内,射频线圈120用于产生射频脉冲,射频脉冲用于在待沉积材料80沉积的过程中,控制待沉积材料80的走向,使待沉积材料80沉积在待沉积件60上,且射频脉冲还可以通过控制待沉积材料80的走向,防止待沉积材料80沉积在待沉积件60的边缘区域。由于射频线圈120产生 的射频脉冲可以在待沉积材料80沉积的过程中,控制待沉积材料80的走向,因而可以进一步防止待沉积材料80沉积在待沉积件60的边缘区域,从而更好地实现屏蔽待沉积件60的边缘区域的待沉积材料80的沉积。在此基础上,射频线圈120还可以通过控制待沉积材料80的走向,来提高沉积到待沉积件60上的薄膜的厚度的均匀性。
可以理解的是,射频线圈120可以设置于待沉积材料80和待沉积件60之间的任意位置,以在待沉积材料80沉积的过程中,能控制待沉积材料80的走向,使待沉积材料80沉积在待沉积件60上,且防止待沉积材料80沉积在待沉积件60的边缘区域为准。
应当理解到,射频线圈120可以通过支架等固定于壳体10形成的空腔内的任意位置。
在本申请实施例中,利用绝缘挡板30遮挡待沉积件60的边缘区域,可以防止待沉积材料80沉积到待沉积件60的边缘区域,为了进一步防止待沉积材料80沉积到待沉积件60的边缘区域,因而在一些示例中,如图14所示,气相沉积设备1还包括:至少一条气体管路130;其中,气体管路130用于提供气体流通路径,且气体管路130中排出的气体用于防止待沉积材料80沉积在待沉积件60的边缘区域。
由于气体管路130中排出的气体会产生冲击力,该冲击力可以对待沉积材料80作用,从而可以防止待沉积材料80沉积在待沉积件60的边缘区域。
需要说明的是,气相沉积设备1中的气体管路130的数量可以根据需要进行设置。例如,可以绕基座20一圈间隔设置多个气体管路130。
此处,气体管路130中排出的气体例如可以是惰性气体、氮气(N 2)等。
应当理解到,为了使气体管路130中排出的气体能够对待沉积材料80作用,防止待沉积材料80沉积在待沉积件60的边缘区域,因而气体管路130的出气口应朝向待沉积材料80沉积到待沉积件60时所经过的路径,例如气体管路130的出气口可以朝向基座20。
在此基础上,在一些示例中,如图15所示,气体管路130的至少部分位于绝缘挡板30靠近基座20的一侧。
由于气体管路130的至少部分位于绝缘挡板30靠近基座20的一侧,而位于绝缘挡板30靠近基座20的一侧的气体管路130可以被绝缘挡板30遮挡,从而可以防止待沉积材料沉积到气体管路130上,不易清理,从而可以提高气体管路130的寿命。
在此基础上,在一些示例中,如图15所示,挡板固定架40包括腔体,气体管路130的至少部分位于挡板固定架40的腔体内。这样一来,位于挡板固定架40的腔体内的气体管路130可以被挡板固定架40保护,从而可以提高气体管路130的寿命。
在一些示例中,如图14所示,上述气相沉积设备1还包括:电磁线圈140,电磁线圈140设置于壳体10形成的空腔内,电磁线圈140用于产生磁场,磁场用于在待沉积材料80沉积的过程中,控制待沉积材料80的走向,使待沉积材料80沉积在待沉积件60上,且磁场还可以通过控制待沉积材料80的走向,防止待沉积材料80沉积在待沉积件60的边缘区域。
由于电磁线圈140产生的磁场可以在待沉积材料80沉积的过程中,控制待沉积材料80的走向,因而可以进一步防止待沉积材料80沉积在待沉积件60的边缘区域,从 而更好地实现屏蔽待沉积件60的边缘区域的待沉积材料80的沉积。在此基础上,电磁线圈140还可以对沉积到待沉积件60上的沉积材料的均匀性进行调节,以使在待沉积件60上形成的薄膜的厚度是均匀的。
需要说明的是,射频线圈120和电磁线圈140在待沉积材料80沉积的过程中,对待沉积材料80作用的强度、控制待沉积材料80的走向的能力,控制的待沉积材料80的走向可能会不相同。射频线圈120和电磁线圈140结合,可以更好地在待沉积材料80沉积的过程中,控制待沉积材料80的走向,以防止待沉积材料80沉积在待沉积件60的边缘区域,且更进一步确保形成在待沉积件60上的沉积材料的均匀性。
对于电磁线圈140的设置位置不进行限定,例如,如图15所示,挡板固定架40包括腔体,电磁线圈140设置于挡板固定架40的腔体内。在此情况下,由于电磁线圈140设置于挡板固定架40的腔体内,因而挡板固定架40可以对电磁线圈140进行保护,提高电磁线圈140的使用寿命。
又例如,如图16所示,电磁线圈140绕挡板固定架40设置。此时,电磁线圈140设置在挡板固定架40外,这样可以避免或减小到挡板固定架40对电磁线圈140产生的磁场的影响。
需要说明的是,上述射频线圈120的设置位置可以参考电磁线圈140,也可以设置在挡板固定架40的腔体内,或者绕挡板固定架40设置。
在一些示例中,如图17所示,图17为本申请实施例提供的气相沉积设备1的剖面图,上述气相沉积设备1还包括:移动支架150,移动支架150与原料放置台50连接,用于带动原料放置台50在壳体10形成的空腔内移动,以调整待沉积件60和放置在原料放置台50上的待沉积材料80的相对位置。
由于待沉积件60放置于基座20上,待沉积材料80放置于原料放置台50上,因而移动支架150带动原料放置台50在壳体10形成的空腔内移动时,可以调整基座20和原料放置台50的相对位置,即可以调整待沉积件60和待沉积材料80的相对位置。在待沉积材料50的沉积过程中,利用移动支架150调整待沉积件60和待沉积材料80的相对位置,这样可以提高沉积到待沉积件60上的沉积材料的均匀性。
此处,基座20和原料放置台50的相对位置包括沿第一方向X的相对位置和沿第二方向Y的相对位置,第一方向X垂直于承载面201,第二方向Y平行于承载面201。
在一些示例中,如图17所示,上述气相沉积设备1还可以包括电源160,电源160的一端与待沉积材料80电连接,另一端与接地端(ground,GND)连接,电源160用于向待沉积材料80提供直流/射频偏压(direct current/radio frequency bias,DC/RF bias),该直流/射频偏压用于控制待沉积材料80的沉积速度、在待沉积材料80沉积的过程中,调整待沉积材料80的走向等。
在此基础上,气相沉积设备1还可以包括直流线圈(direct current coil,DC coil)、顶部进入磁场(top in magnet)器、顶部输出磁场(top out magnet)器、底部进入磁场(bottom in magnet)器以及底部输出磁场(bottom out magnet)器、准直器等中的一个或多个。
其中,直流线圈、顶部进入磁场器、顶部输出磁场器、底部进入磁场器以及底部输出磁场器、准直器等可以设置于壳体10的空腔内。
此处,直流线圈、顶部进入磁场器、顶部输出磁场器、底部进入磁场器以及底部输出磁场器、准直器可以在待沉积材料80沉积的过程中,调整待沉积材料80的走向,从而提高沉积到待沉积件60上的沉积材料的均匀性。
本申请的实施例还提供一种利用气相沉积设备在待沉积件上沉积薄膜的方法,该气相沉积设备例如可以是上述实施例提供的气相沉积设备,如图18所示,利用气相沉积设备在待沉积件上沉积薄膜的方法可以包括如下步骤:
S10、利用升降支架100带动绝缘挡板30沿第一方向X移动,调节绝缘挡板30和待沉积件60沿第一方向X的相对位置;其中,第一方向X垂直于基座20的承载面201。
需要说明的是,步骤S10是可选的步骤,例如,在一些可选的实施例中,步骤S10也可以省略。
应当理解到,在步骤S10之前,上述方法还包括:将待沉积件60放置于基座20的承载面201上,将待沉积材料80放置于原料放置台50上。
S11、利用伸缩支架110带动绝缘挡板30沿第二方向Y移动,调节被绝缘挡板30遮挡的待沉积件60的边缘区域的面积;其中,第二方向Y平行于基座20的承载面201。
需要说明的是,步骤S11是可选的步骤,例如,在一些可选的实施例中,步骤S11也可以省略。
此处,可以先执行步骤S10,再执行步骤S11;也可以先执行步骤S11,再执行步骤S10;当然还可以同时执行步骤S10和步骤S11。
S12、对放置在原料放置台50上的待沉积材料80进行处理,使待沉积材料80形成原子、分子、离子或等离子体。
需要说明的是,在气相沉积设备为PVD设备的情况下,对待沉积材料80进行处理,使待沉积材料80形成原子、分子、离子。在气相沉积设备为CVD设备或PCVD设备的情况下,对待沉积材料80进行处理,使待沉积材料80形成等离子体。
此处,对待沉积材料80进行处理,包括对待沉积材料80进行轰击、溅射、加热等。
S13、利用绝缘挡板30遮挡放置在基座20上的待沉积件60的边缘区域,以使上述原子、上述离子或上述等离子体沉积在待沉积件60的未被绝缘挡板30遮挡的区域。
此处,对于绝缘挡板30遮挡的待沉积件60的边缘区域的面积不进行限定,可以参考上述,此处不再赘述。
S14、利用气体管路130中排出的气体防止上述原子、上述离子或上述等离子体沉积在待沉积件60的边缘区域。
需要说明的是,步骤S14是可选的步骤,例如,在一些可选的实施例中,步骤S14也可以省略。
S15、利用电磁线圈140产生的磁场防止上述原子、上述离子或上述等离子体沉积在待沉积件60的边缘区域。
需要说明的是,步骤S15是可选的步骤,例如,在一些可选的实施例中,步骤S15也可以省略。
S16、利用射频线圈120产生的射频脉冲防止上述原子、上述离子或上述等离子体 沉积在待沉积件60的边缘区域。
需要说明的是,步骤S16是可选的步骤,例如,在一些可选的实施例中,步骤S16也可以省略。
S17、利用移动支架150带动原料放置台50移动,以调整待沉积件60和放置在原料放置台50上的待沉积材料80的相对位置。
需要说明的是,步骤S17是可选的步骤,例如,在一些可选的实施例中,步骤S17也可以省略。
在此基础上,对于步骤S14、步骤S15、步骤S16以及步骤S17执行的先后顺序不进行限定。步骤S14、步骤S15、步骤S16以及步骤S17可以顺序执行,也可以是其中的至少两个同时执行。
本申请实施例提供的利用气相沉积设备在待沉积件上沉积薄膜的方法具有与气相沉积设备相同的技术效果,可以参考上述气相沉积设备相关技术效果的描述,此处不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种气相沉积设备,其特征在于,包括:
    壳体,所述壳体内部形成有密闭的空腔;
    基座,位于所述空腔内,所述基座具有承载面,所述承载面用于承载待沉积件;
    原料放置台,位于所述空腔内,用于固定待沉积材料;
    绝缘挡板,设置于所述基座和所述原料放置台之间,用于遮挡所述待沉积件的边缘区域;
    挡板固定架,与所述绝缘挡板连接,用于固定所述绝缘挡板。
  2. 根据权利要求1所述的气相沉积设备,其特征在于,所述绝缘挡板的形状为环状。
  3. 根据权利要求1或2所述的气相沉积设备,其特征在于,所述绝缘挡板为一体化结构;或者,所述绝缘挡板包括多个子挡板。
  4. 根据权利要求1-3任一项所述的气相沉积设备,其特征在于,所述绝缘挡板和所述挡板固定架可拆卸连接。
  5. 根据权利要求1-4任一项所述的气相沉积设备,其特征在于,所述挡板固定架设置在所述绝缘挡板靠近所述基座的一侧,且所述挡板固定架与所述绝缘挡板的第一部分连接;其中,所述第一部分为所述绝缘挡板中远离用于遮挡所述待沉积件的部分。
  6. 根据权利要求5所述的气相沉积设备,其特征在于,所述气相沉积设备还包括:
    支撑板,所述支撑板设置在所述绝缘挡板和所述挡板固定架之间;
    其中,所述挡板固定架在所述支撑板上的投影位于所述支撑板的边界内,且所述支撑板在所述绝缘挡板上的投影位于所述绝缘挡板的边界内或与所述绝缘挡板的边界重叠。
  7. 根据权利要求6所述的气相沉积设备,其特征在于,所述支撑板的厚度为h1,所述绝缘挡板的厚度为h2;
    其中,0<h1≤10×h2。
  8. 根据权利要求1-4任一项所述的气相沉积设备,其特征在于,所述挡板固定架设置在所述绝缘挡板靠近所述原料放置台的一侧;
    或者,所述挡板固定架设置在所述绝缘挡板靠近所述壳体的侧壁的一侧。
  9. 根据权利要求1-8任一项所述的气相沉积设备,其特征在于,所述气相沉积设备还包括:
    升降支架,与所述绝缘挡板连接,用于带动所述绝缘挡板沿第一方向移动;其中,所述第一方向垂直于所述承载面。
  10. 根据权利要求9所述的气相沉积设备,其特征在于,所述挡板固定架复用为所述升降支架;
    或者,所述升降支架通过所述挡板固定架与所述绝缘挡板连接,所述升降支架用于带动所述挡板固定架和所述绝缘挡板同步沿所述第一方向移动。
  11. 根据权利要求1-10任一项所述的气相沉积设备,其特征在于,所述气相沉积设备还包括:至少一条气体管路;
    其中,所述气体管路用于提供气体流通路径,且所述气体管路中排出的气体用于 防止待沉积材料沉积在所述待沉积件的边缘区域。
  12. 根据权利要求11所述的气相沉积设备,其特征在于,所述气体管路的至少部分位于所述绝缘挡板靠近所述基座的一侧。
  13. 根据权利要求11或12所述的气相沉积设备,其特征在于,所述挡板固定架包括腔体,所述气体管路的至少部分位于所述挡板固定架的所述腔体内。
  14. 根据权利要求1-13任一项所述的气相沉积设备,其特征在于,所述绝缘挡板在所述承载面所在平面上的投影与所述承载面的边缘区域具有重叠区域。
  15. 根据权利要求1-14任一项所述的气相沉积设备,其特征在于,所述气相沉积设备还包括:
    伸缩支架,与所述绝缘挡板连接,用于带动所述绝缘挡板沿第二方向移动;其中,所述第二方向平行于所述承载面。
  16. 根据权利要求15所述的气相沉积设备,其特征在于,所述挡板固定架复用为所述伸缩支架;
    或者,所述伸缩支架通过所述挡板固定架与所述绝缘挡板连接,所述伸缩支架用于带动所述挡板固定架和所述绝缘挡板同步沿所述第二方向移动。
  17. 根据权利要求1-16任一项所述的气相沉积设备,其特征在于,所述气相沉积设备还包括:
    电磁线圈,设置于所述空腔内,用于产生磁场,所述磁场用于防止所述待沉积材料沉积在所述待沉积件的边缘区域。
  18. 根据权利要求17所述的气相沉积设备,其特征在于,所述挡板固定架包括腔体,所述电磁线圈设置于所述挡板固定架的所述腔体内;
    或者,所述电磁线圈绕所述挡板固定架设置。
  19. 根据权利要求1-18任一项所述的气相沉积设备,其特征在于,所述气相沉积设备还包括:
    射频线圈,设置于所述空腔内,用于产生射频脉冲,所述射频脉冲用于防止所述待沉积材料沉积在所述待沉积件的边缘区域。
  20. 根据权利要求1-19任一项所述的气相沉积设备,其特征在于,所述气相沉积设备还包括:
    移动支架,与所述原料放置台连接,用于带动所述原料放置台在所述空腔内移动,以调整所述待沉积件和放置在所述原料放置台上的所述待沉积材料的相对位置。
  21. 一种利用气相沉积设备在待沉积件上沉积薄膜的方法,其特征在于,所述气相沉积设备包括基座、原料放置台和绝缘挡板,所述绝缘挡板设置于所述基座和所述原料放置台之间;
    所述方法包括:
    对放置在所述原料放置台上的待沉积材料进行处理,使所述待沉积材料形成原子、分子、离子或等离子体;
    利用所述绝缘挡板遮挡放置在所述基座上的待沉积件的边缘区域,以使所述原子、所述离子或所述等离子体沉积在所述待沉积件的未被所述绝缘挡板遮挡的区域。
  22. 根据权利要求21所述的方法,其特征在于,所述气相沉积设备还包括:升降 支架,所述升降支架与所述绝缘挡板连接;
    所述对放置在所述原料放置台上的待沉积材料进行处理之前,所述方法还包括:
    利用所述升降支架带动所述绝缘挡板沿第一方向移动,调节所述绝缘挡板和所述待沉积件沿第一方向的相对位置;
    其中,所述第一方向垂直于所述基座的承载面,所述承载面用于承载所述待沉积件。
  23. 根据权利要求21或22所述的方法,其特征在于,所述气相沉积设备还包括:伸缩支架;所述伸缩支架与所述绝缘挡板连接;
    所述对放置在所述原料放置台上的待沉积材料进行处理之前,所述方法还包括:
    利用所述伸缩支架带动所述绝缘挡板沿第二方向移动,调节被所述绝缘挡板遮挡的待沉积件的边缘区域的面积;
    其中,所述第二方向平行于所述基座的承载面,所述承载面用于承载所述待沉积件。
  24. 根据权利要求21-23任一项所述的方法,其特征在于,所述气相沉积设备还包括:至少一条气体管路;
    所述利用所述绝缘挡板遮挡放置在所述基座上的待沉积件的边缘区域之后,所述方法还包括:
    利用所述气体管路中排出的气体防止所述原子、所述离子或所述等离子体沉积在所述待沉积件的边缘区域。
  25. 根据权利要求21-24任一项所述的方法,其特征在于,所述气相沉积设备还包括:电磁线圈;
    所述利用所述绝缘挡板遮挡放置在所述基座上的待沉积件的边缘区域之后,所述方法还包括:
    利用所述电磁线圈产生的磁场防止所述原子、所述离子或所述等离子体沉积在所述待沉积件的边缘区域。
  26. 根据权利要求21-25任一项所述的方法,其特征在于,所述气相沉积设备还包括:射频线圈;
    所述利用所述绝缘挡板遮挡放置在所述基座上的待沉积件的边缘区域之后,所述方法还包括:
    利用所述射频线圈产生的射频脉冲防止所述原子、所述离子或所述等离子体沉积在所述待沉积件的边缘区域。
  27. 根据权利要求21-26任一项所述的方法,其特征在于,所述气相沉积设备还包括:移动支架,所述移动支架与所述原料放置台连接;
    所述利用所述绝缘挡板遮挡放置在所述基座上的待沉积件的边缘区域之后,所述方法还包括:
    利用所述移动支架带动所述原料放置台移动,以调整所述待沉积件和放置在所述原料放置台上的所述待沉积材料的相对位置。
CN202180100853.0A 2021-11-18 2021-11-18 一种气相沉积设备及沉积薄膜的方法 Pending CN117795121A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131446 WO2023087205A1 (zh) 2021-11-18 2021-11-18 一种气相沉积设备及沉积薄膜的方法

Publications (1)

Publication Number Publication Date
CN117795121A true CN117795121A (zh) 2024-03-29

Family

ID=86396160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180100853.0A Pending CN117795121A (zh) 2021-11-18 2021-11-18 一种气相沉积设备及沉积薄膜的方法

Country Status (2)

Country Link
CN (1) CN117795121A (zh)
WO (1) WO2023087205A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576200B2 (ja) * 2004-10-21 2010-11-04 キヤノンアネルバ株式会社 基板処理装置及び基板処理装置におけるアーキング発生監視方法
CN110670042B (zh) * 2019-12-09 2020-04-03 上海陛通半导体能源科技股份有限公司 用于厚膜沉积的物理气相沉积设备
CN111041434B (zh) * 2020-03-17 2020-06-19 上海陛通半导体能源科技股份有限公司 用于沉积绝缘膜的物理气相沉积设备
CN111254383B (zh) * 2020-03-25 2020-09-25 上海陛通半导体能源科技股份有限公司 用于改善反应溅射膜层均匀性的物理气相沉积设备
TWM610249U (zh) * 2020-10-28 2021-04-11 天虹科技股份有限公司 薄膜沉積設備

Also Published As

Publication number Publication date
WO2023087205A1 (zh) 2023-05-25

Similar Documents

Publication Publication Date Title
US20200357616A1 (en) High pressure rf-dc sputtering and methods to improve film uniformity and step-coverage of this process
JP4007640B2 (ja) 静電チャック用シールド
JP5086172B2 (ja) ワークピースの縁部をシールドする装置
TWI616552B (zh) 製程工具防護板及具有防護板之物理氣相沉積室
US20090272718A1 (en) Methods for selective pre-coating of a plasma processing chamber
TW201207975A (en) Confined process volume PECVD chamber
WO2007038580A2 (en) Apparatus and methods to remove films on bevel edge and backside of wafer
JP5375763B2 (ja) プラズマ装置およびこれを用いた半導体薄膜の製造方法
TWI582824B (zh) 處理腔室及用於處理基材之方法
KR20000062671A (ko) 구리 상호연결부에서 사용될 장벽층을 형성하는 방법
WO2009155208A2 (en) Apparatus and method for uniform deposition
WO2016136255A1 (ja) 成膜装置及び成膜方法
US20240167149A1 (en) Multi-functional shutter disk for thin film deposition chamber
US7785455B2 (en) Cross-contaminant shield in sputtering system
JP2010275574A (ja) スパッタリング装置および半導体装置製造方法
JP7509790B2 (ja) パルスpvdにおけるプラズマ改質によるウエハからの粒子除去方法
CN117795121A (zh) 一种气相沉积设备及沉积薄膜的方法
JP2007042744A (ja) プラズマ処理装置
JP3905584B2 (ja) スパッタ装置及びコリメータ付着物の処理方法
JP3729769B2 (ja) プラズマ処理装置
KR100592241B1 (ko) 유도결합형 플라즈마 처리장치
KR101098858B1 (ko) 클리닝 방법 및 진공 처리 장치
KR101226478B1 (ko) 스퍼터링 마스크 및 이를 이용한 스퍼터링 장치
US10597785B2 (en) Single oxide metal deposition chamber
JPS60249329A (ja) スパッタエッチング装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination