CN117731943A - 血管内支架电极阵列及其制备方法和电刺激系统 - Google Patents

血管内支架电极阵列及其制备方法和电刺激系统 Download PDF

Info

Publication number
CN117731943A
CN117731943A CN202311462525.2A CN202311462525A CN117731943A CN 117731943 A CN117731943 A CN 117731943A CN 202311462525 A CN202311462525 A CN 202311462525A CN 117731943 A CN117731943 A CN 117731943A
Authority
CN
China
Prior art keywords
stent
wire
metal
electrode array
braided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311462525.2A
Other languages
English (en)
Inventor
闵小毅
石峰
赵晓峰
陆舟
江岩
高伟
范世洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Yinghe Brain Science Co ltd
Original Assignee
Shenzhen Yinghe Brain Science Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Yinghe Brain Science Co ltd filed Critical Shenzhen Yinghe Brain Science Co ltd
Priority to CN202311462525.2A priority Critical patent/CN117731943A/zh
Publication of CN117731943A publication Critical patent/CN117731943A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36067Movement disorders, e.g. tremor or Parkinson disease
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Textile Engineering (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本申请涉及医疗器械领域,公开了一种血管内支架电极阵列及其制备方法和电刺激系统。该血管内支架电极阵列,包括由支架编织丝编织而成的支架;所述支架编织丝包括第一金属编织丝,所述第一金属编织丝包括轴向布置的绝缘段和导电段,所述绝缘段与其他的所述支架编织丝以及人体组织电绝缘,所述导电段用于对所述人体组织周围神经发放刺激脉冲和/或感知所述人体组织周围神经的电信号;所述第一金属编织丝的近端用于与外部设备电连接;所述第一金属编织丝的远端端部与所述人体组织电绝缘。在兼顾机械性能和感应脑电信号的前提下,结构简单化,制备更容易。

Description

血管内支架电极阵列及其制备方法和电刺激系统
本申请系基于申请号为202210476342.5、名称为“血管内支架电极阵列及其制备方法和电刺激系统”的中国发明专利申请的分案申请。
技术领域
本申请实施例涉及医疗器械领域,特别涉及一种血管内支架电极阵列及其制备方法和电刺激系统。
背景技术
严重瘫痪和自主运动功能障碍大多由于中枢神经系统或外周神经及肌肉病变等多种病理性疾病引起,并已成为严峻的全球性医疗难题。患者往往丧失了工具性日常生活活动能力(Instrumental activities of daily living,简称IADL),如电话通讯、购物、做家务及使用交通工具等。IADL障碍在肌萎缩性侧索硬化症(amyotrophic lateralsclerosis,简称ALS)患者中尤为明显,据统计,约75%患者需要家庭护理。而在多数ALS患者中,大脑运动皮层仍保持完整功能。
Synchron公司开发了一种脑血管内植入器械,将其植入脑部静脉血管内,能从脑部静脉血管内获取静脉血管附近的脑部神经信号或产生电场以刺激静脉血管附近的脑部神经系统,可以使上肢瘫痪的患者通过思考来控制相应的数字设备,可将思想转化为智能手机和平板电脑上的动作,帮助严重瘫痪的人恢复交流,帮助瘫痪患者发短信、在线购物等。
但是,该脑血管内植入器械目前采用微机电系统(Micro-Electro-MechanicalSystem,简称MEMS)和3D打印的方式制成,利用了支架作为骨架,并通过在骨架中融合电极以起到感知电信号以及对目标区域进行刺激的双向功能。由于基于纳米技术多层沉积,脑血管植入器械中电路导电轨迹尺寸约为10μm×(500nm~20μm)(宽×高),这决定了该电路导电轨迹的电阻值远高于刺激需要限制。因此,该脑血管内植入器械不适用于同时感应和刺激的双向功能。而且该产品的部分工艺难度极大和生产成本高,例如,通过沉积得到结构化的镍钛合金骨架,厚度达到50um或以上;通过刻蚀获得导电路径的沉积轨道,深度达到20um或以上。这些在当前的工艺水平下难以实现,导致MEMS工艺支架电极无法推广大批量产。
发明内容
本申请实施例提供一种血管内支架电极阵列及其制备方法和电刺激系统,旨在满足产品对脑电信号感应可靠性和稳定性的前提下,以降低工艺难度和生产成本,并且可以有效降低电路的阻值。
为实现上述目的,本申请的实施例提供了一种血管内支架电极阵列,包括由支架编织丝编织而成的支架;支架编织丝包括第一金属编织丝,第一金属编织丝包括轴向布置的绝缘段和导电段,绝缘段与其他的支架编织丝以及人体组织电绝缘,导电段用于对人体组织周围神经发放刺激脉冲和/或感知人体组织周围神经的电信号;第一金属编织丝的近端用于与外部设备电连接;第一金属编织丝的远端端部与人体组织电绝缘。
本申请的实施例还提供了一种血管内支架电极阵列,包括基础支架和第二金属编织丝,基础支架电绝缘,第二金属编织丝设置于基础支架;第二金属编织丝包括绝缘段和导电段,绝缘段与人体组织电绝缘,导电段用于对人体组织周围神经发放刺激脉冲和/或感知人体组织周围神经的电信号;第二金属编织丝的近端用于与外部设备电连接;第二金属编织丝的远端端部与人体组织电绝缘。
本申请的实施例也提供了一种血管内支架电极阵列的制备方法,该血管内支架电极阵列包括由支架编织丝编织而成的支架,包括以下步骤:
提供编织丝,编织丝包括用于制备第一金属编织丝的金属丝;
确定导电段在金属丝上的位置;
根据确定的导电段的位置在金属丝上制备绝缘段和导电段,得到第一金属编织丝,进而完成支架编织丝的准备,绝缘段与其他的支架编织丝以及人体组织电绝缘,导电段用于对人体组织周围的神经发放刺激脉冲和/或感知人体组织周围神经的电信号;
将支架编织丝进行编织,并将第一金属编织丝的远端端部做电绝缘处理,得到支架。
本发明的实施例还提供了一种血管内支架电极阵列的制备方法,该血管内支架电极阵列包括支架,包括以下步骤:
提供编织丝,编织丝包括用于制备第一金属编织丝的金属丝,并对金属丝进行电绝缘处理;
将编织丝编织成初始支架,并确定导电段和绝缘段在电绝缘处理后的金属丝上的位置;
根据确定的位置,在电绝缘处理后的金属丝上制备导电段和绝缘段,得到第一金属编织丝,绝缘段与其他的编织丝以及人体组织电绝缘,导电段用于对人体组织周围的神经发放刺激脉冲和/或感知人体组织周围神经的电信号;
将第一金属编织丝的远端端部做电绝缘处理,得到支架。
本发明的实施例还提供了一种血管内支架电极阵列的制备方法,该血管内支架电极阵列包括基础支架,第二金属编织丝,包括以下步骤:
提供电绝缘的基础支架;
提供第二金属编织丝,第二金属编织丝包括绝缘段和导电段,绝缘段与人体组织电绝缘,导电段用于对人体组织周围神经发放刺激脉冲和/或感知人体组织周围神经的电信号;
将第二金属编织丝设置在基础支架上;
将第二金属编织丝的远端端部做电绝缘处理。
本发明的实施例又提供了一种血管内支架电极阵列的制备方法,该血管内支架电极阵列包括基础支架,第二金属编织丝,包括以下步骤:
提供电绝缘的基础支架;
提供用于制备第二金属编织丝的金属丝,并将金属丝进行电绝缘处理;
将电绝缘处理后的金属丝设置在基础支架上,并在电绝缘处理后的金属丝上制备导电段和绝缘段,以制得第二金属编织丝,绝缘段与人体组织电绝缘,导电段用于对人体组织周围神经发放刺激脉冲和/或感知人体组织周围神经的电信号;
将第二金属编织丝的远端端部做电绝缘处理。
本申请的实施例再提供了一种电刺激系统,包括脉冲发生装置和如上述的血管内支架电极阵列,血管内支架电极阵列中的第一金属编织丝与脉冲发生装置电连接;或,包括脉冲发生装置和如上述的血管内支架电极阵列,血管内支架电极阵列中的第二金属编织丝与脉冲发生装置电连接。
相较于现有技术来说,本申请实施例提供的血管内支架电极阵列,包括由支架编织丝编织而成的支架,该支架编织丝包括第一金属编织丝,第一金属编织丝包括轴向布置的绝缘段和导电段。其中,绝缘段用于使该部分的第一金属编织丝与其他支架编织丝以及人体组织电绝缘;而导电段用于对人体组织周围神经发放刺激脉冲和/或感知人体组织周围神经的电信号,以使该部分的第一金属编织丝作为传输信号的电极导线。因为本申请实施例中的血管内支架电极阵列,以包括绝缘段和导电段的第一金属编织丝作为电极导线,能够使用成熟的支架编织方法制成,由此使产品结构简单化,进而在同时满足机械性能可靠性和感应脑电信号稳定性的前提下,达到降低工艺难度且相应的降低生产成本的效果。基于同一构思,本申请另一实施例提供的血管内支架电极阵列,包括基础支架和第二金属编织丝,基础支架电绝缘,第二金属编织丝设置于基础支架;第二金属编织丝包括绝缘段和导电段,绝缘段与人体组织电绝缘,导电段用于对人体组织周围神经发放刺激脉冲和/或感知人体组织周围神经的电信号;第二金属编织丝的近端用于与外部设备电连接;第二金属编织丝的远端端部与人体组织电绝缘。该实施例中的血管内支架电极阵列,能够使用成熟的支架编织方法制成,而且降低了对材料的选择要求,可以更加降低生产成本。
另外,第一金属编织丝径向包括从第一金属编织丝近端延伸到第一金属编织丝远端的金属丝和第二绝缘层,金属丝包括与导电段位置对应的第一部分和与绝缘段对应的第二部分,导电段为第一部分,绝缘段包括第二部分和设置在第二部分表面的第二绝缘层。
另外,第一金属编织丝径向包括从第一金属编织丝近端延伸到第一金属编织丝远端的金属丝和第二绝缘层,金属丝包括与导电段位置对应的第一部分和与绝缘段对应的第二部分,导电段包括第一部分和电极,电极与第一部分电连接,绝缘段包括第二部分和设置在第二部分表面的第二绝缘层。
另外,导电段还包括第一电绝缘层,第一电绝缘层设置在第一部分的外表面,电极穿过第一电绝缘层与第一部分电连接。
另外,第一金属编织丝上设置有显影点,用于标识所有第一金属编织丝的导电段排列顺序。
另外,支架编织丝还包括高分子编织丝,高分子编织丝的材质为生物相容性非可降解的高分子材料。
另外,支架编织丝还包括生物相容性的金属材料制备的编织丝。
另外,生物相容性的金属材料制备的编织丝为经过电绝缘处理的。
另外,各个第一金属编织丝上的导电段在支架的轴向方向上以错位分布的形式设置在第一金属编织丝上。
另外,不同的第一金属编织丝上的导电段在支架的周向方向上错位分布。
另外,同一第一金属编织丝上的导电段在支架的周向方向上的位置相同。
另外,第一金属编织丝的远端端部设有电绝缘层,或套设有电绝缘套。
另外,还包括与绝缘导线和连接端子,绝缘导线的近端和连接端子电连接,绝缘导线的远端与第一金属编织丝的近端电连接,所述连接端子用于与外部设备可拆卸电连接。
另外,绝缘导丝上还设有约束连接件,约束连接件用于与第一金属编织丝的近端电连接,并将所有的第一金属编织丝约束在支架的一侧或两侧。
另外,基础支架为基础编织丝编织而成;或者,基础支架为金属管切割而成。
另外,基础编织丝的材质为生物相容性非可降解的高分子材料;或者,基础编织丝的材质为生物相容性金属材料,且基础编织丝为经过电绝缘处理的。
另外,基础支架为生物相容性金属材料制备,且基础支架的表面设有电绝缘层。
另外,基础支架为基础编织丝编织而成,第二金属编织丝的空间形态与基础编织丝的空间形态相同。
另外,基础支架包括多个波杆形成的网格单元,网格单元沿基础支架轴线方向布置,第二金属编织丝顺着波杆沿基础支架轴线方向延伸。
另外,多个导电段形成一组导电段,每组导电段中的所有导电段在支架的轴向方向上等间距布置,或者,每组导电段中的相邻的导电段在支架的轴向方向上的间距逐渐变化;每组导电段中的所有导电段在支架的周向方向上均匀布置,或者每组导电段中的相邻的导电段在支架的周向方向上的间距逐渐变化。
另外,相邻的多个导电段形成一组导电段,每组导电段中的所有导电段由近及远在支架周向上布置的方向与相邻的一组导电段中的所有导电段由近及远在支架周向上布置的方向相反。
另外,相邻的多个导电段形成一组导电段,所有组导电段在支架轴向上等间距布置、且在支架周向上位置相同。
另外,相邻的多个导电段形成一组导电段,所有组导电段在支架轴向上等间距布置、且在支架周向上等角度间隔布置。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例提供的一种血管内支架电极阵列在一视角下的结构示意图;
图2是图1所示血管内支架电极阵列在另一视角下的结构示意图;
图3是本申请另一实施例提供的一种血管内支架电极阵列在未编织时的结构示意图;
图4是本申请另一实施例提供的一种血管内支架电极阵列在一视角下的结构示意图;
图5是图4所示血管内支架电极阵列在另一视角下的结构示意图;
图6是本申请另一实施例提供的一种血管内支架电极阵列在一视角下的结构示意图;
图7是图6所示血管内支架电极阵列在另一视角下的结构示意图;
图8是本申请另一实施例提供的一种血管内支架电极阵列在一视角下的结构示意图;
图9是图8所示血管内支架电极阵列在另一视角下的结构示意图;
图10是图8所示血管内支架电极阵列中的两组电极排序示意图;
图11是图8所示血管内支架电极阵列中的基础支架结构示意图;
图12是图11所示基础支架在另一视角下的结构示意图;
图13是图8所示血管内支架电极阵列中的第二金属编织丝的结构示意图;
图14是图13所示第二金属编织丝在另一视角下的结构示意图;
图15是本申请另一实施例提供的一种血管内支架电极阵列在一视角下的结构示意图;
图16是图15所示血管内支架电极阵列在另一视角下的结构示意图;
图17是本申请另一实施例提供的一种血管内支架电极阵列在一视角下的结构示意图;
图18是图17所示血管内支架电极阵列在另一视角下的结构示意图;
图19是本申请另一实施例提供一种血管内支架电极阵列的立体图;
图20是图19所示血管内支架电极阵列在另一视角下的结构示意图。
图中,100-支架编织丝;
110-第一金属编织丝,1101-绝缘段,1102-导电段,1103-电极,1104-电绝缘套;
120-高分子编织丝;
200-基础支架;
201-基础编织丝;
210-第二金属编织丝,2101-绝缘段,2102-导电段。
具体实施方式
由背景技术可知,现有技术中提供的脑血管支架电极目前采用微机电系统和3D打印的方式制成,工艺上存在挑战且成本也不低。
为解决上述问题,本申请实施例提供了一种血管内支架电极阵列(endovascularstent-electrode arrays),包括由支架编织丝编织而成的支架;支架编织丝包括第一金属编织丝,第一金属编织丝包括轴向布置的绝缘段和导电段,绝缘段与其他支架编织丝以及人体组织电绝缘,导电段用于对人体组织发放刺激脉冲和/或感知人体组织的电信号;第一金属编织丝的近端用于与外部设备电连接;第一金属编织丝的远端端部与人体组织电绝缘。
相较于现有技术来说,本申请实施例提供的血管内支架电极阵列包括由支架编织丝编织而成的支架,该支架编织丝包括第一金属编织丝,第一金属编织丝包括轴向布置的绝缘段和导电段。其中,绝缘段用于与其他支架编织丝以及人体组织电绝缘;而导电段用于对人体组织发放刺激脉冲和/或感知人体组织的电信号,以使第一金属编织丝作为传输信号的电极导线。因为本申请实施例中的血管内支架电极阵列,以支架中包括绝缘段和导电段的第一金属编织丝作为电极导线,所以能够使用成熟的支架编织方法制成,由此使产品结构简单化,进而在同时满足机械性能可靠性和感应脑电信号稳定性的前提下,达到降低工艺难度且相应的降低生产成本的效果。而且第一金属编织丝可以在普通的金属丝基础上获得,而普通的用于编织支架的金属丝的直径在30~60um左右,电阻阻值只有在先技术脑血管植入器械的电阻值的1/6左右,有效的降低了电路的阻值。
本申请实施例中血管内支架电极阵列可设置于需要作用(例如感测信号和/或发放脉冲)的人体组织附近的血管中。例如血管内支架电极阵列可以设置于大脑功能区静脉血管内以作用于植入区域的大脑皮层,又例如血管内支架电极阵列可以设置于上腔静脉处以感测窦房结或者对窦房结施加电场。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。在本申请中如果没有特别说明,“远端”、“远侧”是指血管内支架电极阵列中相对远离与血管内支架电极阵列电连接的外部设备的一侧,相应的,“近端”、“近侧”是指血管内支架电极阵列中相对靠近与血管内支架电极阵列电连接的外部设备的一侧。
本申请一实施例提供了一种血管内支架电极阵列,包括由支架编织丝100编织而成的支架,该支架编织丝100包括第一金属编织丝110,第一金属编织丝110在自身轴向上包括绝缘段1101和导电段1102,绝缘段1101与其他的支架编织丝100以及人体组织电绝缘,导电段1102用于对人体组织发放刺激脉冲和/或感知人体组织的电信号;第一金属编织丝110的近端用于与外部设备电连接;第一金属编织丝110的远端端部与人体组织电绝缘。在本实施例中,“人体组织”做泛化理解,包括但不限于实体器官、组织、神经、以及体液等。
参照图1至图2,该血管内支架电极阵列包括由8根第一金属编织丝110编织而成的支架,每根第一金属编织丝110上仅包括一个导电段1102,在导电段1102的两侧(也即在第一金属编织丝110轴向方向上的、导电段1102的两侧)分别设有绝缘段1101。可以看出,在本实施例中,将作为电极导线的,包括导电段1102和绝缘段1101的第一金属编织丝110巧妙地作为参与支架编织的编织丝,可以充分利用现有的成熟地支架编织工艺,相较于现有的纳米制备方法更成熟可靠,在保持机械性能不变的同时,还可提供低电阻更适合于刺激功能。
可以理解的是,在本实施例中不对编织该血管内支架电极阵列使用到的第一金属编织丝110的数量做出具体的限定,也不会对使用到的支架编织丝100的数量做出具体的限定。
图3所示的血管内支架电极阵列,包括采用16根第一金属编织丝110编织而成的支架。在该实施例中,每个第一金属编织丝110包括一个导电段1102,同样,在每个导电段1102的两侧(也即在第一金属编织丝110轴向方向上的、导电段1102的两侧)分别设有绝缘段1101。
进一步,本实施例对每根第一金属编织丝110上设有的导电段1102的数量不做出具体的限定。每根第一金属编织丝110上的导电段1102的数量优选为一个或2个。例如,图1、图3所示的血管内支架电极阵列中,每根第一金属编织丝110上的导电段1102的数量为一个。又例如,图4、图5所示的血管内支架电极阵列中,每根第一金属编织丝11上的导电段1102的数量为2个(图4、图5中导电段1102与电极1103指向同一处)。
进一步,本实施例对导电段1102的设置位置也没有特别的限制。所有的第一金属编织丝110上的导电段1102在支架轴线方向上优选不重叠,即以错位分布的形式设置在第一金属编织丝110上。如图1所示,8根第一金属编织丝110编织形成支架,所有的第一金属编织丝110上的导电段1102在支架轴线方向上不重叠,即8根第一金属编织丝110的导电段1102在支架轴线方向上错位分布的形式分布,由此在方便支架被压缩后输送到人体目标位置的同时,可以扩大感测、刺激人体目标位置的范围,以提高感测精度以及刺激范围。如图3所示,16根第一金属编织丝110编织形成支架,所有的第一金属编织丝110上的导电段1102在支架轴线方向上等距间隔布置。如图4所示,2根第一金属编织丝110和2根其他的支架编织丝100编织形成支架,所有的第一金属编织丝110上的导电段1102在支架轴线方向上等距间隔布置。
同样,第一金属编织丝110编织形成支架,不同的第一金属编织丝110上的导电段1102在支架周向方向上优选不重叠。如图2所示,8根第一金属编织丝110编织形成支架,所有的第一金属编织丝110上的导电段1102在支架周向方向上等角度间隔布置,即周向上相邻的导电段1102之间呈45°布置。如图5所示,2根第一金属编织丝110、2根其他支架编织丝100编织形成支架,2根第一金属编织丝110上的导电段1102在支架周向方向上等角度间隔布置,即周向上2根第一金属编织丝110上的导电段1102对称布置。优选,相同第一金属编织丝110上的导电段1102在支架周向方向上重叠。
在一个替代性实施例中,所有第一金属编织丝110上的导电段1102按组配置。优选,相邻的多个导电段1102形成一组导电段,每组的导电段1102可以按照上述的方式排列。每组导电段排列方式可以相同,也可以不相同。每组导电段之间优选可以在支架轴向上等间距布置。每组导电段之间优选在支架周向上间隔一定的角度,或者,在支架周向上位置相同。
进一步,在本实施例中对每个导电段1102的长度也没有特别的限制。为了方便加工,可以将所有导电段1102的长度设置为相同的。当然,考虑到各处位置刺激强度的区别,也可以将不同位置处的导电段1102设置为不同的长度。
在本实施例中,从径向结构角度来看,在径向方向上第一金属编织丝110包括金属丝,该金属丝从第一金属编织丝110的近端延伸至第一金属编织丝110的远端。该金属丝的材质可以为生物相容性的形状记忆合金材料,例如镍钛合金。该金属丝的材质也可以为其他生物相容性金属材料,例如不锈钢。第一金属编织丝110作为电极导线,需要使第一金属编织丝110除了导电段1102与目标位置的人体组织电导通之外,其余的部分保持与人体组织以及其他的支架编织丝100电绝缘。因此,第一金属编织丝110需要设有绝缘段1101。而金属丝本身就具有导电性,因此,对应导电段1102位置的金属丝为裸露的(即第一部分),即导电段1102可以为第一部分。另一方面,绝缘段1101对应位置的金属丝裸露的表面(即第二部分)设有电绝缘层(即第二电绝缘层),即绝缘段1101包括第二部分和第二电绝缘层,第二电绝缘层设置在第二部分外表面。进一步,本实施例中电绝缘层的材料没有特别的限制,具有生物相容性即可。例如,电绝缘层的材料聚酰亚胺(Polyimide,简称PI),或者聚四氟乙烯(Poly tetra fluoroethylene,简称PTFE)。
本实施例对第一金属编织丝110的绝缘段1101和导电段1102的制备方法没有特别的限制。例如,通过将金属丝浸涂绝缘材料,以在金属丝表面上形成电绝缘层之后,在导电段1102预设的位置去除电绝缘层,以使该部位的金属丝露出,进而形成导电段1102。又例如,在将金属丝喷涂电绝缘材料形成电绝缘层时,在导电段1102预设位置套设掩膜,在喷涂完成后,去除掩膜,使该部分的金属丝的露出,以形成导电段1102。
为了增强对脑电信号的感应效果,优选,第一金属编织丝110的导电段1102,除了第一部分之外还包括电极1103,电极1103与第一部分电连接。如图3所示,支架由16根第一金属编织丝110编织而成,每根第一金属编织丝110上设置有一个导电段1102,每个导电段1102包括第一部分以及与第一部分电连接的电极1103。或者,如图4和图5所示,支架编织丝100包括2根第一金属编织丝110和2根其他的支架编织丝100编织,每根第一金属编织丝110上设置有2个导电段1102,在每个导电段1102包括第一部分以及与第一部分电连接的电极1103。进一步,电极1103的材料可以为铂或其合金、铱或其合金。优选的,电极1103的外表面还设有化学涂层(如氮化钛TiN、氧化铱IrO2),来增加其微观表面积,提高电极感知性能。另外,可以通过焊接、铆接、绑接等方式将电极1103连接在第一部分上。例如,如图1至图3所示,电极1103(图中电极1103遮挡住了导电段1102,故而导电段1102和电极1103指向同一处)的横截面呈O形,将电极1103套设在第一部分上,然后通过压握的方式将电极1103与第一部分电连接。电极1103的横截面还可以是其他封闭的形状,例如椭圆形。电极1103的横截面还可以是半封闭的形状,例如C形。又例如,如图4所示,电极1103呈片状结构,将电极1103焊接在第一部分,以实现两者的电连接。
在一个替代性实施例中,导电段1102还包括电绝缘层(即第一电绝缘层),即导电段1102包括第一部分、设置在第一部分上的电绝缘层(即第一电绝缘层)以及电极1103。此时,由电极1103穿破电绝缘层后与金属丝电连接。如此,第一金属编织丝110的制备更加简易。
可以看出,在本实施例中,在第一金属编织丝110中,至少包括:第一部分可形成导电段1102;和,第二部分以及设置在第二部分外表面的第二电绝缘层共同形成绝缘段1101。可选的,上述的导电段1102除了第一部分还包括电极1103。可选的,上述的导电段1102还包括第一电绝缘层,第一电绝缘层设置在第一部分的外表面,电极1103穿过第一电绝缘层与第一部分电连接。需要说明的是,第二部分和第二电绝缘层、及第一部分和第一电绝缘层仅用于区别绝缘段1101和不同实施例下的导电段1102组成部分,并不对绝缘段1101和导电段1102在第一金属编织丝110上的相对位置及长度方向上的尺寸作出具体的限定。
在本实施例中,支架编织丝100可以采用单丝形式,也可以采用股线的形式。对于单丝形式的第一金属编织丝110而言,可以采用浸涂、喷涂、热缩、滚压等方式将电绝缘层设置在金属丝上,形成第一金属编织丝110的绝缘段1101;对于股线形式的第一金属编织丝110而言可以先制备电绝缘的单丝再通过物理方式(例如加捻)、化学方式(例如粘合)形成股线,或者股线采用绝缘管热缩方式电绝缘,以形成第一金属编织丝110的绝缘段1101。此外,多根第一金属编织丝110可以采用物理方式(例如加捻)、化学方式(例如粘合)形成一根支架编织丝100和其他的支架编织丝100编织形成支架。
在替代的实施例中,支架编织丝100除了包括第一金属编织丝110之外,还包括高分子编织丝120。该高分子编织丝120采用生物相容性,且不可降解的高分子材料,例如多孔聚四氟乙烯(expanded polytetrafluoroethylene,简称为EPTFE),聚酰胺,聚酰亚胺中的一种或者多种。如此,高分子编织丝120无需做额外的处理,每个绝缘段1101可以与任一支架编织丝100都电绝缘。
在另外一些替代的实施例中,支架编织丝100除了包括第一金属编织丝110之外,还包括生物相容性的金属材料制备的编织丝。优选,生物相容性的金属材质的编织丝为经过电绝缘处理。如此,在绝缘段1101发生破损时,也可以与其余的支架编织丝100保持电绝缘。这里,电绝缘的金属材质的编织丝优选为具有生物相容性的金属材质的编织丝经过电绝缘化处理制备,例如采用喷涂、浸涂、滚压、热缩等方式电绝缘材料设置在金属材质的编织丝上。在另外一些替代的实施例中,支架编织丝100除了包括第一金属编织丝110之外,还包括高分子编织丝120和电绝缘的金属材质的编织丝。
相应地,在另一示范性实施例中,血管内支架电极阵列包括由第一金属编织丝110和高分子编织丝120编织而成的支架。在另一示范性实施例中,血管内支架电极阵列包括由第一金属编织丝110和电绝缘的金属材质的编织丝编织而成的支架。在另一示范性实施例中,血管内支架电极阵列包括由第一金属编织丝110、高分子编织丝120和电绝缘的金属材质的编织丝编织而成的支架。
在图1、图3所示的血管内支架电极阵列中,第一金属编织丝110的数量即为全部编织丝的数量,即支架由第一金属编织丝110编织而成。而在图4、图5所示的血管内支架电极阵列中,支架编织丝100的数量为4根,而第一金属编织丝110的数量为2根,即除了第一金属编织丝110之外还包括其他的支架编织丝100,例如为高分子编织丝120或者电绝缘处理的金属材质的编织丝。
在本实施例中,进一步,第一金属编织丝110上还设有显影点(图中未示出),以对所有第一金属编织丝110上的导电段1102的顺序进行标记,方便植入人体时对人体组织的电信号的感测效果调试、对人体组织施加电刺激效果的调试,以及植入人体后对感测数据、刺激效果分析。
本实施例对支架编织丝100编织形成支架的具体方式没有特别的限制,本领域技术人员可以根据需要选择合适的编织方法,以及编织的参数来编织支架。如图19、20所示,该血管内支架电极阵列中支架编织密度沿自身轴线发生变化,具体包括由近及远依次连接的近段、中间段和远段,近段的编织密度大于远段的编织密度,远段的编织密度大于中间段的编织密度。
对于血管内支架电极阵列的第一金属编织丝110,通过导电段1102与人体组织电连接。因此,除了在第一金属编织丝110的外表面设置绝缘段1101之外,还需要对第一金属编织丝110的远端的端面进行电绝缘处理,以使第一金属编织丝110的远端端部与人体组织电绝缘。在本实施例中,如图1所示,第一金属编织丝110的远端端部设有电绝缘层。例如,可以采用浸涂、喷涂的方式设置电绝缘层。在一个替代实施方式中,如图4、图5所示,第一金属编织丝110的远端端部套设有电绝缘套1104。
本实施例中,外部设备包括且不限于脉冲发生装置,利用脉冲发生装置来获取目标人体组织的电信号和/或对人体组织施加以预设的频率、脉宽和幅值等参数的电脉冲。其中,与脉冲发生装置电连接的方式可以通过采用激光焊接或电阻焊焊接等方式实现。例如,脉冲发生装置可以为内部遥测单元(internal telemetry unit,ITU)。具体而言,血管内支架电极阵列还包括绝缘导线和连接端子。绝缘导线的远端与第一金属编织丝的近端电连接,绝缘导线的近端与连接端子电连接。而连接端子用于与外部设备可拆卸电连接。绝缘导线包含绝缘导丝,绝缘导丝的数量与第一金属编织丝的数量相匹配,绝缘导丝相互之间为电绝缘设置。绝缘导线的长度取决于支架在人体组织中的位置和外部设备的位置。绝缘导丝可以与第一金属编织丝焊接、绞接,可以与第一金属编织丝一体成型。优选,绝缘导丝上还设有约束连接件,约束连接件用于与第一金属编织丝近端电连接,并将所有的第一金属编织丝约束在支架的一侧或两侧,以防止第一金属编织丝影响血管中血液流动。如图20所示,约束连接件(图中未示出)将所有的第一金属编织丝110约束在支架的两侧。示范性的,支架设置在脑部静脉血管中,内部遥测单元设置在人体胸腔,绝缘导线的一端与支架中第一金属编织丝110电连接,绝缘导线的另一端与连接端子电连接,绝缘导线从脑部静脉血管延伸经过颈静脉血管进入人体胸腔,连接端子与内部遥测单元插合并且电连接。
为了解决上述问题,基于同一构思,本申请另一实施例提供了另一种的血管内支架电极阵列,包括基础支架200和固定设置在基础支架200上的第二金属编织丝210。其中,基础支架200为电绝缘的,第二金属编织丝210包括绝缘段2101和导电段2102,绝缘段2101与人体组织电绝缘,导电段2102用于对人体组织发放刺激脉冲和/或感知人体组织的电信号;第二金属编织丝210的近端用于与外部设备电连接;第二金属编织丝210的远端端部与人体组织电绝缘。同样,在本实施例中,“人体组织”做泛化解释,包括但不限于实体器官、组织、神经、以及体液。显然,由于基础支架200为电绝缘的,所以,绝缘段2101同样对于基础支架200以及其余的第二金属编织丝210(假设存在其余的第二金属编织丝210)也是电绝缘的。
相较于现有技术来说,除了上述实施例的优点之外,本实施例的血管内支架电极阵列,可以采用传统材料以及传统制备支架的方法制备基础支架200,并且可以克服上述实施例中的血管内支架电极阵列在编织的支架成形时需要高温固定而绝缘层的材料耐高温性能不足的问题。例如,上述实施例中,作为绝缘层材料的聚酰亚胺、聚四氟乙烯不能长时间承受超过300℃高温。此外,设置在基础支架200上的第二金属编织丝210可以不考虑支架力学性能要求,选材更加多样化。
本实施例对基础支架200的制备方法没有特别的限制。例如,采用基础编织丝201编织基础支架200。更具体地,在一种实施方式中,基础编织丝201为高分子编织丝120,可以由高分子编织丝120编织形成基础支架200。在另一种实施方式中,基础编织丝201为具有生物相容性的金属材料制备的编织丝,可以以金属材质的编织丝编织形成金属裸支架后,再对金属裸支架做电绝缘处理形成基础支架200。在另一种实施方式中,基础编织丝201为电绝缘的金属材质的编织丝,先对具有生物相容性的金属材料制备的编织丝做电绝缘处理形成电绝缘的金属材质的编织丝,然后编织形成基础支架200。
在基础支架200制备方法的替代实施例中,还可以利用除编织方法以外的其他工艺方式制得电绝缘的基础支架200。例如,可以由金属管切割(例如激光切割)后形成金属裸支架,再对金属裸支架做电绝缘处理形成基础支架200。
另外,本实施例对金属裸支架做电绝缘处理得到基础支架200的方法没有特别的限制,例如采用浸涂、喷涂的方式将电绝缘材料设置于金属裸支架表面,形成电绝缘层。同样,本实施例对金属丝做电绝缘处理的具体方法没有特别的限制,可以采用上述实施例所示出的方法。
本实施例中,在基础支架200上设置设有第二金属编织丝210的方法没有特别的限制。
在基础支架200为由基础编织丝201编织而成时,基础编织丝201呈一定的空间形态,第二金属编织丝210与基础支架200的一基础编织丝201并行延伸,即第二金属编织丝210与该基础编织丝201有相同的空间形态。如图6所示的血管内支架电极阵列中,在高分子编织丝120作为基础编织丝201编织的基础支架200的基础上增加了2根第二金属编织丝210,每根第二金属编织丝210沿着基础支架200上一根高分子编织丝120的延伸方向与该高分子编织丝120附着并列延伸,而且该两根高分子编织丝120关于基础支架200的轴线对称布置。如此可以增加血管内支架电极阵列的径向支撑力,另外可以通过导电段2102发放刺激脉冲或者感知外部的电信号。如图8所示的血管内支架电极阵列中,在基础支架200的基础上增加了1根第二金属编织丝210,第二金属编织丝210沿着基础支架200上一根基础编织丝201的延伸方向延伸,且第二金属编织丝210与与该基础编织丝201间隔并列延伸。又例如,第二金属编织丝210以与基础支架200上任一编织丝100均不同的延伸方式设置在支架上,即第二金属编织丝210与组成基础支架200的编织丝100为不同的空间形态。
在基础支架200为由金属管切割而成时,基础支架200包括多个波杆形成的网格单元,网格单元沿所述基础支架200轴线方向布置,第二金属编织丝210顺着波杆从基础支架200的近端延伸至基础支架200的远端。例如,第二金属编织丝210顺着波杆做螺旋状延伸,又例如第二金属编织丝210顺着波杆做基本直线状延伸。
在本实施例中,第二金属编织丝210可以通过物理方式(例如缝合固定)、化学方式(例如胶水粘接)设置在基础支架200上。
本实施例中,设置于基础支架200的第二金属编织丝210与基础编织丝201的材质可以相同,也可以不相同。优选,固定在基础支架200上的第二金属编织丝210包括的金属丝采用低阻值的金属材料,例如线(Drawn Filled Tube线,一种内芯银质外芯为ASTMF562材料的复合线材)。
本实施例中的第二金属编织丝210同样包括导电段2102和绝缘段2101,第二金属编织丝210中导电段2102和绝缘段2101可以采用与上述第一金属编织丝110中导电段1102和绝缘段1101相同的设置方式。
参考图6、图7,本实施例血管内支架电极阵列中的基础支架200由8根高分子编织丝120作为基础编织丝201编织而成,2根第二金属编织丝210设置在基础支架200上,每根第二金属编织丝210上包括两个导电段2102,每个导电段2102包括金属丝的第一部分和与第一部分电连接的电极1103(图中电极1103遮挡住了导电段2102,故而导电段2102和电极1103指向同一处)。4个导电段2102沿支架轴向均匀间隔分布,两根第二金属编织丝210上的导电段2102在支架周向上对称分布,且同一第二金属编织丝210上的导电段2102在支架周向上重叠。此外,在第二金属编织丝210的远端端部设有电绝缘套1104。
在其他实施例中,所有第二金属编织丝210上的导电段2102按组配置。优选,多个导电段2102形成一组导电段,每组导电段中的所有导电段2102在支架的轴向方向上等间距布置,或者每组导电段中的相邻的导电段2102在支架的轴向方向上的间距逐渐变化。优选,多个导电段2102形成一组导电段,每组导电段中的所有导电段2102在支架的周向方向上均匀布置,或者每组导电段中的相邻的导电段2102在支架的周向方向上的间距逐渐变化。这里的“逐渐变化”可以是逐渐变大,或者逐渐变小,或者先逐渐变小后逐渐变大,或者先逐渐变大后逐渐变小。
在其他实施方式中,参照图8至图14所示,血管内支架电极阵列中的基础支架200由16根电绝缘的金属材质的编织丝编织而成,16根第二金属编织丝210设置在基础支架200上,每个第二金属编织丝210上包括一个导电段2102,血管内支架电极阵列中一共包括16个导电段2102。其中,近端的8个导电段2102分为一组,远端的8个导电段2102分为另一组。每组中的导电段2102在支架轴向上等间距布置和在支架周向上均匀布置。但是,近端一组中的导电段2102由近及远在支架周向上布置方向与远端一组的导电段2102由近及远在支架周向上布置方向相反。具体而言,从图10、图13中左侧往右侧观察,近端一组中的导电段2102在支架周向上为顺时针布置,而远端一组中的导电段2102在支架周向上沿逆时针布置。当然,除了1根第二金属编织丝210外的其余金属材质的编织丝也可以由高分子编织丝120所替代。
在另外一个实施例中,参照图15、16所示,血管内支架电极阵列中的基础支架200由16根电绝缘的金属材质的编织丝编织而成,16根第二金属编织丝210设置在基础支架200上,每个第二金属编织丝210上包括一个导电段2102,血管内支架电极阵列中一共包括16个导电段2102。其中,每4个导电段2102为一组,形成4组导电段。每段导电段中的4个导电段2102在支架轴向上位置相同,在支架周向上均匀布置。4组导电段之间在在支架轴向上等间距布置,在支架周向上位置相同。
在另外一个实施例中,参照图17、18所示,血管内支架电极阵列中的基础支架200由16根电绝缘的金属材质的编织丝编织而成,16根第二金属编织丝210设置在基础支架200上,每个第二金属编织丝210上包括一个导电段2102,血管内支架电极阵列中一共包括16个导电段。其中,每4个导电段2102为一组,形成4组导电段。每段导电段中的4个导电段2102在支架轴上位置相同,支架周向均匀布置。与上述实施例区别在于,4组导电段之间在在支架轴向上等间距布置,且在支架周向上间隔45°布置。
当然,第二金属编织丝210中导电段2102和绝缘段2101可以采用与上述第一金属编织丝110中导电段1102和绝缘段1101不同的设置方式。
同样,在本实施例中,外部设备包括且不限于脉冲发生装置,利用脉冲发生装置来获取目标人体组织的电信号和/或对人体组织施加以预设的频率、脉宽和幅值等参数的电脉冲。其中,与脉冲发生装置电连接的方式可以通过采用激光焊接或电阻焊焊接等方式实现。例如,脉冲发生装置可以为内部遥测单元(internal telemetry unit,ITU)。具体而言,血管内支架电极阵列还包括绝缘导线和连接端子。绝缘导线的远端与第二金属编织丝的近端电连接,绝缘导线的近端与连接端子电连接。而连接端子直接与外部设备可拆卸电连接。绝缘导线包含绝缘导丝,绝缘导丝的数量与第二金属编织丝的数量相匹配,绝缘导丝相互之间为电绝缘设置。绝缘导线的长度取决于支架在人体组织中的位置和外部设备的位置。绝缘导丝可以与第二金属编织丝焊接、绞接,可以与第二金属编织丝一体成型。优选,绝缘导丝上还设有约束连接件,约束连接件用于与第二金属编织丝近端电连接,并将所有的第二金属编织丝约束在支架的一侧或两侧,以防止第二金属编织丝影响血管中血液流动。示范性的,支架设置在脑部静脉血管中,内部遥测单元设置在人体胸腔,绝缘导线的一端与第二金属编织丝电连接,绝缘导线的另一端与连接端子电连接,绝缘导线从脑部静脉血管延伸经过颈静脉血管进入人体胸腔,连接端子与内部遥测单元插合并且电连接。
此外,本申请的另一实施例还提供了一种血管内支架电极阵列的制备方法,血管内支架电极阵列包括由支架编织丝100编织而成的支架,制备方法包括以下步骤:
步骤(1)提供编织丝,其中编织丝包括用于制备第一金属编织丝110的金属丝。
该金属丝可以是由长丝而成的单丝,也可以是长丝、短丝通过物理方式(例如加捻)或化学方式(例如粘合)等方式形成的股线。同样的,除第一金属编织丝110之外其他的编织丝也可以选用长丝形成的单丝或者长丝、短丝而成的股线。
该金属丝的材质可以为生物相容的形状记忆合金材料,例如镍钛合金。该金属丝的材质也可以为其他生物相容性金属材料,例如不锈钢。
步骤(2)确定导电段1102在金属丝上的位置。
本步骤中,例如可以根据编织参数制作支架的三维模型,在三维模型上确定导电段1102在编织状态的第一金属编织丝110上的位置,再根据导电段1102在模型上的位置,确定每个导电段1102在准备状态的金属丝上的对应位置。
其中,此处的“准备状态”是指金属丝准备编织时所处的状态;“编织状态”是指第一金属编织丝110被编织作为编织支架中的一部分时所处的状态。
需要说明的是,视使用需求而定,一根第一金属编织丝110上可以布置一个或者两个导电段1102。
步骤(3)根据确定的导电段1102的位置在金属丝110上制备绝缘段1101和导电段1102,得到第一金属编织丝110,进而完成支架编织丝的准备。
本步骤中,可以对金属丝做电绝缘处理,并根据步骤(2)确定的位置在金属丝上制备绝缘段1101和导电段1102,以得到第一金属编织丝110。其中,绝缘段1101与其他的支架编织丝100以及人体组织电绝缘,导电段1102用于对所述人体组织发放刺激脉冲和/或感知所述人体组织的电信号。
具体而言,对于第一金属编织丝110来说,除导电段1102可以与人体组织电连接外,其余部分不仅需要与其他的支架编织丝100电绝缘,还需要与人体组织电绝缘。因此,将金属丝上除了设置导电段1102的位置之外的其他金属表面设置电绝缘层,以作为绝缘段1101,从而得到第一金属编织丝110。如上述实施例所述,导电段1102、绝缘段1101的制备方法没有特别的限制。例如,通过将金属丝浸涂电绝缘材料,以在表面上形成电绝缘层之后,在预设的位置去除部分电绝缘层,以使金属丝的部分表面裸露出,进而形成导电段1102。又例如,在将金属丝喷涂电绝缘材料形成电绝缘层时,在预设位置套设掩膜,在喷涂完成后,去除掩膜,也可以使金属丝的部分表面裸露出,以形成导电段1102。进一步地,在裸露的金属丝表面上设置电极1103。替代性地,将用于制备第一金属编织丝110的金属丝表面全部设置电绝缘层,然后在设置导电段1102的位置,将电极1103刺破电绝缘层并与电绝缘层下的金属丝电连接。
如果编织丝全部为金属丝,则在将金属丝制备成第一金属丝110后即完成支架编织丝的准备。如果编织丝除了包含金属丝,还包含其他的编织丝,则为了使支架具有更好的电绝缘性,优选对其余的编织丝进行电绝缘处理。如上述实施例所述,电绝缘处理的方法可以为浸涂、喷涂、热缩、滚压的方式。对于编织丝为高分子编织丝的,也可以省去电绝缘处理。在完成对除金属丝之外的编织丝电绝缘处理后,完成支架编织丝的准备。
步骤(4)将支架编织丝进行编织,并将第一金属编织丝110的远端端部做电绝缘处理,得到该支架。
本步骤中,根据编织参数将支架编织丝进行编织,将第一金属编织丝110的远端端部做电绝缘处理,以得到支架。
为了防止第一金属编织丝110的远端端部与人体组织电连接,需要对第一金属编织丝110的远端端部进行电绝缘处理。如上述实施例所述,可以采用在第一金属编织丝110的远端端部设置电绝缘层的方式,例如,可以采用浸涂、喷涂的方式在第一金属编织丝110的远端端部设置电绝缘层,或者,对第一金属编织丝110的远端端部设置绝缘套。
另外,在一个进一步的实施例中,该血管内支架电极阵列包还包括绝缘导线和连接端子,相应地,制备方法还包括将第一金属编织丝110的近端与绝缘导线的远端电连接,将绝缘导线的近端和连接端子电连接,形成通过连接端子能够与外部设备电连接的血管内支架电极阵列。
在一个替代的实施例中,还提供一种血管内支架电极阵列的制备方法,所述血管内支架电极阵列包括支架,制备方法包括以下步骤:
步骤(1)提供编织丝,该编织丝包括用于制备第一金属编织丝的金属丝,并对金属丝进行电绝缘处理。
具体而言,通过电绝缘处理,使得金属丝的表面设有电绝缘层。制备第一金属编织丝的金属丝可以是单丝,也可以是股线的形式。对于单丝可以采用浸涂、喷涂、热缩、滚压等方式将电绝缘层设置在金属丝上;对于股线可以绝缘管热缩方式进行电绝缘处理。也可以先制备电绝缘的单丝再通过物理方式(例如加捻)、化学方式(例如粘合)形成股线。
对于编织丝中除了第一金属编织丝的金属丝之外的具有生物相容性的金属材料制备的编织丝也可以进行电绝缘处理,形成电绝缘的金属材质的编织丝。电绝缘的具体处理的方式与上述相似。
步骤(2)将所述编织丝编织成初始支架,并确定导电段在所述第一金属编织丝上的位置。
本步骤中,根据预设编织参数,将编织丝编织形成初始支架,并确定导电段1102在第一金属编织丝110上的位置。
本实施例对支架的编织参数没有特别的限制,可以根据血管内支架电极阵列置放的人体组织的类型、置放在人体组织的位置来选择合适编织参数。
在得到初始支架后,需要对初始支架做进一步的处理,才能得到用于血管内支架电极阵列的支架。
步骤(3)根据确定的位置,在电绝缘处理后的金属丝上制备导电段1102以及绝缘段1101,得到第一金属编织丝110。
本步骤中,根据步骤(2)确定的位置,在电绝缘处理后的金属丝上制备导电段1102,而其余的电绝缘层对应的部分形成了绝缘段,如此得到了第一金属编织丝,所述导电段1102用于对所述人体组织发放刺激脉冲和/或感知所述人体组织的电信号。
具体的,根据步骤(2)确定的位置,对支架上的电绝缘处理后的金属丝表面去除电绝缘层,以裸露出金属丝的表面(即第一部分)作为导电段1102,而其余具有绝缘层部分作为绝缘段1101(即为设有绝缘段1101和导电段1102的第一金属编织丝110)。
优选,在第一部分上电连接电极1103,以增强感应效果。具体的,可以通过焊接、铆接、绑接等方式将电极1103连接在第一部分上形成导电段1102。
在替代性实施例中,直接将电极1103穿破步骤(2)中确定位置的电绝缘层后与第一部分电连接形成导电段1102。
还给每根第一金属编织丝110上设置显影点,以用于标识所有第一金属编织丝110的导电段1102的排列顺序。
步骤(4)将第一金属编织丝110的远端端部做电绝缘处理。
另外,在一个进一步的实施例中,该血管内支架电极阵列包还包括绝缘导线和连接端子,相应地,制备方法还包括将第一金属编织丝110的近端与绝缘导线的远端电连接,将绝缘导线的近端和连接端子电连接,形成通过连接端子能够与外部设备电连接的血管内支架电极阵列。
在另一个替代的实施例中,又提供了一种血管内支架电极阵列的制备方法,血管内支架电极阵列包括基础支架200,第二金属编织丝,制备方法包括以下步骤:
步骤(1)提供电绝缘的基础支架200。
例如,可以由金属管切割(例如激光切割)后形成金属裸支架,再对金属裸支架做电绝缘处理形成基础支架200。也可以由高分子编织丝120作为基础编织丝201编织形成基础支架200。还可以由金属丝作为基础编织丝201编织形成金属裸支架后,再对金属裸支架做电绝缘处理形成基础支架200。也可以将电绝缘处理的金属丝作为基础编织丝201编织形成基础支架200。
步骤(2)提供第二金属编织丝210,其中,第二金属编织丝210包括绝缘段2101和导电段2102,绝缘段2101与人体组织电绝缘,导电段2102用于对人体组织发放刺激脉冲和/或感知所述人体组织的电信号。
例如,提供金属丝,通过将金属丝浸涂绝缘材料,以在金属丝表面上形成电绝缘层,在预设的导电段2102位置去除电绝缘层,以使该部位的金属丝露出,进而形成导电段1102;而其余部分则形成绝缘段2101。又例如,提供金属丝,在将金属丝喷涂电绝缘材料形成电绝缘层时,在预设的导电段2102位置套设掩膜,在喷涂完成后,去除掩膜,使该部分的金属丝露出,以形成导电段2102,而其余部分形成绝缘段2101。
步骤(3)将第二金属编织丝210设置在基础支架200上。
在基础支架200上设置第二金属编织丝210的方法没有特别的限制。在基础支架200是编织而成的情况下,例如,将第二金属编织丝210与基础支架200的一基础编织丝201并行延伸,即第二金属编织丝210与基础支架200的一基础编织丝201有相同的空间形态。又例如,第二金属编织丝210以与基础支架200上任一基础编织丝201均不同的延伸方式设置在基础支架200上,即第二金属编织丝210有与基础支架200的基础编织丝201均不同的空间形态。而在基础支架200是由金属管切割而成的情况下,基础支架200包括多个波杆形成的网格单元,网格单元沿所述基础支架200轴线方向布置,将第二金属编织丝210顺着波杆从基础支架200的近端延伸至基础支架200的远端。具体的,可以通过物理方式(例如缝合固定)、化学方式(例如胶水粘接)与基础支架200相固定。
步骤(4)将第二金属编织丝210的远端端部做电绝缘处理。
另外,在一个进一步的实施例中,所述血管内支架电极阵列包还包括绝缘导线和连接端子,相应地,制备方法还包括将第二金属编织丝210的近端与绝缘导线的远端电连接,将绝缘导线的近端和连接端子电连接,形成通过连接端子能够与外部设备电连接的血管内支架电极阵列。
以上步骤如果没有特别的限制,对步骤的先后顺序没有特别的限制。例如步骤(4)可以在步骤(3)之前完成。
在一个替代性实施例中,在替代性的步骤(2)中提供用于制备第二金属编织丝的金属丝,将该金属丝电绝缘处理;在替代性的步骤(3)中将电绝缘处理后的金属丝设置在基础支架200上,并在电绝缘处理后的金属丝上制备导电段2102和绝缘段2101。
本申请的又一实施例还提供了一种电刺激系统,包括脉冲发生装置和如上述的血管内支架电极阵列,血管内支架电极阵列中的第一金属编织丝或第二金属编织丝与脉冲发生装置电连接。其中,脉冲发生装置用于与体外的设备通过无线通信方式进行交互,例如数据交互。脉冲发生装置,例如为内部遥测单元(internal telemetry unit,ITU)。进一步,所述血管内支架电极阵列还包括绝缘导线和连接端子。其中,所述绝缘导线的近端和所述连接端子电连接,所述绝缘导线的远端与所述第一金属编织丝或第二金属编织丝的近端电连接;连接端子与脉冲发生装置可拆卸电连接。例如,连接端子为具有多个环触点的插头,脉冲发生装置具有对应触点的母座。
该种电刺激系统采用了如前实施例记载的血管内支架电极阵列,该血管内支架电极阵列,以设有导电段和绝缘段的第一金属编织丝或第二金属编织丝作为电极导线,能够使用成熟的支架编织方法制成,由此使产品结构简单化,进而在同时满足机械性能可靠性和感应脑电信号稳定性的前提下,达到降低工艺难度且相应的降低生产成本的效果。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (29)

1.一种血管内支架电极阵列,其特征在于,包括由支架编织丝编织而成的支架;
所述支架编织丝包括第一金属编织丝,所述第一金属编织丝包括轴向布置的绝缘段和导电段,所述绝缘段与其他的所述支架编织丝以及人体组织电绝缘,所述导电段用于对所述人体组织周围神经发放刺激脉冲和/或感知所述人体组织周围神经的电信号;
所述第一金属编织丝的近端用于与外部设备电连接;所述第一金属编织丝的远端端部与所述人体组织电绝缘。
2.根据权利要求1所述的血管内支架电极阵列,其特征在于,所述第一金属编织丝径向包括从所述第一金属编织丝近端延伸到所述第一金属编织丝远端的金属丝和第二绝缘层,所述金属丝包括与导电段位置对应的第一部分和与所述绝缘段对应的第二部分,所述导电段为第一部分,所述绝缘段包括第二部分和设置在第二部分表面的第二绝缘层。
3.根据权利要求1所述的血管内支架电极阵列,其特征在于,所述第一金属编织丝径向包括从所述第一金属编织丝近端延伸到所述第一金属编织丝远端的金属丝和第二绝缘层,所述金属丝包括与导电段位置对应的第一部分和与所述绝缘段对应的第二部分,所述导电段包括第一部分和电极,所述电极与所述第一部分电连接,所述绝缘段包括第二部分和设置在第二部分表面的第二绝缘层。
4.根据权利要求3所述的血管内支架电极阵列,其特征在于,所述导电段还包括第一电绝缘层,所述第一电绝缘层设置在所述第一部分的外表面,所述电极穿过所述第一电绝缘层与所述第一部分电连接。
5.根据权利要求1所述的血管内支架电极阵列,其特征在于,所述第一金属编织丝上设置有显影点,用于标识所有所述第一金属编织丝的导电段排列顺序。
6.根据权利要求1所述的血管内支架电极阵列,其特征在于,所述支架编织丝还包括高分子编织丝,所述高分子编织丝的材质为生物相容性非可降解的高分子材料。
7.根据权利要求1所述的血管内支架电极阵列,其特征在于,所述支架编织丝还包括生物相容性的金属材料制备的编织丝。
8.根据权利要求7所述的血管内支架电极阵列,其特征在于,所述生物相容性的金属材料制备的编织丝为经过电绝缘处理的。
9.根据权利要求1所述的血管内支架电极阵列,其特征在于,各个所述第一金属编织丝上的所述导电段在所述支架的轴向方向上以错位分布的形式设置在所述第一金属编织丝上。
10.根据权利要求1所述的血管内支架电极阵列,其特征在于,不同的所述第一金属编织丝上的所述导电段在所述支架的周向方向上错位分布。
11.根据权利要求1所述的血管内支架电极阵列,其特征在于,同一所述第一金属编织丝上的所述导电段在所述支架的周向方向上的位置相同。
12.根据权利要求1所述的血管内支架电极阵列,其特征在于,所述第一金属编织丝的远端端部设有电绝缘层,或套设有电绝缘套。
13.根据权利要求1所述的血管内支架电极阵列,其特征在于,还包括与绝缘导线和连接端子,所述绝缘导线的近端和所述连接端子电连接,所述绝缘导线的远端与所述第一金属编织丝的近端电连接,所述连接端子用于与外部设备可拆卸电连接。
14.根据权利要求13所述的血管内支架电极阵列,其特征在于,所述绝缘导丝上还设有约束连接件,所述约束连接件用于与所述第一金属编织丝的近端电连接,并将所有的所述第一金属编织丝约束在所述支架的一侧或两侧。
15.一种血管内支架电极阵列,其特征在于,包括基础支架和第二金属编织丝,所述基础支架电绝缘,所述第二金属编织丝设置于所述基础支架;
所述第二金属编织丝包括绝缘段和导电段,所述绝缘段与人体组织电绝缘,所述导电段用于对人体组织周围神经发放刺激脉冲和/或感知所述人体组织周围神经的电信号;
所述第二金属编织丝的近端用于与外部设备电连接;所述第二金属编织丝的远端端部与人体组织电绝缘。
16.根据权利要求15所述的血管内支架电极阵列,其特征在于,所述基础支架为基础编织丝编织而成;或者,
所述基础支架为金属管切割而成。
17.根据权利要求16所述的血管内支架电极阵列,其特征在于,所述基础编织丝的材质为生物相容性非可降解的高分子材料;或者,
所述基础编织丝的材质为生物相容性金属材料,且所述基础编织丝为经过电绝缘处理的。
18.根据权利要求15所述的血管内支架电极阵列,其特征在于,所述基础支架为生物相容性金属材料制备,且所述基础支架的表面设有电绝缘层。
19.根据权利要求15所述的血管内支架电极阵列,其特征在于,所述基础支架为基础编织丝编织而成,所述第二金属编织丝的空间形态与所述基础编织丝的空间形态相同。
20.根据权利要求15所述的血管内支架电极阵列,其特征在于,所述基础支架包括多个波杆形成的网格单元,所述网格单元沿所述基础支架轴线方向布置,所述第二金属编织丝顺着所述波杆沿所述基础支架轴线方向延伸。
21.根据权利要求15所述的血管内支架电极阵列,其特征在于,多个所述导电段形成一组导电段,每组所述导电段中的所有所述导电段在所述支架的轴向方向上等间距布置,或者,每组所述导电段中的相邻的所述导电段在所述支架的轴向方向上的间距逐渐变化;
每组所述导电段中的所有所述导电段在所述支架的周向方向上均匀布置,或者每组所述导电段中的相邻的所述导电段在所述支架的周向方向上的间距逐渐变化。
22.根据权利要求21所述的血管内支架电极阵列,其特征在于,相邻的多个所述导电段形成一组导电段,每组所述导电段中的所有所述导电段由近及远在所述支架周向上布置的方向与相邻的一组所述导电段中的所有所述导电段由近及远在所述支架周向上布置的方向相反。
23.根据权利要求21所述的血管内支架电极阵列,其特征在于,相邻的多个所述导电段形成一组导电段,所有组所述导电段在所述支架轴向上等间距布置、且在所述支架周向上位置相同。
24.根据权利要求21所述的血管内支架电极阵列,其特征在于,相邻的多个所述导电段形成一组导电段,所有组所述导电段在所述支架轴向上等间距布置、且在所述支架周向上等角度间隔布置。
25.一种血管内支架电极阵列的制备方法,所述血管内支架电极阵列包括由支架编织丝编织而成的支架,其特征在于,包括以下步骤:
提供编织丝,所述编织丝包括用于制备第一金属编织丝的金属丝;
确定导电段在所述金属丝上的位置;
根据确定的所述导电段的位置在所述金属丝上制备绝缘段和导电段,得到第一金属编织丝,进而完成支架编织丝的准备,所述绝缘段与其他的所述支架编织丝以及人体组织电绝缘,所述导电段用于对所述人体组织周围神经发放刺激脉冲和/或感知所述人体组织周围神经的电信号;
将所述支架编织丝进行编织,并将所述第一金属编织丝的远端端部做电绝缘处理,得到所述支架。
26.一种血管内支架电极阵列的制备方法,所述血管内支架电极阵列包括支架,其特征在于,包括以下步骤:
提供编织丝,所述编织丝包括用于制备第一金属编织丝的金属丝,并对所述金属丝进行电绝缘处理;
将所述编织丝编织成初始支架,并确定导电段和绝缘段在电绝缘处理后的所述金属丝上的位置;
根据确定的位置,在电绝缘处理后的金属丝上制备所述导电段和绝缘段,得到所述第一金属编织丝,所述绝缘段与其他的所述编织丝以及人体组织电绝缘,所述导电段用于对所述人体组织周围神经发放刺激脉冲和/或感知所述人体组织周围神经的电信号;
将所述第一金属编织丝的远端端部做电绝缘处理,得到所述支架。
27.一种血管内支架电极阵列的制备方法,所述血管内支架电极阵列包括基础支架,第二金属编织丝,其特征在于,包括以下步骤:
提供电绝缘的所述基础支架;
提供所述第二金属编织丝,所述第二金属编织丝包括绝缘段和导电段,所述绝缘段与人体组织电绝缘,所述导电段用于对人体组织周围神经发放刺激脉冲和/或感知所述人体组织周围神经的电信号;
将所述第二金属编织丝设置在所述基础支架上;
将所述第二金属编织丝的远端端部做电绝缘处理。
28.一种血管内支架电极阵列的制备方法,所述血管内支架电极阵列包括基础支架,第二金属编织丝,其特征在于,包括以下步骤:
提供电绝缘的所述基础支架;
提供用于制备所述第二金属编织丝的金属丝,并将所述金属丝进行电绝缘处理;
将电绝缘处理后的所述金属丝设置在所述基础支架上,并在电绝缘处理后的所述金属丝上制备导电段和绝缘段,以制得第二金属编织丝;其中,所述绝缘段与人体组织电绝缘,所述导电段用于对人体组织周围神经发放刺激脉冲和/或感知所述人体组织周围神经的电信号;
将所述第二金属编织丝的远端端部做电绝缘处理。
29.一种电刺激系统,其特征在于,
包括脉冲发生装置和权利要求1所述的血管内支架电极阵列,所述血管内支架电极阵列中的第一金属编织丝与脉冲发生装置电连接;
或,
包括脉冲发生装置和权利要求15所述的血管内支架电极阵列,所述血管内支架电极阵列中的第二金属编织丝与脉冲发生装置电连接。
CN202311462525.2A 2022-04-29 2022-04-29 血管内支架电极阵列及其制备方法和电刺激系统 Pending CN117731943A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311462525.2A CN117731943A (zh) 2022-04-29 2022-04-29 血管内支架电极阵列及其制备方法和电刺激系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210476342.5A CN114887220A (zh) 2022-04-29 2022-04-29 血管内支架电极阵列及其制备方法和电刺激系统
CN202311462525.2A CN117731943A (zh) 2022-04-29 2022-04-29 血管内支架电极阵列及其制备方法和电刺激系统

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202210476342.5A Division CN114887220A (zh) 2022-04-29 2022-04-29 血管内支架电极阵列及其制备方法和电刺激系统

Publications (1)

Publication Number Publication Date
CN117731943A true CN117731943A (zh) 2024-03-22

Family

ID=82719696

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210476342.5A Pending CN114887220A (zh) 2022-04-29 2022-04-29 血管内支架电极阵列及其制备方法和电刺激系统
CN202311462525.2A Pending CN117731943A (zh) 2022-04-29 2022-04-29 血管内支架电极阵列及其制备方法和电刺激系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210476342.5A Pending CN114887220A (zh) 2022-04-29 2022-04-29 血管内支架电极阵列及其制备方法和电刺激系统

Country Status (2)

Country Link
CN (2) CN114887220A (zh)
WO (1) WO2023208226A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887220A (zh) * 2022-04-29 2022-08-12 应脉医疗科技(上海)有限公司 血管内支架电极阵列及其制备方法和电刺激系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616997B2 (en) * 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US20070106357A1 (en) * 2005-11-04 2007-05-10 Stephen Denker Intravascular Electronics Carrier Electrode for a Transvascular Tissue Stimulation System
CN109199581A (zh) * 2014-08-05 2019-01-15 上海魅丽纬叶医疗科技有限公司 具有网管状支架结构的射频消融导管及其设备
CA3040934C (en) * 2015-10-20 2022-05-10 The University Of Melbourne Medical device for sensing and or stimulating tissue
JP2018007802A (ja) * 2016-07-13 2018-01-18 マイクロポート ニューロテック (シャンハイ) シーオー., エルティーディー.Microport Neurotech (Shanghai) Co., Ltd. 管腔ステント及びその製造方法
DE102016116871A1 (de) * 2016-09-08 2018-03-08 Phenox Gmbh Vorrichtung und Verfahren zur Vorbeugung und Behandlung eines Vasospasmus
WO2018195083A1 (en) * 2017-04-18 2018-10-25 The University Of Melbourne Endovascular device for sensing and or stimulating tissue
CN110731843A (zh) * 2019-05-10 2020-01-31 上海微创心脉医疗科技股份有限公司 一种血管支架
IL292819A (en) * 2019-11-08 2022-07-01 Synchron Australia Pty Ltd Methods, systems and device for closed circuit neural modulation
CN111568539A (zh) * 2020-06-16 2020-08-25 北京奇伦天佑创业投资有限公司 一种射频消融用可解脱支架电极导管
US20230277110A1 (en) * 2020-07-03 2023-09-07 Neuronano Ab Microelectrode for insertion into soft tissue
CN114887220A (zh) * 2022-04-29 2022-08-12 应脉医疗科技(上海)有限公司 血管内支架电极阵列及其制备方法和电刺激系统

Also Published As

Publication number Publication date
CN114887220A (zh) 2022-08-12
WO2023208226A1 (zh) 2023-11-02

Similar Documents

Publication Publication Date Title
US11938016B2 (en) Endovascular device for sensing and or stimulating tissue
US8160719B2 (en) Braided electrical lead
US5330520A (en) Implantable electrode and sensor lead apparatus
US8538553B2 (en) MRI compatible implantable lead
JP5525624B2 (ja) 2以上の区域を有するコイル導体を備えた医療用リード線および該コイル導体の構築方法
US8909352B2 (en) Systems and methods for making and using leads for electrical stimulation systems with improved RF compatibility
JP6069499B2 (ja) 低ピークmri加熱を有するリード線
CN104797290B (zh) 包括具有耐磨损内衬的腔体的可植入引导件
JP5985745B2 (ja) 暫定的埋め込み型の医療電気刺激リード線
WO2005011807A1 (en) System and method for providing a medical lead body
JP7096764B2 (ja) 検知および刺激のうちの少なくともいずれか一方をするための医療デバイス
WO2023208226A1 (zh) 血管内支架电极阵列及其制备方法和电刺激系统
JP2022538730A (ja) 編組を形成するために接続された導体を備えた埋め込み型電極リード
US20090099635A1 (en) Stimulation and sensing lead with non-coiled wire construction
US20200345447A1 (en) Electrode lead
WO2018223019A1 (en) Neural interfaces including extensible lead bodies
US20190290206A1 (en) Manufacturing method for a multielectrode system
EP3542853B1 (en) Manufacturing method for a microlead
EP2887998B1 (en) Systems and methods for improving rf compatibility of electrical stimulation leads
CN114502234A (zh) 具有编织管状主体的医疗装置
US11904159B2 (en) Implantable stimulation lead including a coiled lead body and methods for forming the same
US20240099825A1 (en) Endovascular device for sensing and or stimulating tissue
US8019444B2 (en) Lead interconnect using a captured fixation member
WO2009023017A1 (en) Multi-conductor ribbon coiled medical device lead
US20200230402A1 (en) Lead electrode with improved mri conditionality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination