CN117660287A - 乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用 - Google Patents

乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用 Download PDF

Info

Publication number
CN117660287A
CN117660287A CN202211087219.0A CN202211087219A CN117660287A CN 117660287 A CN117660287 A CN 117660287A CN 202211087219 A CN202211087219 A CN 202211087219A CN 117660287 A CN117660287 A CN 117660287A
Authority
CN
China
Prior art keywords
ethanol
escherichia coli
culture medium
coli
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211087219.0A
Other languages
English (en)
Inventor
吴辉
卢觉枫
王钰莹
罗远婵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202211087219.0A priority Critical patent/CN117660287A/zh
Publication of CN117660287A publication Critical patent/CN117660287A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/36Adaptation or attenuation of cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1018Carboxy- and carbamoyl transferases (2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01075Malonyl CoA reductase (malonate semialdehyde-forming)(1.2.1.75)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/03Carboxy- and carbamoyltransferases (2.1.3)
    • C12Y201/03001Methylmalonyl-CoA carboxytransferase (2.1.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04014Biotin carboxylase (6.3.4.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种乙醇利用型大肠杆菌的适应性进化方法,包括步骤S1:将野生型大肠杆菌接种至以乙醇为唯一碳源的基础盐培养基上,培养至菌体出现生长;和S2:将S1长出的菌体进一步接种至新鲜的以乙醇为唯一碳源的基础盐培养基上继续培养,选取生长速率较快的菌株;其中,所述以乙醇为唯一碳源的基础盐培养基是在基础无机盐培养基中添加10g/L的乙醇。本发明还公开了根据上述适应性进化方法获得的乙醇利用型大肠杆菌,以及一种生产3‑羟基丙酸的乙醇利用型大肠杆菌及其利用乙醇生成3‑羟基丙酸的应用。本发明首次发现了乙醇利用型大肠杆菌的适应性进化方法,得到的大肠杆菌能够利用乙醇为碳源生长,并且对于多种大肠杆菌都有普遍的适用性。

Description

乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用
技术领域
本发明属于生物工程技术领域,具体地说,是关于一种乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用。
背景技术
乙醇的生产划分为生物法和化学合成法。生物法主要是微生物发酵法,通过微生物将底物转化为乙醇。化学合成的方法主要包括石油基来源的乙烯化学合成和CO2的还原。目前,由于不可再生石油资源的缩减以及对纤维素原料的需求增加,使用可再生能源和一碳气体生产乙醇成为研究热点。目前,郎泽公司已实现微生物利用合成气工业化生产乙醇,但难以进一步延长碳链生产高附加值化学品。以乙醇为底物,通过构建工程化的工业微生物合成长链大宗化学品,能够整合一碳固定技术和工业微生物细胞工厂的各自优势,形成一碳固定-工业微生物偶联的催化体系,实现更高效的一碳气体为碳源的绿色生物制造模式。
目前大肠杆菌乙醇利用的工程菌株依赖于过表达乙醇利用途径如adhp-mhpF途径、ada-adh2途径以及adhE双功能酶突变体,在摇瓶以及工业应用中不但存在质粒稳定性的问题,还需要额外添加抗生素,进一步提高了化学品生产的成本。使用天然的大肠杆菌作为乙醇利用的底盘细胞,不仅能够克服质粒表达的缺点,更能额外引入产物合成途径和代谢工程调控质粒,为代谢工程研究者们留下调控的空间。
迄今为止,研究者们通过酶工程和进化工程对携带乙醇利用途径的质粒进行突变和实验室适应性进化,从而获得能够高效利用乙醇的大肠杆菌基因工程菌株,但通过进化工程实现野生型大肠杆菌以乙醇为碳源进行生长的研究未见报道。
面临全球能源问题和气候问题的挑战,生物学家们提出利用非粮食型底物生产大宗化学品的生物炼制策略。乙醇可通过单酶或双酶催化直接形成乙酰辅酶A。乙酰辅酶A作为中心代谢产物,是生产3-羟基丙酸、异丙醇、异戊二烯以及聚羟基脂肪酸等多种化学品的前体物质。3-羟基丙酸(3-HP)是一种三碳非手性有机酸,3-羟基丙酸与乳酸(2-羟基丙酸)互为同分异构体,位列2004年美国能源部(DOE)提出的12种重要平台化合物的第四位。由于其优良的化学性质,3-羟基丙酸可以用于生产多种多样的化学衍生物,如丙烯酸、1,3-丙二醇、甲基丙烯酸盐、丙烯酰胺、丙二酸等。
发明内容
发明人在长期的研发过程中惊奇地发现,将野生型大肠杆菌接种至以乙醇为唯一碳源的基础盐培养基上,经过超长时间(上百小时)的培养后会出现菌体生长;并且,将长出的菌株进行传代后,生长速率得到了显著提升,可进一步用于利用乙醇生产下游产品。
因此,本发明的第一个方面,提供了一种乙醇利用型大肠杆菌的适应性进化方法,包括以下步骤:
S1:将野生型大肠杆菌接种至以乙醇为唯一碳源的基础盐培养基上,培养至菌体出现生长;
S2:将S1长出的菌体进一步接种至新鲜的以乙醇为唯一碳源的基础盐培养基上继续培养,选取生长速率较快的菌株;
其中,所述以乙醇为唯一碳源的基础盐培养基是在基础无机盐培养基中添加10g/L的乙醇。
根据本发明,所述基础无机盐培养基的配方如下:
Na2HPO4·12H2O 15.1g/L,KH2PO4 3.0g/L,NaCl 0.5g/L,NH4Cl 1.0g/L,MgSO4·7H2O0.5g/L,CaCl2 0.011g/L,1%(m/v)的微量元素母液(TE)0.1mL,1%(m/v)的维生素B10.2mL,pH 7.0。
根据本发明的优选实施例,所述野生型大肠杆菌选自:MG1655、DH5α、BW25113、BL21(DE3)、以及W3110。
本发明的第二个方面,提供了根据上述的适应性进化方法获得的乙醇利用型大肠杆菌。
根据本发明,所述乙醇利用型大肠杆菌的乙醛脱氢酶/乙醇脱氢酶双功能编码基因adhE出现了单点突变。
进一步的,所述单点突变的突变位点为乙醛脱氢酶/乙醇脱氢酶双功能编码基因adhE的1747位的T突变为C,或者是1702位的G突变为A。
本发明的第三个方面,提供了一种生产3-羟基丙酸的乙醇利用型大肠杆菌,通过在上述的乙醇利用型大肠杆菌中构建丙酰辅酶A依赖的3-羟基丙酸合成途径而实现。
根据本发明,所述构建丙酰辅酶A依赖的3-羟基丙酸合成途径包括:
以pTrc99a质粒为载体,通过诱导型启动子Trc表达来源于Chloroflexusaurantiacus的丙二酰-CoA还原酶编码基因mcr和Corynebacterium glutamicum的乙酰-CoA羧化酶编码基因dtsR1和accBC,构建重组质粒,然后转化上述的乙醇利用型大肠杆菌。
根据本发明,所述来源于Chloroflexus aurantiacus的丙二酰-CoA还原酶编码基因mcr的核苷酸序列如SEQ ID NO.1所示,所述来源于Corynebacterium glutamicum的乙酰-CoA羧化酶编码基因dtsR1和accBC的序列分别如SEQ ID NO.2和3所示。
本发明的第四个方面,提供了上述的乙醇利用型大肠杆菌的应用,用于以乙醇为碳源生产3-羟基丙酸。
本发明具有以下有益效果:
1、本发明首次发现了乙醇利用型大肠杆菌的适应性进化方法,得到的大肠杆菌能够利用乙醇为碳源生长,并且对于多种大肠杆菌都有普遍的适用性。
2、本发明提供的乙醇利用型大肠杆菌,通过构建丙酰辅酶A依赖的3-羟基丙酸合成途径,可以利用乙醇生产3-羟基丙酸,为3-羟基丙酸的生产提供了一条新的途径,具有很好的应用前景;同时也为生产其它下游产品提供了新的思路。
附图说明
图1显示了实施例1的MG1655菌株的初代乙醇利用菌株的生长曲线。
图2显示了实施例2的DH5α菌株的初代乙醇利用菌株的生长曲线。
图3显示了实施例3的BW25113菌株的初代乙醇利用菌株的生长曲线。
图4显示了实施例4的BL21(DE3)菌株的初代乙醇利用菌株的生长曲线。
图5显示了实施例5的W3110菌株的初代乙醇利用菌株的生长曲线。
图6显示了实施例1-5的乙醇利用菌株的第一代菌株的生长曲线。
图7显示了实施例6构建的携带有乙醇利用质粒的野生菌MG1655的生长曲线。
图8显示了乙醇利用底盘菌MG1655利用乙醇生长以及高浓度乙醇的适应性进化过程的生长能力评估结果。
图9显示了由图8的第18代菌液分离得到生长最快的单菌落的乙醇耐受能力相比携带有乙醇利用质粒的野生菌MG1655的结果。
图10为MEC利用乙醇生产3-羟基丙酸的代谢图;图中:acc,乙酰-CoA羧化酶;mcr,丙二酰-CoA还原酶;gltA,柠檬酸合酶;CIT,柠檬酸;acnAB,顺乌头酸酶;ICT,异柠檬酸;icdA,异柠檬酸脱氢酶;α-KG,α-酮戊二酸;sucAB,α-酮戊二酸脱氢酶;SucCoA,琥珀酰-CoA;sucCD,琥珀酸硫激酶;SUC,琥珀酸;aceA,异柠檬酸裂解酶;GOX,乙醛酸;aceB,苹果酸合成酶;MAL,苹果酸;mdh,苹果酸脱氢酶;OAA,草酰乙酸;fumABC,延胡索酸酶;FUM,延胡索酸;sdhABCD,琥珀酸脱氢酶。
图11显示了实施例8中转化有3-羟基丙酸合成诱导型表达载体pTrc-M*DA的乙醇利用菌株MEC的生长曲线。
图12显示了实施例8中转化有3-羟基丙酸合成诱导型表达载体pTrc-M*DA的乙醇利用菌株MEC生长过程中乙醇的消耗。
图13显示了实施例8中转化有3-羟基丙酸合成诱导型表达载体pTrc-M*DA的乙醇利用菌株MEC生长过程中3-羟基丙酸的积累。
具体实施方式
以下通过具体实施例对本发明的技术进行进一步的详细描述。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
以下实施例中所用到的野生型大肠杆菌MG1655、DH5α、BW25113、BL21(DE3)、以及W3110均为通用的商业化菌株,可通过常规市售途径获得。
以下实施例中用到的基础盐培养基的配制方法如下:
基础盐培养基:基本无机盐培养基(SM培养基)中添加10g/L乙醇,其中:
SM培养基(/L):Na2HPO4·12H2O 15.1g/L,KH2PO4 3.0g/L,NaCl 0.5g/L,NH4Cl1.0g/L,MgSO4·7H2O 0.5g/L,CaCl2 0.011g/L,1%(m/v)的微量元素母液(TE)0.1mL,1%(m/v)的维生素B1 0.2mL,pH 7.0。
MgSO4·7H2O和CaCl2均配置成1M母液单独高温高压灭菌;维生素B1和微量元素母液用0.22μm微孔滤膜过滤除菌,放置4℃保存,维生素溶液的保存需要避光处理;维生素、微量元素和乙醇在摇瓶接种前直接加入到无机盐培养基中;3-羟基丙酸发酵时,需要额外加入40mg/L的生物素粉末。
实施例1:大肠杆菌乙醇利用底盘菌MEC的获得
将野生型大肠杆菌MG1655甘油冻存菌株划线于LB平板活化,待长出单菌落后,挑取五个单菌落分别接种于4mL LB液体培养基,培养8h后取1mL培养基接种于50mL以乙醇为唯一碳源的基础盐培养基中,培养至菌体出现生长。
通过PCR验证排除染菌后,取1mL培养液传代至50mL新鲜乙醇基础盐培养基,测定生长速率;选取生长速率明显加快的菌株,取指数生长后期培养液划线分离,挑取单菌落,测定以乙醇为唯一碳源时在基础盐培养基上的生长曲线。
MG1655菌株的初代乙醇利用菌株的生长曲线如图1所示。MG1655接种5瓶乙醇基础盐培养基,均出现菌体生长。MG1655于200~280h左右菌体开始生长,初代出现生长的菌株经过初次传代后,第一代菌株生长明显加快,生长迟滞期缩短为24h(图6);取指数生长后期菌液划线于LB平板,挑取单菌落,选取在乙醇基础盐培养基上生长最快的单菌落,命名为MEC。
实施例2:大肠杆菌乙醇利用底盘菌DEC的获得
将野生型大肠杆菌DH5α甘油冻存菌株划线于LB平板活化,待长出单菌落后,挑取五个单菌落分别接种于4mL LB液体培养基,培养8h后取1mL培养基接种于50mL以乙醇为唯一碳源的基础盐培养基,培养至菌体出现生长。
通过PCR验证排除染菌后,取1mL培养液传代至50mL新鲜乙醇基础盐培养基,测定生长速率;选取生长速率明显加快的菌株,取指数生长后期培养液划线分离,挑取单菌落测定以乙醇为唯一碳源时在基础盐培养基上的生长曲线。
DH5α菌株的初代乙醇利用菌株的生长曲线如图2所示。DH5α接种5瓶乙醇基础盐培养基,3瓶出现菌体生长。DH5α于150~200h左右菌体开始生长,初代出现生长的菌株经过初次传代后,第一代菌株生长明显加快,生长迟滞期缩短为24h(图6);取指数生长后期菌液划线于LB平板,挑取单菌落,选取在乙醇基础盐培养基生长最快的单菌落,命名为DEC。
实施例3:大肠杆菌乙醇利用底盘菌BWEC的获得
将野生型大肠杆菌BW25113甘油冻存菌株划线于LB平板活化,待长出单菌落后,挑取五个单菌落分别接种于4mL LB液体培养基,培养8h后取1mL培养基接种于50mL以乙醇为唯一碳源的基础盐培养基,培养至菌体出现生长。
通过PCR验证排除染菌后,取1mL培养液传代至50mL新鲜乙醇基础盐培养基,测定生长速率,选取生长速率明显加快的菌株,取指数生长后期培养液划线分离,挑取单菌落测定以乙醇为唯一碳源时在基础盐培养基的生长曲线。
BW25113菌株的初代乙醇利用菌株的生长曲线如图3所示。BW25113接种5瓶乙醇基础盐培养基,3瓶出现菌体生长。BW25113于250~280h左右菌体开始生长,初代出现生长的菌株经过初次传代后,第一代菌株生长明显加快,生长迟滞期缩短为24h(图6);取指数生长后期菌液划线于LB平板,挑取单菌落,选取在乙醇基础盐培养基生长最快的单菌落,命名为BWEC。
实施例4:大肠杆菌乙醇利用底盘菌BLEC的获得
将野生型大肠杆菌BL21(DE3)甘油冻存菌株划线于LB平板活化,待长出单菌落后,挑取五个单菌落分别接种于4mL LB液体培养基,培养8h后取1mL培养基接种于50mL以乙醇为唯一碳源的基础盐培养基,培养至菌体出现生长。
通过PCR验证排除染菌后,取1mL培养液传代至50mL新鲜乙醇基础盐培养基,测定生长速率,选取生长速率明显加快的菌株,取指数生长后期培养液划线分离,挑取单菌落测定以乙醇为唯一碳源时在基础盐培养基的生长曲线。
BL21(DE3)菌株的初代乙醇利用菌株的生产曲线如图4所示。BL21(DE3)接种5瓶乙醇基础盐培养基,2瓶出现菌体生长。BL21(DE3)分别于350h、550h左右菌体开始生长,初代出现生长的菌株经过初次传代后,第一代菌株生长明显加快,生长迟滞期缩短为24h(图6);取指数生长后期菌液划线于LB平板,挑取单菌落;选取在乙醇基础盐培养基生长最快的单菌落,命名为BLEC。
实施例5:大肠杆菌乙醇利用底盘菌WEC的获得
将野生型大肠杆菌W3110甘油冻存菌株划线于LB平板活化,待长出单菌落后,挑取五个单菌落分别接种于4mL LB液体培养基,培养8h后取1mL培养基接种于50mL以乙醇为唯一碳源的基础盐培养基,培养至菌体出现生长。
通过PCR验证排除染菌后,取1mL培养液传代至50mL新鲜乙醇基础盐培养基,测定生长速率,选取生长速率明显加快的菌株,取指数生长后期培养液划线分离,挑取单菌落测定以乙醇为唯一碳源时在基础盐培养基的生长曲线。
W3110菌株的初代乙醇利用菌株的生长曲线如图5所示。W3110接种5瓶乙醇基础盐培养基,2瓶出现菌体生长。W3110于800h左右菌体开始生长,初代出现生长的菌株经过初次传代后,第一代菌株生长明显加快,生长迟滞期缩短为24h(图6);取指数生长后期菌液划线于LB平板,挑取单菌落,选取在乙醇基础盐培养基生长最快的单菌落,命名为WEC。
实施例6:乙醇利用底盘菌基因位点分析
对乙醇利用底盘菌MG1655、DH5α、BW25113、以及BLEC分别进行基因组测序,结果显示,四个乙醇利用底盘菌的基因组中,乙醛脱氢酶/乙醇脱氢酶双功能编码基因adhE均出现了单点突变,其中,MG1655、DH5α以及BW25113的突变位点(1747:T→C)未见有相关报道,BLEC的突变位点已有文献进行报道。具体突变位点如以下表1所示。
表1:乙醇利用菌株的adhE基因突变位点
为验证有氧利用乙醇能力的关键突变位点,对进化后的大肠杆菌进行内源双功能醇脱氢酶/醛脱氢酶突变位点分析和功能性验证,具体步骤如下:
基因突变位点分析结果分为未报道的adhE基因1747位点突变位点T→C和已有报道1702位点突变G→A。
将进化后的菌株MEC和BLEC活化后,经AdhE-F/AdhE-R引物对(表2)扩增adhE基因的点突变体。以商业化载体pTrc99a(奥诺基因,长沙)为模板经pTJ23100-RBS C-F/pTJ23100-RBS C-R(表2)扩增线性化载体,经由商业化的一步连接酶HB-Infusion(汉恒生物,上海)连接为强组成型启动子J23100和中等强度RBS序列B0034(表3)驱动表达的载体pTJ-adhEMEC和pTJ-adhEBLEC,转化DH5α,挑取单菌落培养后进行质粒抽提,并送测序。
选取序列正确的载体转化野生型MG1655和BLEC进行乙醇利用生长测试,结果显示MG1655和BLEC过表达突变体adhE后均能在100h进行生长(见图7),表明本发明新发现的点突变(1747:T→C)以及文献报道的突变位点(1702:G→A)均能使野生型大肠杆菌利用乙醇进行生长,且同批次的菌株显示相似的生长状态。
表2:AdhE单点突变体载体引物列表
表3:基因元件列表
实施例7:乙醇利用底盘菌利用乙醇生长以及高浓度乙醇的适应性测试
以MG1655乙醇利用底盘菌MEC作为乙醇生长以及高浓度乙醇的实验室适应性进化测试菌株:将第一代传代的菌体生长至指数生长后期时,继续传代并测定其生长速率,用于利用乙醇进行生长能力的评估,结果如图8所示。
图8的结果显示,MEC传代至第12代和第18代时进化速度放缓,生长迟滞期已由第一代的24h缩短至12h左右。
取第18代菌液划线于LB平板,分离得到生长最快的单菌落,分别在添加乙醇浓度为30g/L、40g/L以及50g/L的基础盐培养基上进行乙醇耐受能力测试,同时以进化的初代乙醇利用菌株MEC作为对照,结果如图9所示。
图9的结果显示,与进化的初代菌株MEC-G1相比,进化过后的MEC-G18对高浓度乙醇具有较好的耐受性,其中当底物浓度为30g/L时,生长速度基本不受抑制。
实施例8:乙醇利用底盘细胞MEC利用乙醇生产3-羟基丙酸参照图10所示的MEC利用乙醇生产3-羟基丙酸的代谢图,以3-羟基丙酸途径表达质粒pET28a-M*DA(Lai,N.,Luo,Y.,Fei,P.,et al.One stone two birds:Biosynthesis of 3-hydroxypropionic acidfrom CO2 and syngas-derived acetic acid in Escherichia coli.Synth SystBiotechnol,6(3),144-152)为模板,用Trc-3HP-F/Trc-3HP-R引物对(表4)扩增3-羟基丙酸合成途径,具体步骤如下:
以商业化载体pTrc99a(奥诺基因,长沙)为模板,用pTrc99a-F和pTrc99a-R引物对(表4)扩增线性化载体片段,包括来源于Chloroflexus aurantiacus的丙二酰-CoA还原酶编码基因mcr(SEQ ID NO.1)和Corynebacterium glutamicum的乙酰-CoA羧化酶编码基因dtsR1(SEQ ID NO.2)和accBC(SEQ ID NO.3),经由商业化的一步连接酶HB-Infution(汉恒生物,上海)连接为pTrc-M*DA,转化DH5α,挑取单菌落培养后进行质粒抽提,并送测序。选取序列正确的载体转化MEC,得到生产3-羟基丙酸的乙醇利用型大肠杆菌。
表4:3-羟基丙酸合成途径构建引物列表
序列正确的载体转化MEC后使用含10g/L乙醇的基础盐培养基进行3-HP生产测试,结果如图11-13所示。
图11的结果显示,含有pTrc-M*DA的MEC菌株经过诱导后能够继续生长。
图12的结果显示,含有pTrc-M*DA的MEC菌株经过诱导后能够在80h内消耗8.4g/L乙醇。
图13的结果显示,转化有3-羟基丙酸合成诱导型表达载体pTrc-M*DA的乙醇利用菌株MEC的3-羟基丙酸产量最高可达1.56g/L,得率为0.193g/g,具有较高的应用潜力。
以上所述仅是本发明的实施方式的举例,应当指出,对于本领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以作出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
序列表信息:
DTD版本:V1_3
文件名:221132-序列表.xml
软件名称:WIPO Sequence
软件版本:2.1.1
生成日期:2022-09-02
基本信息:
当前申请/申请人档案名:221032
申请人姓名或名称:华东理工大学
申请人姓名或名称/语言:zh
申请人姓名或名称/拉丁名称:ECUST
发明名称:乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用(zh)
序列总量:3
序列:
序列号(ID):1
长度:3663
分子类型:DNA
特征位置/限定符:
-source,1..3663
>mol_type,genomic DNA
>organism,Chloroflexus aurantiacus
残基:
序列号(ID):2
长度:1632
分子类型:DNA
特征位置/限定符:
-source,1..1632
>mol_type,genomic DNA
>organism,Corynebacterium glutamicum
残基:
序列号(ID):3
长度:1776
分子类型:DNA
特征位置/限定符:
-source,1..1776
>mol_type,genomic DNA
>organism,Corynebacterium glutamicum
残基:
END。

Claims (10)

1.一种乙醇利用型大肠杆菌的适应性进化方法,其特征在于包括以下步骤:
S1:将野生型大肠杆菌接种至以乙醇为唯一碳源的基础盐培养基上,培养至菌体出现生长;
S2:将S1长出的菌体进一步接种至新鲜的以乙醇为唯一碳源的基础盐培养基上继续培养,选取生长速率较快的菌株;
其中,所述以乙醇为唯一碳源的基础盐培养基是在基本无机盐培养基中添加10g/L的乙醇。
2.根据权利要求1所述的适应性进化方法,其特征在于,所述基本无机盐培养基的配方如下:
Na2HPO4·12H2O 15.1g/L,KH2PO4 3.0g/L,NaCl 0.5g/L,NH4Cl 1.0g/L,MgSO4·7H2O0.5g/L,CaCl2 0.011g/L,1%(m/v)的微量元素母液(TE)0.1mL,1%(m/v)的维生素B10.2mL,pH 7.0。
3.根据权利要求1所述的适应性进化方法,其特征在于,所述野生型大肠杆菌选自MG655、DH5α、BW25113、BL21(DE3)、以及W3110。
4.根据权利要求1-3中任一项所述的适应性进化方法获得的乙醇利用型大肠杆菌。
5.根据权利要求4所述的乙醇利用型大肠杆菌,其特征在于,所述乙醇利用型大肠杆菌的乙醛脱氢酶/乙醇脱氢酶双功能编码基因adhE出现了单点突变。
6.根据权利要求5所述的乙醇利用型大肠杆菌,其特征在于,所述单点突变的突变位点为乙醛脱氢酶/乙醇脱氢酶双功能编码基因adhE的1747位的T突变为C,或者是1702位的G突变为A。
7.一种生产3-羟基丙酸的乙醇利用型大肠杆菌,其特征在于,通过在权利要求4-6中任一项所述的乙醇利用型大肠杆菌中构建丙酰辅酶A依赖的3-羟基丙酸合成途径而实现。
8.根据权利要求7所述的乙醇利用型大肠杆菌,其特征在于,所述构建丙酰辅酶A依赖的3-羟基丙酸合成途径包括:
以pTrc99a质粒为载体,通过诱导型启动子Trc表达来源于Chloroflexus aurantiacus的丙二酰-CoA还原酶编码基因mcr和Corynebacterium glutamicum的乙酰-CoA羧化酶编码基因dtsR1和accBC,构建重组质粒,然后转化权利要求4-6中任一项所述的乙醇利用型大肠杆菌。
9.根据权利要求8所述的乙醇利用型大肠杆菌,其特征在于,所述来源于Chloroflexusaurantiacus的丙二酰-CoA还原酶编码基因mcr的核苷酸序列如SEQ ID NO.1所示,所述来源于Corynebacterium glutamicum的乙酰-CoA羧化酶编码基因dtsR1和accBC的序列分别如SEQ ID NO.2和3所示。
10.权利要求7-9中任一项所述的乙醇利用型大肠杆菌的应用,其特征在于,用于以乙醇为碳源生产3-羟基丙酸。
CN202211087219.0A 2022-09-07 2022-09-07 乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用 Pending CN117660287A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211087219.0A CN117660287A (zh) 2022-09-07 2022-09-07 乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211087219.0A CN117660287A (zh) 2022-09-07 2022-09-07 乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用

Publications (1)

Publication Number Publication Date
CN117660287A true CN117660287A (zh) 2024-03-08

Family

ID=90072086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211087219.0A Pending CN117660287A (zh) 2022-09-07 2022-09-07 乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用

Country Status (1)

Country Link
CN (1) CN117660287A (zh)

Similar Documents

Publication Publication Date Title
US9034615B2 (en) Glycolic acid production by fermentation from renewable resources
JP3681404B2 (ja) ジカルボン酸の生産方法
DK2054502T4 (en) RECONSTRUCTED MICRO-ORGANISM, PRODUCING HOMO-SUBSTIC ACID AND PROCEDURE FOR THE PRODUCTION OF SUBSTIC ACID USING THE SAME
CN107881186B (zh) 利用乙酸生产羟基丙酸的代谢工程大肠杆菌菌株的构建方法与应用
US8691552B2 (en) Microaerobic cultures for converting glycerol to chemicals
CN102365357A (zh) 通过发酵产生大量乙醇酸的方法
US8486686B2 (en) Large scale microbial culture method
JP2006525025A (ja) ピルビン酸産生酵母株
JP2016518145A (ja) コハク酸を生産するための組換え大腸菌、及び組み換え大腸菌の使用
CN104254612A (zh) 一种2,4-二羟基丁酸的生产方法
US11447802B2 (en) Microorganisms and processes for lactic acid production
US8877482B2 (en) Homo-succinic acid producing microorganism variant and process for preparing succinic acid using the same
CN102864116B (zh) 产丁二酸基因工程菌及其构建及应用
CN106190901B (zh) 一种菌及其获取方法和应用
CN112375723A (zh) 生产马来酸的工程菌及其构建方法和应用
CN111334459A (zh) 一种提高1,3-丙二醇产量的克雷伯氏工程菌构建方法及应用
CN117660287A (zh) 乙醇利用型大肠杆菌的适应性进化方法、大肠杆菌及其应用
US11976267B2 (en) Recombinant Escherichia coli strain for producing succinic acid and construction method thereof
KR101028039B1 (ko) 숙신산 내성능이 증가된 균주 및 이를 이용한 숙신산의 제조방법
JP2005102625A (ja) D−乳酸製造法
CN104232553A (zh) 一株在低pH值下产丁二酸工程菌株及其发酵生产丁二酸的方法
CN118546852B (zh) 一种高效共利用葡萄糖、木糖生产丁二酸的基因工程菌及其应用
EP3645725A1 (en) Microorganism with stabilized copy number of functional dna sequence and associated methods
CN117143793B (zh) 一种生产5-碳化合物或其聚合物的方法
CN118048246B (zh) 一种生产pha的重组罗氏真养菌及其构建方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination