CN117482283B - 一种PH-CpBT支架及其制备方法和应用 - Google Patents

一种PH-CpBT支架及其制备方法和应用 Download PDF

Info

Publication number
CN117482283B
CN117482283B CN202311458516.6A CN202311458516A CN117482283B CN 117482283 B CN117482283 B CN 117482283B CN 202311458516 A CN202311458516 A CN 202311458516A CN 117482283 B CN117482283 B CN 117482283B
Authority
CN
China
Prior art keywords
cpbt
scaffold
solution
source
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311458516.6A
Other languages
English (en)
Other versions
CN117482283A (zh
Inventor
万旭峰
王文旗
刘霄阳
苏强
黄艳丽
王端
周宗科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202311458516.6A priority Critical patent/CN117482283B/zh
Publication of CN117482283A publication Critical patent/CN117482283A/zh
Application granted granted Critical
Publication of CN117482283B publication Critical patent/CN117482283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种PH‑CpBT支架及其制备方法和应用,通过将BaTiO3(BT)作为基础材料,在其表面通过pDA负载Cu,进而将得到的材料CpBT搭载在负载有成骨能力的羟基磷灰石(HA)的PEKK(P)支架上,得到了最终的一体化抗菌成骨PH‑CpBT支架。在PH‑CpBT支架中,SDT为CDT的Cu2+提供电子,而Cu2+为SDT的电子提供转移分离的载体,建立了压电材料SDT与CDT建立了内在联系,促进了ROS产生,其能高效杀菌,而残余物质Cu能够促进骨的再生。

Description

一种PH-CpBT支架及其制备方法和应用
技术领域
本发明属于医用材料技术领域,具体涉及一种PH-CpBT支架及其制备方法和应用。
背景技术
利用惰性基质(如金属、聚合物、陶瓷)的骨植入已成为长骨骨折稳定、脊柱修复和关节炎关节置换领域中一种非常有效的临床策略,尽管微创手术和无菌技术取得了进步,但植入物相关感染(IAIs)继续对医疗保健和整体健康构成重大挑战,现有的临床干预措施主要局限于抗生素和物理移除感染组织或植入物。种植体感染约占医院获得性感染总数的45%,是一个重大的临床挑战,植入物引起的感染主要原因是细菌在其表面的粘附和定植,进而形成生物被膜。一旦种植体表面形成生物膜,最终会由于持续炎症和周围组织坏死导致种植体失败。由于细菌耐药性和感染部位的药物渗透有限,系统给药抗生素的疗效受到损害,而细菌的感染严重影响骨的再生,造成患者骨折部位迁延不愈,痛不堪言。智能涂层的发展既可以识别和破坏植入物表面的生物膜形成,也可以根据需要远程激活以提供抗菌效果,这对有效解决IAIs具有巨大的希望。
反应性氧物种(ROS)是指一类含氧自由基,包括超氧阴离子、羟基自由基、过氧化氢等,这些自由基具有高度反应性,能够与生物分子发生氧化反应,导致细胞损伤和疾病发生。ROS在许多疾病的发生和发展中起着重要作用,如心血管疾病、糖尿病、肿瘤等,因此,ROS也成为了研究和治疗这些疾病的重要目标。化动力治疗(CDT)是只指Fe和Cu等变价金属在过氧化氢存在的环境发生(类)芬顿反应产生羟基自由基(·OH),实现杀菌以及杀伤肿瘤细胞的作用。但是现有CDT产生ROS能力有限,其主要的限制是底物(Fe3+,Cu+)的耗竭,不能持续产生ROS,且不可控制。超声具有穿透深度不受限制、组织内分布均匀、无辐射、生物安全性好、成本低、操作简便等独特优势,近年来发展起来的基于超声动力学治疗(SDT)是一种借助于超声作用下而引导的局部治疗方法,其在超声波作用下会促进声敏剂产生ROS,其可诱导细菌以及肿瘤细胞的死亡。然而传统的SDT材料电子对的短暂寿命(在飞秒到纳秒量级)与化学反应的长时间尺度(从几毫秒到几秒)之间的不匹配导致了其产生产生ROS效率低、杀菌效果差,不足以用于临床。通过将CDT与SDT联合用于抗菌,但只靠两种物质单独发挥作用,并没有SDT与CDT实现内在联系,不能产生有效的ROS产生效率,实现临床杀菌作用。
发明内容
本发明要解决的技术问题是:提供一种PH-CpBT支架及其制备方法和应用,以解决现有成骨材料产生的ROS较少、不利于骨生长的技术问题。
为达到上述目的,本发明采用的技术方案是:提供一种PH-CpBT支架的制备方法,包括以下步骤:
S1:将钡源、钙源、钛源和锆源混合球磨22-26h,然后置于1250-1300℃下煅烧3-4h,随后球磨3-5h,得到预制粉;钡源、钙源、钛源和锆源中Ba、Ca、Ti和Zr元素的摩尔比为70-95:5-30:70-95:5-30;
S2:将预制粉分散于Tris-HCl缓冲液中,超声30-50min后,加入DA-HCl溶液,再超声8-12min,随后搅拌1.5-2.5h,经离心-洗涤后,得到pBT纳米颗粒;预制粉、Tris-HCl缓冲液和DA-HCl溶液的配比关系为1-2mg:1-2mL:1-2mL;
S3:将含铜溶液与pBT纳米颗粒混合搅拌1.5-2.5h,经离心-洗涤后,得到CpBT纳米材料;
S4:将CpBT纳米材料配置成浓度为2mg/mL的CpBT溶液,然后将PEKK支架浸于含有浓度为3mg/mL DA的Tris-HCl溶液中反应22-26h,再按顺序置于HA溶液和CpBT溶液中分别反应10-14h,得到PH-CpBT支架。
在上述技术方案的基础上,本发明还可以做如下改进:
进一步,钡源为碳酸钡、硝酸钡、氯化钡、氧化钡或氯酸钡;钙源为碳酸钙、氯化钙、硫酸钙或氢氧化钙;钛源为二氧化钛、氮化钛或四氯化钛;锆源为二氧化锆、氧化锆、水合硝酸氧锆或四氯化锆。
进一步,球磨的转速为1800-2200rpm。
进一步,超声功率为1200-1500w。
进一步,离心的转速为7500-8500rpm,离心时间为8-12min。
进一步,含铜溶液为浓度为10uM的硫酸四氨合铜或氯化铜溶液。
进一步,含铜溶液和pBT纳米颗粒的质量比为1-5:10-50。
进一步,PEKK支架的直径为3mm,高度为4mm。
本发明还公开了一种PH-CpBT支架的制备方法制得的PH-CpBT支架。
本发明还公开了PH-CpBT支架在制备成骨材料中的应用。
本发明的有益效果为:
1.US(超声)刺激后压电材料(BaTiO3)电子空穴对分离,在表面分离出电子,可以将Cu2+还原为Cu+,形成Cu2+/Cu+循环,实现在US刺激下产生ROS增多,提升CDT产生ROS能力。
2.压电材料(BaTiO3)在US下产生的空穴/电子在很快的时间内复合,因此本发明通过将导电性好的pDA负载在其表面,促进电子转移,抑制了空穴/电子对复合,提高了SDT产生ROS的效率。
3.利用抗菌残余Cu,实现血管再生、促进骨生长;传统抗菌与成骨材料是两种物质分开进行,而本发明将抗菌物质Cu,在其为Cu+的时候杀菌,杀菌结束转变为Cu2+的时候促进骨局部的血管生成,进而实现了骨的再生,达到抗菌及促骨再生的双效功能。
附图说明
图1为PH-CpBT支架的弹性模量数据图;
图2为US不同时间下产生羟基自由基的变化图;
图3为US不同时间下产生单线态氧的变化图;
图4为US与非US下Cu价态变化;
图5为PH-CpBT支架杀灭金黄色葡萄球菌和大肠杆菌结果图;
图6为PH-CpBT支架对细菌生物膜破坏的活死染色图;
图7为PH-CpBT支架产生ALP图;
图8为PH-CpBT支架产生ARS图;
图9为PH-CpBT支架促进血管生成图。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行,所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
实施例1:
一种PH-CpBT支架,其制备方法,包括以下步骤:
S1:将碳酸钡、氯化钙、二氧化钛和氧化锆混合,在2000rpm的转速下球磨24h,然后置于1275℃下煅烧3.5h,随后在2000rpm的转速下球磨4h,得到预制粉;碳酸钡、氯化钙、二氧化钛和氧化锆中Ba、Ca、Ti和Zr元素的摩尔比为90:10:91:9;
S2:将预制粉分散于Tris-HCl溶液中,设置超声功率为1350w,超声40min后,加入含有2mg/mL多巴胺的DA-HCl溶液,随后超声10min,再搅拌2h,于8000rpm的转速下离心10min,最后用去离子水洗涤3次,得到pBT纳米颗粒;预制粉、缓冲液和DA-HCl溶液的配比关系为1mg:1mL:2mL;
S3:将浓度为10uM的硫酸四氨合铜溶液与pBT纳米颗粒以2:30的质量比混合搅拌2h,于8000rpm的转速下离心10min,最后用去离子水洗涤3次,得到CpBT纳米材料;
S4:将CpBT纳米材料溶于无水乙醇中,配置成浓度为2mg/mL的CpBT溶液,然后将直径为3mm、高度为4mm的PEKK支架浸于含有浓度为3mg/mL DA的Tris-HCl溶液中反应24h,再按顺序置于HA溶液和CpBT溶液中分别反应12h,得到PH-CpBT支架。
实施例2:
一种PH-CpBT支架,其制备方法,包括以下步骤:
S1:将氧化钡、硫酸钙、四氯化钛和水合硝酸氧锆混合,在1800rpm的转速下球磨26h,然后置于1250℃下煅烧4h,随后在2200rpm的转速下球磨3h,得到预制粉;氧化钡、硫酸钙、四氯化钛和水合硝酸氧锆中Ba、Ca、Ti和Zr元素的摩尔比为70:30:70:30;
S2:将预制粉分散于Tris-HCl溶液中,设置超声功率为1200w,超声30min后,加入DA-HCl溶液,随后超声12min,再搅拌2.5h,于7500rpm的转速下离心12min,最后用去离子水洗涤3次,得到pBT纳米颗粒;预制粉、缓冲液和DA-HCl溶液的配比关系为2mg:1mL:2mL;
S3:将浓度为10uM的氯化铜溶液与pBT纳米颗粒以1:50的质量比混合搅拌1.5h,于7500rpm的转速下离心12min,最后用去离子水洗涤3次,得到CpBT纳米材料;
S4:将CpBT纳米材料溶于无水乙醇中,配置成浓度为2mg/mL的CpBT溶液,然后将直径为3mm、高度为4mm的PEKK支架浸于含有浓度为3mg/mL DA的Tris-HCl溶液中反应22h,再按顺序置于HA溶液和CpBT溶液中分别反应14h,得到PH-CpBT支架。
实施例3:
一种PH-CpBT支架,其制备方法,包括以下步骤:
S1:将氯酸钡、氢氧化钙、氮化钛和四氯化锆混合,在2200rpm的转速下球磨22h,然后置于1300℃下煅烧3h,随后在1800rpm的转速下球磨5h,得到预制粉;氯酸钡、氢氧化钙、氮化钛和四氯化锆中Ba、Ca、Ti和Zr元素的摩尔比为95:5:95:5;
S2:将预制粉分散于Tris-HCl溶液中,设置超声功率为1500w,超声50min后,加入DA-HCl溶液,随后超声8min,再搅拌1.5h,于8500rpm的转速下离心8min,最后用去离子水洗涤3次,得到pBT纳米颗粒;预制粉、缓冲液和DA-HCl溶液的配比关系为1mg:2mL:1mL;
S3:将浓度为10uM的氯化铜溶液与pBT纳米颗粒以5:10的质量比混合搅拌2.5h,于8500rpm的转速下离心8min,最后用去离子水洗涤3次,得到CpBT纳米材料;
S4:将CpBT纳米材料溶于无水乙醇中,配置成浓度为2mg/mL的CpBT溶液,然后将直径为3mm、高度为4mm的PEKK支架浸于含有浓度为3mg/mL DA的Tris-HCl溶液中反应26h,再按顺序置于HA溶液和CpBT溶液中分别反应10h,得到PH-CpBT支架。
对比例:
一种PH-pBT支架,其制备方法,包括以下步骤:
S1:将碳酸钡、氯化钙、二氧化钛和氧化锆混合,在2000rpm的转速下球磨24h,然后置于1275℃下煅烧3.5h,随后在2000rpm的转速下球磨4h,得到预制粉;碳酸钡、氯化钙、二氧化钛和氧化锆中Ba、Ca、Ti和Zr元素的摩尔比为90:10:91:9;
S2:将预制粉分散于Tris-HCl溶液中,设置超声功率为1350w,超声40min后,加入含有2mg/mL多巴胺的DA-HCl溶液,随后超声10min,再搅拌2h,于8000rpm的转速下离心10min,最后用去离子水洗涤3次,得到pBT纳米颗粒;预制粉、缓冲液和DA-HCl溶液的配比关系为1mg:1mL:2mL;
S3:将pBT纳米颗粒溶于无水乙醇中,配置成浓度为2mg/mL的pBT溶液,然后将直径为3mm、高度为4mm的PEKK支架浸于含有浓度为3mg/mL DA的Tris-HCl溶液中反应24h,再按顺序置于HA溶液和pBT溶液中分别反应12h,得到PH-pBT支架。
结果分析:
1.力学性能测试
通过万能力学测试,得到实施例1制得的PH-CpBT支架的杨氏模量为199.5MPa(图1),说明负载了CpBT材料的支架与骨有良好的接触性,有利于骨长入假体。
为了评估羟基自由基(·OH)的产量,进行通用的MB(亚甲基蓝)检测。将实施例1制得的PH-CpBT支架作为样品与含有MB的溶液混合,并在有或没有H2O2的情况下进行US刺激(1MHz,1W/cm2,50%占空比)。记录US刺激前后664nm处MB的紫外可见光吸收变化(图2)。同样,用SOSG(单线态氧绿色荧光探针)在525nm处证实了单线态氧(1O2)的存在(图3)。最终发现随着时间及浓度的增加,PH-CpBT产生ROS增多,其为杀菌提供了重要的依据。将超声前后的材料进行XPS分析Cu的价态变化,可以发现超声后Cu+比例增加,证明了上面提到的SDT促进了Cu2+/Cu+的循环,其是PH-CpBT性能提升的关键(图4)。
2.抗菌性能测试
采用涂布板法评估了PH-CpBT在有和没有US照射的情况下对金黄色葡萄球菌(ATCC25923)和大肠杆菌(ATCC 25922)的效果。将Pp材料作为对照组,与PH-pBT材料(对比例)和PH-CpBT支架(实施例1)在48孔板中暴露于细菌悬浮液(2×107CFU/mL)中指定时间,并进行1W/cm2的US照射9分钟或不进行处理。采用铺板法在琼脂平板上37℃培养18h,定量菌落形成单位(cfu)(图5),菌落少表示支架具有更好的抗菌效果。为了进一步验证,将细菌在不同支架上培养5天后,采用live/dead BacLight活性试剂盒进行活/死染色试验(图6),红色越多表示抗菌效果越好。以上得到的PH-CpBT支架在模拟的体内环境中,有着很好的抗菌能力,而PH-pBT材料(不含Cu)的抗菌能力明显差于PH-CpBT支架。
3.成骨及成血管性能检测
首先用ALP和ARS检测PH-CpBT成骨能力,将MC3T3-E1细胞接种到12孔板的每孔中。当细胞融合度达到70%时,将α-MEM培养基替换为含有10mMβ-甘油磷酸酯50μg/mL抗坏血酸(Sigma)、50μg/mL抗坏血酸10mMβ-甘油磷酸酯(Sigma)和10nM地塞米松(Sigma)的成骨诱导培养基,以促进MC3T3-E1成骨细胞和支架材料的成骨承诺。骨诱导培养基与材料一起每3天更新一次,在第7天和第14天,使用5-溴-4-氯-3-吲哚酰磷酸/硝基蓝四唑(BCIP/NBT)ALP显色试剂盒(Beyotime,中国)评估ALP的活性(图7),沉积颜色越深表示成骨效果越好。为了评估钙化的细胞外基质,将细胞固定并用ARS染料(Beyotime,China)处理,并在第14天和第21天进行ARS测定。简而言之,将细胞固定并用ARS染料(Beyotime,China)处理(图8),沉积颜色越深表示成骨效果越好。然后,在去除多余的染料后,使用扫描仪捕获图像。通过染色图可以看到PH-CpBT支架的成骨能力优于PH-pBT和P材料。
血管再生是骨组织再生的重要组成部分,将抗菌材料进行成血管性能检测,HUVECs在Dulbecco's modified Eagle培养基(DMEM,Gibcom,USA)中培养,在含5% CO2的潮湿气氛中,在37℃下添加10%胎牛血清,用于体外血管生成研究。将合适的细胞和CpBT导入μ-Slide 15孔3D(Ibidi,Germany),孵育6小时。之后,细胞用钙黄蛋白染色,随后用荧光显微镜成像,用image J定量分析,成管数量越多,说明材料的骨再生效果越好。可以看到PH-CpBT支架有着更好的促进血管生成的能力(图9),因此其可以实现在抗菌后的促进成骨功效。

Claims (10)

1.一种PH-CpBT支架的制备方法,其特征在于,包括以下步骤:
S1:将钡源、钙源、钛源和锆源混合球磨22-26h,然后置于1250-1300℃下煅烧3-4h,随后球磨3-5h,得到预制粉;所述钡源、钙源、钛源和锆源中Ba、Ca、Ti和Zr元素的摩尔比为70-95:5-30:70-95:5-30;
S2:将所述预制粉分散于Tris-HCl缓冲液中,超声30-50min后,加入DA-HCl溶液,再超声8-12min,随后搅拌1.5-2.5h,经离心-洗涤后,得到pBT纳米颗粒;所述预制粉、Tris-HCl缓冲液和DA-HCl溶液的配比关系为1-2mg:1-2mL:1-2mL;
S3:将含铜溶液与所述pBT纳米颗粒混合搅拌1.5-2.5h,经离心-洗涤后,得到CpBT纳米材料;
S4:将所述CpBT纳米材料配置成浓度为2mg/mL的CpBT溶液,然后将PEKK支架浸于含有浓度为3mg/mL DA的Tris-HCl溶液中反应22-26h,再按顺序置于HA溶液和CpBT溶液中分别反应10-14h,得到PH-CpBT支架。
2.根据权利要求1所述的PH-CpBT支架的制备方法,其特征在于:所述钡源为碳酸钡、硝酸钡、氯化钡、氧化钡或氯酸钡;所述钙源为碳酸钙、氯化钙、硫酸钙或氢氧化钙;所述钛源为二氧化钛、氮化钛或四氯化钛;所述锆源为二氧化锆、氧化锆、水合硝酸氧锆或四氯化锆。
3.根据权利要求1所述的PH-CpBT支架的制备方法,其特征在于:所述球磨的转速为1800-2200rpm。
4.根据权利要求1所述的PH-CpBT支架的制备方法,其特征在于:所述超声功率为1200-1500w。
5.根据权利要求1所述的PH-CpBT支架的制备方法,其特征在于:所述离心的转速为7500-8500rpm,离心时间为8-12min。
6.根据权利要求1所述的PH-CpBT支架的制备方法,其特征在于:所述含铜溶液为浓度为10uM的硫酸四氨合铜或氯化铜溶液。
7.根据权利要求6所述的PH-CpBT支架的制备方法,其特征在于:所述含铜溶液和pBT纳米颗粒的质量比为1-5:10-50。
8.根据权利要求1所述的PH-CpBT支架的制备方法,其特征在于:所述PEKK支架的直径为3mm,高度为4mm。
9.权利要求1-8任一项所述的PH-CpBT支架的制备方法制得的PH-CpBT支架。
10.权利要求9所述的PH-CpBT支架在制备成骨材料中的应用。
CN202311458516.6A 2023-11-02 2023-11-02 一种PH-CpBT支架及其制备方法和应用 Active CN117482283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311458516.6A CN117482283B (zh) 2023-11-02 2023-11-02 一种PH-CpBT支架及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311458516.6A CN117482283B (zh) 2023-11-02 2023-11-02 一种PH-CpBT支架及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN117482283A CN117482283A (zh) 2024-02-02
CN117482283B true CN117482283B (zh) 2024-04-09

Family

ID=89677655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311458516.6A Active CN117482283B (zh) 2023-11-02 2023-11-02 一种PH-CpBT支架及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117482283B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112870391A (zh) * 2020-12-24 2021-06-01 深圳先进技术研究院 一种铁电抗菌材料及其制备方法和应用
WO2022217871A1 (zh) * 2021-04-12 2022-10-20 华南理工大学 一种增强声动力抗肿瘤的铋/钛酸钡异质结及其制备方法
CN116043205A (zh) * 2023-03-31 2023-05-02 上海交通大学医学院附属第九人民医院 一种钛酸铜钡压电陶瓷涂层及其制备方法和用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210379249A1 (en) * 2020-06-08 2021-12-09 University Of Connecticut Biodegradable piezoelectric composite materials
US20210378949A1 (en) * 2020-06-08 2021-12-09 University Of Connecticut Biodegradable antibacterial piezoelectric wound dressing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112870391A (zh) * 2020-12-24 2021-06-01 深圳先进技术研究院 一种铁电抗菌材料及其制备方法和应用
WO2022217871A1 (zh) * 2021-04-12 2022-10-20 华南理工大学 一种增强声动力抗肿瘤的铋/钛酸钡异质结及其制备方法
CN116043205A (zh) * 2023-03-31 2023-05-02 上海交通大学医学院附属第九人民医院 一种钛酸铜钡压电陶瓷涂层及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle;Simin Mohseni 等;Brazilian Journal of Microbiology;20141231;第45卷(第4期);1393-1399 *

Also Published As

Publication number Publication date
CN117482283A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
Wang et al. Two-dimensional nanocoating-enabled orthopedic implants for bimodal therapeutic applications
CN113318272B (zh) 基于纳米酶药物修饰的骨植入材料及其制备方法和应用
Xu et al. A removable photothermal antibacterial “warm paste” target for cariogenic bacteria
CN104726921B (zh) 二氧化钛/含锶氟羟基磷灰石生物活性纳米复合涂层及其制备方法和应用
Yang et al. Antibacterial activity of an NIR-induced Zn ion release film
Iqbal et al. Characterization and biological evaluation of silver containing fluoroapatite nanoparticles prepared through microwave synthesis
CN107661544A (zh) 抗菌促成骨复合功能多孔骨科植入物及其制备方法
CA3007064C (en) Magnesium phosphate hydrogels
Xu et al. An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for infected bone defect repair
Sun et al. Ultrasound-driven radical chain reaction and immunoregulation of piezoelectric-based hybrid coating for treating implant infection
CN117942427B (zh) 一种可注射智能控释水凝胶及其在治疗骨骼损伤中的应用
Wu et al. A spatiotemporal drug release scaffold with antibiosis and bone regeneration for osteomyelitis
CN101791433A (zh) 纯钛或钛合金表面分子筛抗菌涂层及其制备方法
CN113398334B (zh) 碳量子点水凝胶复合支架材料及制备方法和应用
CN109111178A (zh) 具有主动缓释效应的陶瓷材料,其制造方法和包含此陶瓷材料的系统
Yang et al. Co-exchanged montmorillonite: a potential antibacterial agent with good antibacterial activity and cytocompatibility
Lung et al. An antibacterial porous calcium phosphate bilayer functional coatings on titanium dental implants
Acharjee et al. In Vitro and In Vivo Bone Regeneration Assessment of Titanium-Doped Waste Eggshell-Derived Hydroxyapatite in the Animal Model
CN117482283B (zh) 一种PH-CpBT支架及其制备方法和应用
CN106377433A (zh) 一种抗菌性牙根管充填材料及其制备方法
CN107648674A (zh) 具有抗菌及促进骨整合功能的金属植入物及其制备方法
CN114748692B (zh) 一种基于介孔二氧化硅的表面功能化钛基植入体及其制备方法与应用
CN113769162B (zh) 一种用于治疗感染性骨缺损的负载聚乙烯吡咯烷酮碘的仿生矿化微球的制备方法
Fadlallah et al. Innovative Nanoporous Titania Surface with Stabilized Antimicrobial Ag-Nanoparticles via Salvadora persica L. Roots (Miswak) Extract for Dental Applications
CN109721757A (zh) 一种医用硅橡胶及其制备方法与应用、硅橡胶产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant