CN117464000A - 一种电子封装用散热材料及其制备方法 - Google Patents

一种电子封装用散热材料及其制备方法 Download PDF

Info

Publication number
CN117464000A
CN117464000A CN202311374700.2A CN202311374700A CN117464000A CN 117464000 A CN117464000 A CN 117464000A CN 202311374700 A CN202311374700 A CN 202311374700A CN 117464000 A CN117464000 A CN 117464000A
Authority
CN
China
Prior art keywords
tourmaline
heat dissipation
copper
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311374700.2A
Other languages
English (en)
Inventor
余佳
马晓波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Yuemo Advanced Semiconductor Co ltd
Original Assignee
Hunan Yuemo Advanced Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Yuemo Advanced Semiconductor Co ltd filed Critical Hunan Yuemo Advanced Semiconductor Co ltd
Priority to CN202311374700.2A priority Critical patent/CN117464000A/zh
Publication of CN117464000A publication Critical patent/CN117464000A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提出了一种电子封装用散热材料及其制备方法,属于散热材料技术领域。将电气石经过球磨清洗处理后,表面包覆一层钨‑铜‑银合金,进一步表面沉积一层氧化石墨烯,经过水合肼还原后,得到改性纳米球,与紫铜粉混合均匀,球磨,冷压成型,高温高压烧结,制得电子封装用散热材料。本发明制备了一种高散热、高力学性能的电子封装用散热材料,相对于传统的散热基板,具有更高的热导率,可以使得在SiP封装、厚模封装以及高散热封装技术中,能够通过基板直接将热量散出,缩短传热路径,增强了散热效果,应用面更广。

Description

一种电子封装用散热材料及其制备方法
技术领域
本发明涉及散热材料技术领域,具体涉及一种电子封装用散热材料及其制备方法。
背景技术
随着现代电力电子技术的进步,电气产品的发展趋向于微型化和密集化,电子器件的功率及散热要求也随之增加。电子器件工作时散发的热量如不能及时导出,易造成局部高温,轻则影响电子器件使用寿命,重则影响器件的工作性能,随着先进微电子芯片内部的热流密度越来越高,为了保证有效散热,对于材料热导率的要求也越来越高。据统计,55%的电子设备失效是由温度过高引起的,主要故障形式为过热损坏,因此制备高散热电子封装材料是提高电子产品可靠性的关键。
目前常见的陶瓷基板散热材料的主要有Al2O3、氮化铝、SiC、BeO、Si3N4等,Al2O3和BeO陶瓷是大功率封装两种主要基板材料。但这两种基板材料都固有缺点,Al2O3的热导率低(20W/(K·M)),热膨胀系数与芯片材料不匹配;BeO虽然具有优良的综合性能,但生产成本较高和有剧毒,从性能、成本和环保等方面考虑,这两种材料均不能作为理想的散热基板材料。
发明内容
本发明的目的在于提出一种电子封装用散热材料及其制备方法,相对于传统的散热基板,具有更高的热导率,可以使得在SiP封装、厚模封装以及高散热封装技术中,能够通过基板直接将热量散出,缩短传热路径,增强了散热效果,应用面更广。
本发明的技术方案是这样实现的:
本发明提供一种电子封装用散热材料的制备方法,将电气石经过球磨清洗处理后,表面包覆一层钨-铜-银合金,进一步表面沉积一层氧化石墨烯,经过水合肼还原后,得到改性纳米球,与紫铜粉混合均匀,球磨,冷压成型,高温高压烧结,制得电子封装用散热材料。
作为本发明的进一步改进,包括以下步骤:
S1.电气石的处理:将电气石经过粉碎,球磨,过筛,清洗,干燥,制得电气石超微粉;
S2.钨-铜-银合金包覆:将步骤S1制得的电气石超微粉加入水中,加入钨酸钠、铜盐和银盐,加入络合剂,搅拌反应,加热蒸发溶剂,得到溶胶;然后升高温度,降低真空度,得到干凝胶,取出,煅烧干凝胶,球磨,经低温氢气还原,得到钨-铜-银合金包覆电气石纳米球;
S3.氧化石墨烯的包覆:将氧化石墨烯溶于水中,加入步骤S2制得的钨-铜-银合金包覆电气石纳米球,超声搅拌反应,离心,洗涤,干燥,制得氧化石墨烯/钨-铜-银合金包覆电气石纳米球;
S4.还原:将步骤S3制得的改性纳米球加入水中,加入水合肼和氨水,加热搅拌反应,离心,洗涤,干燥,制得改性纳米球;
S5.电子封装用散热材料的制备:将步骤S4制得的改性纳米球、紫铜粉混合均匀,球磨,冷压成型,在压力为1-3GPa、温度为900-1100℃进行高温高压烧结,制得电子封装用散热材料。
作为本发明的进一步改进,步骤S1中所述球磨的时间为2-4h,所述过筛的筛网的孔径为300-700nm,所述清洗为加入乙醇中,1000-1200W超声波处理20-30min。
作为本发明的进一步改进,步骤S2中所述电气石超微粉、钨酸钠、铜盐、银盐、络合剂的质量比为20-30:7-10:3-5:7-10:40-50,所述铜盐选自氯化铜、硫酸铜、硝酸铜中的至少一种,所述银盐为硝酸银,所述搅拌反应的时间为20-30min,所述络合剂选自柠檬酸、柠檬酸钠中的至少一种,所述加热温度为45-65℃,所述升高温度至加热器的温度为130-140℃,降低真空度至0.01-0.1MPa;所述球磨时间为3-5h;所述低温氢气还原采用强排水透气式管式炉在650-700℃温度下通入氢气还原3-5h,氢气通气量为15-20L/min;所述煅烧的温度为800-1000℃,时间为2-4h。
作为本发明的进一步改进,步骤S3中所述氧化石墨烯、钨-铜-银合金包覆电气石纳米球的质量比为12-15:20-25,所述超声搅拌反应的功率为1000-1500W,时间为20-30min。
作为本发明的进一步改进,步骤S4中所述改性纳米球、水合肼和氨水的质量比为10:3-5:2-4,所述氨水的浓度为22-25wt%,所述加热搅拌反应的温度为80-90℃,时间为2-4h。
作为本发明的进一步改进,步骤S5中所述改性纳米球、紫铜粉的质量比为7-10:2-3,所述球磨的转速为150-200r/min,时间为1-2h,所述冷压成型的压力为55-60MPa,时间为1-2min,所述高温高压烧结的时间为10-20min。
作为本发明的进一步改进,具体包括以下步骤:
S1.电气石的处理:将电气石经过粉碎,球磨2-4h,过筛,所述筛网的孔径为300-700nm,加入乙醇中,1000-1200W超声波清洗处理20-30min,干燥,制得电气石超微粉;
S2.钨-铜-银合金包覆:将20-30重量份步骤S1制得的电气石超微粉加入500重量份水中,加入7-10重量份钨酸钠、3-5重量份铜盐和7-10重量份银盐,加入40-50重量份络合剂,搅拌反应20-30min,加热至45-65℃,蒸发溶剂,得到溶胶;然后升高温度至加热器的温度为130-140℃,降低真空度至0.01-0.1MPa,反应1-2h,得到干凝胶,取出,800-1000℃煅烧2-4h,球磨3-5h,采用强排水透气式管式炉在650-700℃温度下通入氢气还原3-5h,氢气通气量为15-20L/min,得到钨-铜-银合金包覆电气石纳米球;
S3.氧化石墨烯的包覆:将12-15重量份氧化石墨烯溶于500重量份水中,加入20-25重量份步骤S2制得的钨-铜-银合金包覆电气石纳米球,1000-1500W超声搅拌反应20-30min,离心,洗涤,干燥,制得氧化石墨烯/钨-铜-银合金包覆电气石纳米球;
S4.还原:将10重量份步骤S3制得的改性纳米球加入200重量份水中,加入3-5重量份水合肼和2-4重量份22-25wt%的氨水,加热至80-90℃,搅拌反应2-4h,离心,洗涤,干燥,制得改性纳米球;
S5.电子封装用散热材料的制备:将70-100重量份步骤S4制得的改性纳米球、20-30重量份紫铜粉混合均匀,150-200r/min转速下球磨1-2h,55-60MPa冷压成型1-2min,在压力为1-3GPa、温度为900-1100℃进行高温高压烧结10-20min,制得电子封装用散热材料。
本发明进一步保护一种上述的制备方法制得的电子封装用散热材料。
本发明进一步保护一种上述的电子封装用散热材料在SiP封装、厚模封装、高散热封装技术中的应用。
本发明具有如下有益效果:
电气石具有良好的辐射散热效果,可以发出波长为4-14μm的远红外电磁波,红外发射率大于0.92,并且高温煅烧处理后的辐射率会进一步的增强;同时,以电气石为材料的核心,其可以在自身静电场的作用下,自发连续地产生直流静电,不断释放电子,这些电子作为热量载体,不断将热量带出,从而加快热量的散失。
本发明将电气石经过粉碎,球磨获得纳米级的电气石超微粉,并以该电气石超微粉为核心,表面通过溶胶凝胶反应,并煅烧再其表面包覆一层W-Cu-Ag氧化物,通过低温氢气还原,获得了钨-铜-银合金包覆电气石纳米球,该钨-铜-银合金具有极高的热导率,能进一步提高制得的纳米球的散热性能。
进一步表面包覆一层氧化石墨烯层,经过水合肼还原,使得制得的改性纳米球在表面包覆一层钨-铜-银合金的基础上,进一步包覆一层高热导性能的石墨层,从而进一步改善了纳米球的导热性能,通过能够改善钨-铜-银合金的界面结合能力,使得钨-铜-银合金的结合更紧密,制得的散热材料的力学性能也有一定的提高。
将制得的改性纳米球与紫铜粉混合压制煅烧制得的散热材料,在球磨过程中,转速为150-200r/min,避免颗粒在球磨过程中会不断发生相互碰撞,必定有相互结合的趋势,导致颗粒之间发生团聚、结块,从而制备了一种高散热、高力学性能的电子封装用散热材料,相对于散热基板,具有更高的热导率,可以使得在SiP封装、厚模封装以及高散热封装技术中,能够通过基板直接将热量散出,缩短传热路径,增强了散热效果,应用面更广。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
紫铜粉为高导热性T2紫铜粉体,颗粒呈球形,粒径35-40μm,纯度不低于99.9%;电气石为新疆阿尔泰产电气石粉体,粒径为35-40μm,其化学式为NaFe3Al6Si6O18(BO3)3(OH)4
实施例1
本实施例提供一种电子封装用散热材料的制备方法,具体包括以下步骤:
S1.电气石的处理:将电气石经过粉碎,球磨2h,过筛,所述筛网的孔径为300nm,加入乙醇中,1000W超声波清洗处理20min,干燥,制得电气石超微粉;
S2.钨-铜-银合金包覆:将20重量份步骤S1制得的电气石超微粉加入500重量份水中,加入7重量份钨酸钠、3重量份氯化铜和7重量份硝酸银,加入40重量份柠檬酸,搅拌反应20min,加热至45℃,蒸发溶剂,得到溶胶;然后升高温度至加热器的温度为130℃,降低真空度至0.01MPa,反应1h,得到干凝胶,取出,800℃煅烧2h,球磨3h,采用强排水透气式管式炉在650℃温度下通入氢气还原3h,氢气通气量为15L/min,得到钨-铜-银合金包覆电气石纳米球;
S3.氧化石墨烯的包覆:将12重量份氧化石墨烯溶于500重量份水中,加入20重量份步骤S2制得的钨-铜-银合金包覆电气石纳米球,1000W超声搅拌反应20min,离心,洗涤,干燥,制得氧化石墨烯/钨-铜-银合金包覆电气石纳米球;
S4.还原:将10重量份步骤S3制得的改性纳米球加入200重量份水中,加入3重量份水合肼和2重量份22wt%的氨水,加热至80℃,搅拌反应2h,离心,洗涤,干燥,制得改性纳米球;
S5.电子封装用散热材料的制备:将70重量份步骤S4制得的改性纳米球、20重量份紫铜粉搅拌混合20min,150r/min转速下球磨1h,55MPa冷压成型1min,在压力为1GPa、温度为900℃进行高温高压烧结10min,制得电子封装用散热材料。
实施例2
本实施例提供一种电子封装用散热材料的制备方法,具体包括以下步骤:
S1.电气石的处理:将电气石经过粉碎,球磨4h,过筛,所述筛网的孔径为700nm,加入乙醇中,1200W超声波清洗处理30min,干燥,制得电气石超微粉;
S2.钨-铜-银合金包覆:将30重量份步骤S1制得的电气石超微粉加入500重量份水中,加入10重量份钨酸钠、5重量份硫酸铜和10重量份硝酸银,加入50重量份柠檬酸钠,搅拌反应30min,加热至65℃,蒸发溶剂,得到溶胶;然后升高温度至加热器的温度为140℃,降低真空度至0.1MPa,反应2h,得到干凝胶,取出,1000℃煅烧4h,球磨5h,采用强排水透气式管式炉在700℃温度下通入氢气还原5h,氢气通气量为20L/min,得到钨-铜-银合金包覆电气石纳米球;
S3.氧化石墨烯的包覆:将15重量份氧化石墨烯溶于500重量份水中,加入25重量份步骤S2制得的钨-铜-银合金包覆电气石纳米球,1500W超声搅拌反应30min,离心,洗涤,干燥,制得氧化石墨烯/钨-铜-银合金包覆电气石纳米球;
S4.还原:将10重量份步骤S3制得的改性纳米球加入200重量份水中,加入5重量份水合肼和4重量份25wt%的氨水,加热至90℃,搅拌反应4h,离心,洗涤,干燥,制得改性纳米球;
S5.电子封装用散热材料的制备:将100重量份步骤S4制得的改性纳米球、30重量份紫铜粉搅拌混合20min,200r/min转速下球磨2h,60MPa冷压成型2min,在压力为3GPa、温度为1100℃进行高温高压烧结20min,制得电子封装用散热材料。
实施例3
本实施例提供一种电子封装用散热材料的制备方法,具体包括以下步骤:
S1.电气石的处理:将电气石经过粉碎,球磨3h,过筛,所述筛网的孔径为500nm,加入乙醇中,1100W超声波清洗处理25min,干燥,制得电气石超微粉;
S2.钨-铜-银合金包覆:将25重量份步骤S1制得的电气石超微粉加入500重量份水中,加入8重量份钨酸钠、4重量份硝酸铜和8重量份硝酸银,加入45重量份柠檬酸,搅拌反应25min,加热至55℃,蒸发溶剂,得到溶胶;然后升高温度至加热器的温度为135℃,降低真空度至0.05MPa,反应1.5h,得到干凝胶,取出,900℃煅烧3h,球磨4h,采用强排水透气式管式炉在670℃温度下通入氢气还原4h,氢气通气量为17L/min,得到钨-铜-银合金包覆电气石纳米球;
S3.氧化石墨烯的包覆:将13重量份氧化石墨烯溶于500重量份水中,加入22重量份步骤S2制得的钨-铜-银合金包覆电气石纳米球,1250W超声搅拌反应25min,离心,洗涤,干燥,制得氧化石墨烯/钨-铜-银合金包覆电气石纳米球;
S4.还原:将10重量份步骤S3制得的改性纳米球加入200重量份水中,加入4重量份水合肼和3重量份23wt%的氨水,加热至85℃,搅拌反应3h,离心,洗涤,干燥,制得改性纳米球;
S5.电子封装用散热材料的制备:将85重量份步骤S4制得的改性纳米球、25重量份紫铜粉搅拌混合20min,170r/min转速下球磨1.5h,57MPa冷压成型1.5min,在压力为2GPa、温度为1000℃进行高温高压烧结15min,制得电子封装用散热材料。
对比例1
与实施例3相比,不同之处在于,步骤S2中未添加硝酸铜。
对比例2
与实施例3相比,不同之处在于,步骤S2中未添加硝酸银。
对比例3
与实施例3相比,不同之处在于,步骤S2中未添加钨酸钠。
对比例4
与实施例3相比,不同之处在于,未进行步骤S2。
对比例5
与实施例3相比,不同之处在于,未进行步骤S3和S4。
测试例1
将实施例1-3和对比例1-5制得的电子封装用散热材料采用激光热导仪测试复合材料的导热系数,升温速率10K/min,由室温升至800℃。结果见表1。
由上表可知,本发明实施例1-3制得的电子封装用散热材料具有良好的热导率。
测试例2
将实施例1-3和对比例1-5制得的电子封装用散热材料测试其抗弯强度,结果见表2。
由上表可知,本发明实施例1-3制得的电子封装用散热材料具有良好的抗弯强度。
测试例3
将实施例1-3和对比例1-5制得的电子封装用散热材料测试其散热效果。用常规的钼铜与金刚石/铜热沉片做了对比,热沉片尺寸为12mm×13mm×1mm,分别在中心对称两个位置设置基板材料为实施例1-3或对比例1-5制得的电子封装用散热材料,另一个位置设置为传统的钼铜片。采用电阻模拟芯片发热,电阻尺寸为2.4mm×4.8mm×2mm,壳体材料为铝硅,表面镀金。冷板在靠近热源下布置流道。壳体通过锁紧机构与冷板压接,电阻发热功率30W,给电阻两端输入等效电压,温度稳定后,通过热红外仪测量2个位置处的电阻表面温度。结果见表3。
由上表可知,本发明实施例1-3制得的电子封装用散热材料具有良好的散热效果。
对比例1、2、3与实施例3相比,步骤S2中未添加硝酸铜、硝酸银或钨酸钠。对比例4与实施例3相比,未进行步骤S2。制得的电子封装用散热材料的热导率下降,散热性能下降,可见,本发明将电气石经过粉碎,球磨获得纳米级的电气石超微粉,并以该电气石超微粉为核心,表面通过溶胶凝胶反应,并煅烧再其表面包覆一层W-Cu-Ag氧化物,通过低温氢气还原,获得了钨-铜-银合金包覆电气石纳米球,该钨-铜-银合金具有极高的热导率,能进一步提高制得的纳米球的散热性能,钨-铜-银合金的包覆添加具有协同增效的作用。
对比例5与实施例3相比,未进行步骤S3和S4。制得的电子封装用散热材料的热导率下降,抗弯性能下降,散热性能下降。本发明在制得的钨-铜-银合金包覆电气石纳米球表面进一步包覆一层氧化石墨烯层,经过水合肼还原,使得制得的改性纳米球在表面包覆一层钨-铜-银合金的基础上,进一步包覆一层高热导性能的石墨层,从而进一步改善了纳米球的导热性能,通过能够改善钨-铜-银合金的界面结合能力,使得钨-铜-银合金的结合更紧密,改善了制得的散热材料的力学性能和散热性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种电子封装用散热材料的制备方法,其特征在于,将电气石经过球磨清洗处理后,表面包覆一层钨-铜-银合金,进一步表面沉积一层氧化石墨烯,经过水合肼还原后,得到改性纳米球,与紫铜粉混合均匀,球磨,冷压成型,高温高压烧结,制得电子封装用散热材料。
2.根据权利要求1所述的制备方法,其特征在于,包括以下步骤:
S1.电气石的处理:将电气石经过粉碎,球磨,过筛,清洗,干燥,制得电气石超微粉;
S2.钨-铜-银合金包覆:将步骤S1制得的电气石超微粉加入水中,加入钨酸钠、铜盐和银盐,加入络合剂,搅拌反应,加热蒸发溶剂,得到溶胶;然后升高温度,降低真空度,得到干凝胶,取出,煅烧干凝胶,球磨,经低温氢气还原,得到钨-铜-银合金包覆电气石纳米球;
S3.氧化石墨烯的包覆:将氧化石墨烯溶于水中,加入步骤S2制得的钨-铜-银合金包覆电气石纳米球,超声搅拌反应,离心,洗涤,干燥,制得氧化石墨烯/钨-铜-银合金包覆电气石纳米球;
S4.还原:将步骤S3制得的改性纳米球加入水中,加入水合肼和氨水,加热搅拌反应,离心,洗涤,干燥,制得改性纳米球;
S5.电子封装用散热材料的制备:将步骤S4制得的改性纳米球、紫铜粉混合均匀,球磨,冷压成型,在压力为1-3GPa、温度为900-1100℃进行高温高压烧结,制得电子封装用散热材料。
3.根据权利要求2所述的制备方法,其特征在于,步骤S1中所述球磨的时间为2-4h,所述过筛的筛网的孔径为300-700nm,所述清洗为加入乙醇中,1000-1200W超声波处理20-30min。
4.根据权利要求2所述的制备方法,其特征在于,步骤S2中所述电气石超微粉、钨酸钠、铜盐、银盐、络合剂的质量比为20-30:7-10:3-5:7-10:40-50,所述铜盐选自氯化铜、硫酸铜、硝酸铜中的至少一种,所述银盐为硝酸银,所述搅拌反应的时间为20-30min,所述络合剂选自柠檬酸、柠檬酸钠中的至少一种,所述加热温度为45-65℃,所述升高温度至加热器的温度为130-140℃,降低真空度至0.01-0.1MPa;所述球磨时间为3-5h;所述低温氢气还原采用强排水透气式管式炉在650-700℃温度下通入氢气还原3-5h,氢气通气量为15-20L/min;所述煅烧的温度为800-1000℃,时间为2-4h。
5.根据权利要求2所述的制备方法,其特征在于,步骤S3中所述氧化石墨烯、钨-铜-银合金包覆电气石纳米球的质量比为12-15:20-25,所述超声搅拌反应的功率为1000-1500W,时间为20-30min。
6.根据权利要求2所述的制备方法,其特征在于,步骤S4中所述改性纳米球、水合肼和氨水的质量比为10:3-5:2-4,所述氨水的浓度为22-25wt%,所述加热搅拌反应的温度为80-90℃,时间为2-4h。
7.根据权利要求2所述的制备方法,其特征在于,步骤S5中所述改性纳米球、紫铜粉的质量比为7-10:2-3,所述球磨的转速为150-200r/min,时间为1-2h,所述冷压成型的压力为55-60MPa,时间为1-2min,所述高温高压烧结的时间为10-20min。
8.根据权利要求2所述的制备方法,其特征在于,具体包括以下步骤:
S1.电气石的处理:将电气石经过粉碎,球磨2-4h,过筛,所述筛网的孔径为300-700nm,加入乙醇中,1000-1200W超声波清洗处理20-30min,干燥,制得电气石超微粉;
S2.钨-铜-银合金包覆:将20-30重量份步骤S1制得的电气石超微粉加入500重量份水中,加入7-10重量份钨酸钠、3-5重量份铜盐和7-10重量份银盐,加入40-50重量份络合剂,搅拌反应20-30min,加热至45-65℃,蒸发溶剂,得到溶胶;然后升高温度至加热器的温度为130-140℃,降低真空度至0.01-0.1MPa,反应1-2h,得到干凝胶,取出,800-1000℃煅烧2-4h,球磨3-5h,采用强排水透气式管式炉在650-700℃温度下通入氢气还原3-5h,氢气通气量为15-20L/min,得到钨-铜-银合金包覆电气石纳米球;
S3.氧化石墨烯的包覆:将12-15重量份氧化石墨烯溶于500重量份水中,加入20-25重量份步骤S2制得的钨-铜-银合金包覆电气石纳米球,1000-1500W超声搅拌反应20-30min,离心,洗涤,干燥,制得氧化石墨烯/钨-铜-银合金包覆电气石纳米球;
S4.还原:将10重量份步骤S3制得的改性纳米球加入200重量份水中,加入3-5重量份水合肼和2-4重量份22-25wt%的氨水,加热至80-90℃,搅拌反应2-4h,离心,洗涤,干燥,制得改性纳米球;
S5.电子封装用散热材料的制备:将70-100重量份步骤S4制得的改性纳米球、20-30重量份紫铜粉混合均匀,150-200r/min转速下球磨1-2h,55-60MPa冷压成型1-2min,在压力为1-3GPa、温度为900-1100℃进行高温高压烧结10-20min,制得电子封装用散热材料。
9.一种如权利要求1-8任一项所述的制备方法制得的电子封装用散热材料。
10.一种如权利要求9所述的电子封装用散热材料在SiP封装、厚模封装、高散热封装技术中的应用。
CN202311374700.2A 2023-10-23 2023-10-23 一种电子封装用散热材料及其制备方法 Pending CN117464000A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311374700.2A CN117464000A (zh) 2023-10-23 2023-10-23 一种电子封装用散热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311374700.2A CN117464000A (zh) 2023-10-23 2023-10-23 一种电子封装用散热材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117464000A true CN117464000A (zh) 2024-01-30

Family

ID=89623074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311374700.2A Pending CN117464000A (zh) 2023-10-23 2023-10-23 一种电子封装用散热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117464000A (zh)

Similar Documents

Publication Publication Date Title
CN101139515B (zh) 一种高导热金刚石-铜复合封装材料及其制备方法
WO2020199638A1 (zh) 一种多尺寸纳米颗粒混合金属膜及其制备方法
CN107916356B (zh) 一种高导热的金刚石/铜复合材料的制备方法
CN101537491B (zh) 一种制备铜包钨复合粉末的方法
CN106904947B (zh) 添加h-BN@Ni核壳结构复合粉体的自润滑陶瓷刀具材料及其制备方法
CN101649400A (zh) 电子封装用金刚石增强金属基复合材料及其制备方法
CN108570202B (zh) 聚四氟乙烯复合基板材料的制备方法
CN103537686B (zh) 一种具有钨包覆铜现象的WCu复合粉末的制备方法
JP5557698B2 (ja) 焼結接合剤、その製造方法およびそれを用いた接合方法
CN102503579A (zh) 低温烧结制备金属化陶瓷基板方法
JP7298939B2 (ja) 高熱伝導・熱膨張調節可能な銅基複合材及びその製造方法
CN113795091A (zh) 一种低温烧结制备陶瓷电路板方法
CN102732764A (zh) 一种高导热、低热膨胀系数金刚石/铜复合材料的制备方法
CN107473774A (zh) 铜‑陶瓷基板的制备方法
JP2016191085A (ja) 銅微粒子ペースト及びその製造方法
CN101615600A (zh) 一种高导热电子封装材料及其制备方法
WO1988001259A1 (fr) Produit de filtrage de nitrure d'aluminium et substrat semi-conducteur ainsi forme
TW201802827A (zh) 奈米銀漿料之製備方法
CN117464000A (zh) 一种电子封装用散热材料及其制备方法
CN109659281B (zh) 一种高导热电子封装复合材料及其制备方法
CN111318688A (zh) 一种铝基导电粉体的制备方法及应用
CN104550975A (zh) 一种快速注射成型制备硅铝合金电子封装材料的方法
CN107639237B (zh) Cu/SiO2复合材料、其制备方法与铜-陶瓷基板的制备方法
CN115011954A (zh) 一种在Mo粉表面化学镀铜的新方法
JP5695780B1 (ja) 高熱伝導性・電気絶縁性・低熱膨張性粉末及びそれを用いた放熱構造体、並びにその粉末の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination