CN117457717A - 一种多层沉积外延片及其生长方法 - Google Patents

一种多层沉积外延片及其生长方法 Download PDF

Info

Publication number
CN117457717A
CN117457717A CN202311574192.2A CN202311574192A CN117457717A CN 117457717 A CN117457717 A CN 117457717A CN 202311574192 A CN202311574192 A CN 202311574192A CN 117457717 A CN117457717 A CN 117457717A
Authority
CN
China
Prior art keywords
layer
buffer layer
growing
source
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311574192.2A
Other languages
English (en)
Inventor
程斌
白俊春
贾永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Xingang Semiconductor Co ltd
Original Assignee
Jiangsu Xingang Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Xingang Semiconductor Co ltd filed Critical Jiangsu Xingang Semiconductor Co ltd
Priority to CN202311574192.2A priority Critical patent/CN117457717A/zh
Publication of CN117457717A publication Critical patent/CN117457717A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了半导体技术领域的一种多层沉积外延片及其生长方法,在衬底材上依次设置AlN成核层、缓冲层、沟道层、AlN插入层、AlGaN势垒层、GaN帽层;所述缓冲层为掺杂Fe的AlGaN缓冲层和掺杂C的AlGaN缓冲层交替生长2‑5次。本发明提供一种多层沉积外延片及其生长方法,通过将掺Fe和掺C的AlGaN缓冲层进行交替生长,能够实现缓冲层的高阻性能,同时提高外延材料的晶体质量。

Description

一种多层沉积外延片及其生长方法
技术领域
本发明属于半导体技术领域,具体是指一种多层沉积外延片及其生长方法。
背景技术
GaN基高电子迁移率晶体管(HEMT)是第三代半导体材料,具有高击穿电压、高二维电气浓度以及高迁移率的特性;在GaN双异质结HEMT器件中,其结构由下至上分别衬底层、缓冲层、沟道、势垒层和表面电极层,表面电极层包括栅电极、源电极和漏电极的金属电极,以及沉积于器件表面的钝化物,提升击穿电压,减少电流崩塌效应;缓冲层在HEMT器件结构中的主要作用是承担高压、抑制泄露电流的作用,常见的,通过引入较高的穿透位错或受主杂质来实现缓冲层的高阻特性,现有技术中,通过改变外延层的生长参数,从而移入位错,补偿背景载流子,实现高阻,或通过掺杂Fe、C、Mg等受主杂质来补偿背景载流子,实现高阻,其中,由于Mg的激活能较高,掺杂Mg时需要提高掺杂浓度,但较高的位错密度对器件造成一定程度的不良影响,导致晶体质量的恶化;掺杂Fe时,掺杂剂残留于管壁腔室上,能够继续并入薄膜中,污染后续外延上薄膜,而C的掺杂需要在低温低压的条件下进行,容易导致外延材料结晶质量的下降。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供了一种多层沉积外延片及其生长方法,实现外延片高阻,提高GaN半导体材料的性能。
为了实现上述目的,本发明采取的技术方案如下:
本发明提出一种多层沉积外延片的生长方法,本发明提出了一种外延片,在衬底材上依次设置AlN成核层、缓冲层、沟道层、AlN插入层、AlGaN势垒层、GaN帽层;
优选地,所述衬底为Si衬底、蓝宝石衬底中的至少一种;
优选地,所述缓冲层为掺杂Fe的AlGaN缓冲层和掺杂C的AlGaN缓冲层交替生长2-5次;
优选地,掺Fe缓冲层和掺C缓冲层交替生长中,以掺C缓冲层生长为最后一层缓冲层生长,最后一层掺C的AlGaN缓冲层的生长后为1-3μm;
优选地,所述Fe的掺杂浓度为1014cm-3-1019cm-3
优选地,所述C的掺杂浓度为1014cm-3-1020cm-3
优选地,所述AlGaN缓冲层中Al的组分为0.02-0.07;
优选地,所述AlGaN缓冲层的生长厚度为2.5-5μm;
本发明还提供一种多层沉积外延片的生长方法,具体包括如下步骤:
S1、将干净衬底载入MOCVD反应腔室内,升温至1000-1100℃,腔体压力为70-150mbar,在氢气氛围下,进行热处理,保温4-6min后,降温至450-500℃,备用;
S2、以氢气作为载气,通入Al源和N源,在850-900℃下生长AlN成核层,所述AlN成核层的生长厚度为30-50nm;
S3、在AlN成核层上交替生长掺Fe和掺C的AlGaN缓冲层;
S31、以氢气为载气,通入Ga源、Al源、N源和Fe源,升温至1060-1080℃,腔室压力为40-70mbar下生长掺Fe的AlGaN缓冲层,生长至厚度为200-500nm时,停止Fe源通入;
S32、以氢气为载气,通入C源,控制温度在1060-1080℃,腔室压力在40-70mbar下生长掺C的AlGaN缓冲层,生长至厚度为300-500nm时,停止C源通入;
S33、依次重复步骤S31、S32,掺Fe缓冲层和掺C缓冲层交替生长2-5次,使AlGaN缓冲层的厚度达到2.5-5μm;
S4、在AlGaN缓冲层上依次生长沟道层、AlN插入层、GaN势垒层以及GaN帽层;
S41、将温度升高至1100-1150℃,腔室压力为100-200mbar,持续通入Ga源和N源,在AlGaN缓冲层上生长GaN沟道层,生长厚度为100-150nm;
S42、持续通入Al源、N源,生长1.0-1.4nm的AlN插入层,生长温度为1050-1150℃,腔体压力为50-100mbar;
S43、在插入层表面生长GaN势垒层,生长温度为1050-1150℃,压力为40-60mbar,生长厚度为20-30nm;
S44、在GaN势垒层上生长GaN帽层,生长温度为1050-1150℃,压力为40-60mbar,生长厚度为1-2nm。
优选地,所述Ga源为三甲基镓(TMGa);
优选地,所述Al源为三甲基铝(TMAl);
优选地,所述Fe源为二茂铁(Cp2Fe);
优选地,所述N源为氨气;
优选地,所述C源为乙烯。
本发明取得的有益效果如下:
本发明提供一种多层沉积外延片及其生长方法,通过将掺Fe和掺C的AlGaN缓冲层进行交替生长,能够实现缓冲层的高阻性能,同时提高外延材料的晶体质量;在外延材料生长时,掺入Fe杂质降低了Ga原子的表面迁移率,促进GaN的生长向三维生长转变,能够在材料中引入更多的刃位错,提高材料表面的粗糙程度;采用主动掺碳的技术,能够有效提高缓冲层的电阻率,提高GaNHEMT器件的耐压性能。
附图说明
图1为本发明实施例1提供的外延片的结构示意图;
图2为本发明实施例1提供的外延片掺杂原子AlGaN缓冲层结构示意图;
图3为本发明实施例2中外延片的生长方法流程图;
图4为本发明实施例2所述外延片AlGaN缓冲层的生长方法流程图;
图5为本发明实施例2所述外延片沟道层、AlN插入层、GaN势垒层、GaN帽层生长方法流程图;
图6为本发明实施例1、2和对比例所述的外延片制成HEMT器件的关态漏电曲线图。
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另行定义,文中所使用的所有专业与科学用语与本领域技术人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明中。文中所述的较佳实施方法与材料仅作示范之用,但不能限制本申请的内容。
下述实施例中的实验方法,如无特殊说明,均为常规方法。
实施例1
参照图1,本实施例提供一种外延片,外延片为在蓝宝石衬底上依次设置AlN成核层、缓冲层、沟道层、AlN插入层、GaN势垒层、GaN帽层;
本实施例提供的外延片,包括在蓝宝石衬底上生长AlN成核层,AlN成核层的生长厚度为30nm;
AlN成核层在蓝宝石衬底上的生长方法为MOCVD法;
具体生长方法包括:
选择2inC面蓝宝石衬底材料,载入MOCVD反应腔室内进行处理,调节腔室温度至1000℃,腔体压力为100mbar,在氢气氛围下进行热处理,5min后,降温至450℃;升温至850℃,以氢气为载气,通入TMAl和NH3,保持腔体压力,生长AlN成核层。
参照图1和图2,本实施例提供的外延片,包括在AlN成核层上生长AlGaN缓冲层;AlGaN缓冲层中的Al的组分为0.04,也就是说,缓冲层为Al0.04gGa0.96N,AlGaN缓冲层中掺杂低浓度铁原子和碳原子;
Fe的掺杂浓度为5×1018cm-3;C的掺杂浓度为1.5×1016cm-3
本实施例提供的外延片,AlGaN缓冲层中包括掺Fe和掺C的缓冲层交替生长;在AlN成核层上生长掺Fe的AlGaN缓冲层,生长厚度达到200nm后,在掺Fe的AlGaN缓冲层上生长掺C的AlGaN缓冲层,生长厚度达到200nm后,继续生长掺Fe的AlGaN缓冲层,生长厚度达到200nm后,生长掺C的AlGaN缓冲层;每层掺Fe的缓冲层和掺C的缓冲层的生长厚度分别为200nm,交替生长5次,第5次时,掺C的AlGaN缓冲层生长厚度为1μm,AlGaN缓冲层的生长厚度为2.8μm;
具体生长方法包括以下步骤:
以氢气为载气,通入TMGa、TMAl、NH3和Cp2Fe,升温至1080℃,保持腔室压力为70mbar,生长掺Fe的AlGaN缓冲层,当厚度为200nm时停止Cp2Fe的通入;通入乙烯气体作为碳源,保持腔体温度1080℃,腔室压力保持在70mbar,生长至厚度为200nm时,停止碳源通入,通入Cp2Fe,重复掺Fe的AlGaN缓冲层生长步骤,将掺Fe和掺C缓冲层进行交替生长5次,第5次时,掺C的AlGaN缓冲层生长厚度为1μm,AlGaN缓冲层的生长厚度为2.8μm。
参照图1,本实施例提供的外延片,包括在AlGaN缓冲层上生长沟道层,沟道层为非故意掺杂的GaN层,生长厚度为100nm;
本实施例提供的外延片,包括在GaN沟道层上生长AlN插入层,AlN插入层的生长厚度为1.0nm;
本实施例提供的外延片,包括在AlN插入层上生长GaN势垒层,GaN势垒层与GaN沟道层形成异质结结构,GaN势垒层的生长厚度为20nm;
本实施例提供的外延片,包括在GaN势垒层上生长帽层,帽层为GaN层,GaN帽层的生长厚度为2nm;
外延片具体生长方法包括以下步骤:
将温度升高至1100℃,腔室压力为100mbar,持续通入TMGa和NH3,在AlGaN缓冲层上生长GaN沟道层,生长厚度为100nm;保持腔室温度,降低腔室压力至60mbar,通入TMAl和NH3,生长AlN插入层;保持腔室压力和腔室温度,通入TMGa,在插入层表面生长GaN势垒层;保持腔室压力和腔室温度,在GaN势垒层表面生长GaN帽层。
实施例2
本实施例提供一种外延片,外延片为在Si衬底上依次设置AlN成核层、缓冲层、沟道层、AlN插入层、GaN势垒层、GaN帽层;
本实施例提供的外延片,包括在蓝宝石衬底上生长AlN成核层,AlN成核层的生长厚度为50nm;
本实施例提供的外延片,包括在AlN成核层上生长AlGaN缓冲层;AlGaN缓冲层中的Al的组分为0.02,也就是说,缓冲层为Al0.02Ga0.98N,AlGaN缓冲层中掺杂低浓度铁原子和碳原子;
Fe的掺杂浓度为5×1014cm-3;C的掺杂浓度为4.5×1019cm-3
本实施例提供的外延片,AlGaN缓冲层中包括掺Fe和掺C的缓冲层交替生长;在AlN成核层上生长掺Fe的AlGaN缓冲层,生长厚度达到500nm后,在掺Fe的AlGaN缓冲层上生长掺C的AlGaN缓冲层,生长厚度达到500nm后,继续生长掺Fe的AlGaN缓冲层,生长厚度达到500nm后,生长掺C的AlGaN缓冲层;掺Fe和掺C的缓冲层交替生长2次,在第2次掺C缓冲层生长时,掺C缓冲层的生长厚度为3μm,AlGaN缓冲层的生长厚度为4.5μm;
本实施例提供的外延片,包括在AlGaN缓冲层上生长沟道层,沟道层为非故意掺杂的GaN层,生长厚度为100nm;
本实施例提供的外延片,包括在GaN沟道层上生长AlN插入层,AlN插入层的生长厚度为1.4nm;
本实施例提供的外延片,包括在AlN插入层上生长GaN势垒层,GaN势垒层与GaN沟道层形成异质结结构,GaN势垒层的生长厚度为20nm;
本实施例提供的外延片,包括在GaN势垒层上生长帽层,帽层为GaN层,GaN帽层的生长厚度为1.5nm。
实施例3
本实施例提供一种外延片,外延片为在蓝宝石衬底上依次设置AlN成核层、缓冲层、沟道层、AlN插入层、GaN势垒层、GaN帽层;
本实施例提供的外延片,包括在蓝宝石衬底上生长AlN成核层,AlN成核层的生长厚度为50nm;
本实施例提供的外延片,包括在AlN成核层上生长AlGaN缓冲层;AlGaN缓冲层中的Al的组分为0.07,也就是说,缓冲层为Al0.07gGa0.93N,AlGaN缓冲层中掺杂低浓度铁原子和碳原子;
Fe的掺杂浓度为5×1018cm-3;C的掺杂浓度为5×1014cm-3
本实施例提供的外延片,AlGaN缓冲层中包括掺Fe和掺C的缓冲层交替生长;在AlN成核层上生长掺Fe的AlGaN缓冲层,生长厚度达到200nm后,在掺Fe的AlGaN缓冲层上生长掺C的AlGaN缓冲层,生长厚度达到300nm后,继续生长掺Fe的AlGaN缓冲层,生长厚度达到200nm后,生长掺C的AlGaN缓冲层300nm;掺Fe缓冲层和掺C缓冲层交底生长3次,在第3次掺C缓冲层生长时,生长厚度为2μm,AlGaN缓冲层的生长厚度为3.2μm;
本实施例提供的外延片,包括在AlGaN缓冲层上生长沟道层,沟道层为非故意掺杂的GaN层,生长厚度为100nm;
本实施例提供的外延片,包括在GaN沟道层上生长AlN插入层,AlN插入层的生长厚度为1.4nm;
本实施例提供的外延片,包括在AlN插入层上生长GaN势垒层,GaN势垒层与GaN沟道层形成异质结结构,GaN势垒层的生长厚度为30nm;
本实施例提供的外延片,包括在GaN势垒层上生长帽层,帽层为GaN层,GaN帽层的生长厚度为1.5nm。
实施例4
参照图3、图4、图5,本实施例提供一种外延片的生长方法,具体包括以下步骤:
S1、将干净衬底载入MOCVD反应腔室内,升温至1100℃,腔体压力为150mbar,在氢气氛围下,进行热处理,保温4min后,降温至500℃,备用;
S2、以氢气作为载气,通入TMAl和NH3,在900℃下生长AlN成核层,所述AlN成核层的生长厚度为50nm;
S3、在AlN成核层上交替生长掺Fe和掺C的AlGaN缓冲层;
S31、以氢气为载气,通入TMGa、TMAl、NH3和Cp2Fe,升温至1060℃,腔室压力为40mbar下生长掺Fe的AlGaN缓冲层,生长至厚度为500nm时,停止Cp2Fe通入;
S32、以氢气为载气,通入乙烯,控制温度在1060℃,腔室压力在40mbar下生长掺C的AlGaN缓冲层,生长至厚度为300nm时,停止乙烯通入;
S33、依次重复步骤S31、S32,掺Fe缓冲层和掺C缓冲层交替生长3次,第3次掺C缓冲层生长厚度为2μm,使AlGaN缓冲层的厚度达到4.1μm;
S4、在AlGaN缓冲层上依次生长沟道层、AlN插入层、GaN势垒层以及GaN帽层;
S41、将温度升高至1150℃,腔室压力为200mbar,持续通入TMGa和NH3,在AlGaN缓冲层上生长GaN沟道层,生长厚度为150nm;
S42、持续通入TMAl、NH3,生长1.4nm的AlN插入层,生长温度为1150℃,腔体压力为50mbar;
S43、在插入层表面生长GaN势垒层,生长温度为1150℃,压力为50mbar,生长厚度为30nm;
S44、在GaN势垒层上生长GaN帽层,生长温度为1150℃,压力为50mbar,生长厚度为1nm。
对比例1
本对比例提供一种外延片及其生长方法,其与实施例2的区别仅在于:所述AlGaN缓冲层中仅掺杂Fe,缓冲层的生长方法为:以氢气为载气,通入TMGa、TMAl、NH3和CP2Fe,升温至1080℃,保持腔室压力为70mbar,生长掺Fe的AlGaN缓冲层,当厚度为1.5μm时,停止Cp2Fe的通入,然后在AlGaN缓冲层上继续生长GaN外延材料。
实验例
本实验例将实施例1、2和对比例所述的外延结构制成HEMT器件,并对其的耐压性能进行测定;
HEMT器件的制备方法包括:通过电子束蒸发、剥离工艺以及退火,以Ti/Al/Ni/Au四层金属作为源电极和漏电极,实现源漏欧姆接触;以F离子注入隔离;通过电子束蒸发和剥离工艺,以Ni/Au双金属作为栅电极;HEMT器件中,源漏间距为15μm,栅电极长4μm,栅电极宽100μm,栅漏间距为7μm。
本实验例通过对HEMT器件的关态漏电曲线,对实施例1和对比例1所制备的外延片耐压性能进行测定;栅极加载关断电压,源端接地,衬底悬空,漏段逐渐增加电压,记录漏端电流,得到HEMT器件的关态漏电曲线。
图6为以实施例和对比例所述的外延片制备的HEMT器件的关态漏电曲线,如图,实施例1、2所述外延片制备的HEMT器件的击穿电压达到2186-2325V,对比例所述外延片制备的HEMT器件的击穿电压低于1500V,实施例1、2所述外延片的耐压性能明显高于对比例;实施例所述外延片在缓冲层的生长过程中掺杂Fe和C原子,并将掺Fe和C的缓冲层进行交替生长,通过引入刃位错,补偿背景载流子浓度,有效提高了外延片的耐压性能。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的应用并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的方式及实施例,均应属于本发明的保护范围。

Claims (9)

1.一种多层沉积的外延片,其特征在于:所述外延片为在衬底材上依次设置AlN成核层、缓冲层、沟道层、AlN插入层、GaN势垒层、GaN帽层;所述缓冲层为掺杂Fe的AlGaN缓冲层和掺杂C的AlGaN缓冲层交替生长2-5次。
2.根据权利要求1所述的一种多层沉积的外延片,其特征在于:所述Fe的掺杂浓度为1014cm-3-1019cm-3;所述C的掺杂浓度为1014cm-3-1020cm-3
3.根据权利要求2所述的一种多层沉积的外延片,其特征在于:所述AlGaN缓冲层中Al的组分为0.02-0.07。
4.根据权利要求3所述的一种多层沉积的外延片,其特征在于:所述衬底为Si衬底、蓝宝石衬底中的至少一种。
5.一种如权利要求1-4任一项所述的多层沉积外延片的生长方法,其特征在于:具体包括以下步骤:
S1、将干净衬底载入MOCVD反应腔室内,升温至1000-1100℃,腔体压力为70-150mbar,在氢气氛围下,进行热处理,保温4-6min后,降温至450-500℃,备用;
S2、以氢气作为载气,通入Al源和N源,在850-900℃下生长AlN成核层,所述AlN成核层的生长厚度为30-50nm;
S3、在AlN成核层上交替生长掺Fe和掺C的AlGaN缓冲层;
S4、在AlGaN缓冲层上依次生长沟道层、AlN插入层、GaN势垒层以及GaN帽层。
6.根据权利要求5所述的多层沉积外延片的生长方法,其特征在于:在步骤S3中,所述AlGaN缓冲层的生长方法,具体包括以下步骤:
S31、以氢气为载气,通入Ga源、Al源、N源和Fe源,升温至1060-1080℃,腔室压力为40-70mbar下生长掺Fe的AlGaN缓冲层,生长至厚度为200-500nm时,停止Fe源通入;
S32、以氢气为载气,通入C源,控制温度在1060-1080℃,腔室压力在40-70mbar下生长掺C的AlGaN缓冲层,生长至厚度为300-500nm时,停止C源通入;
S33、依次重复步骤S31、S32,掺Fe缓冲层和掺C缓冲层交替生长2-5次,使AlGaN缓冲层的厚度达到2.5-5μm。
7.根据权利要求6所述的多层沉积外延片的生长方法,其特征在于:在步骤S33中,掺Fe缓冲层和掺C缓冲层交替生长中,以掺C缓冲层生长为最后一层缓冲层生长,最后一层掺C的AlGaN缓冲层的生长后为1-3μm。
8.根据权利要求7所述的多层沉积外延片的生长方法,其特征在于:在步骤S4中,所述沟道层、AlN插入层、GaN势垒层以及GaN帽层的生长方法,具体包括以下步骤:
S41、将温度升高至1100-1150℃,腔室压力为100-200mbar,持续通入Ga源和N源,在AlGaN缓冲层上生长GaN沟道层,生长厚度为100-150nm;
S42、持续通入Al源、N源,生长1.0-1.4nm的AlN插入层,生长温度为1050-1150℃,腔体压力为50-100mbar;
S43、在插入层表面生长GaN势垒层,生长温度为1050-1150℃,压力为40-60mbar,生长厚度为20-30nm;
S44、在GaN势垒层上生长GaN帽层,生长温度为1050-1150℃,压力为40-60mbar,生长厚度为1-2nm。
9.根据权利要求8所述的多层沉积外延片的生长方法,其特征在于:所述Ga源为三甲基镓;所述Al源为三甲基铝;所述Fe源为二茂铁;所述N源为氨气;所述C源为乙烯。
CN202311574192.2A 2023-11-23 2023-11-23 一种多层沉积外延片及其生长方法 Pending CN117457717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311574192.2A CN117457717A (zh) 2023-11-23 2023-11-23 一种多层沉积外延片及其生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311574192.2A CN117457717A (zh) 2023-11-23 2023-11-23 一种多层沉积外延片及其生长方法

Publications (1)

Publication Number Publication Date
CN117457717A true CN117457717A (zh) 2024-01-26

Family

ID=89594871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311574192.2A Pending CN117457717A (zh) 2023-11-23 2023-11-23 一种多层沉积外延片及其生长方法

Country Status (1)

Country Link
CN (1) CN117457717A (zh)

Similar Documents

Publication Publication Date Title
CN108352306B (zh) 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
US6306211B1 (en) Method for growing semiconductor film and method for fabricating semiconductor device
US7884393B2 (en) High electron mobility transistor, field-effect transistor, and epitaxial substrate
JP5543076B2 (ja) 電界効果トランジスタ用エピタキシャル基板
JP5374011B2 (ja) 窒化物半導体装置
CN112670161B (zh) 一种低热阻氮化镓高电子迁移率晶体管外延材料制备方法
KR102293962B1 (ko) 반도체 장치의 제조 방법, 반도체 장치
JP3443379B2 (ja) 半導体膜の成長方法及び半導体装置の製造方法
JP2011023677A (ja) 化合物半導体エピタキシャルウェハおよびその製造方法
CN116960173B (zh) 高电子迁移率晶体管外延结构及制备方法、hemt器件
CN108767008B (zh) 一种具有高阻GaN缓冲层的HEMT及其制备方法
JP2018117064A (ja) 窒化物半導体デバイス及び窒化物半導体デバイスの製造方法
US20070069253A1 (en) Epitaxial substrate for field effect transistor
Wurm et al. Growth of high-quality N-polar GaN on bulk GaN by plasma-assisted molecular beam epitaxy
CN115842042A (zh) 一种外延层结构及其制备方法和应用
TWI336523B (en) High electron mobility epitaxial substrate
JP5746927B2 (ja) 半導体基板、半導体デバイスおよび半導体基板の製造方法
CN110838514B (zh) 一种半导体器件的外延结构及其制备方法、半导体器件
JP2018101701A (ja) 半導体基板およびその製造方法
CN117457717A (zh) 一种多层沉积外延片及其生长方法
CN111009579A (zh) 半导体异质结构及半导体器件
JP2021022726A (ja) 窒化物半導体基板
CN112366136B (zh) 高电子迁移率晶体管的制备方法
JP6176064B2 (ja) Iii族窒化物半導体デバイス
US20240112909A1 (en) Nitride semiconductor epitaxial substrate, method for producing same, and nitride semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination