CN117410481B - 一种高性能的纳米单晶正极材料及其制备方法 - Google Patents

一种高性能的纳米单晶正极材料及其制备方法 Download PDF

Info

Publication number
CN117410481B
CN117410481B CN202311720045.1A CN202311720045A CN117410481B CN 117410481 B CN117410481 B CN 117410481B CN 202311720045 A CN202311720045 A CN 202311720045A CN 117410481 B CN117410481 B CN 117410481B
Authority
CN
China
Prior art keywords
precursor
single crystal
lithium
positive electrode
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311720045.1A
Other languages
English (en)
Other versions
CN117410481A (zh
Inventor
杨炎革
张笑园
康云
苗超林
李向南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongxin Energy Storage Tianjin Technology Co ltd
Henan Zhongxin Energy Storage Technology Co ltd
Original Assignee
Zhongxin Energy Storage Tianjin Technology Co ltd
Henan Zhongxin Energy Storage Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongxin Energy Storage Tianjin Technology Co ltd, Henan Zhongxin Energy Storage Technology Co ltd filed Critical Zhongxin Energy Storage Tianjin Technology Co ltd
Priority to CN202311720045.1A priority Critical patent/CN117410481B/zh
Publication of CN117410481A publication Critical patent/CN117410481A/zh
Application granted granted Critical
Publication of CN117410481B publication Critical patent/CN117410481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/043Lithium aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高性能的纳米单晶正极材料及其制备方法。以二次球形前驱体为基体原料,首先通过液氮球磨法将前驱体进行充分破碎,得到粒度均匀的纳米级一次颗粒前驱体Ⅰ;然后一次颗粒前驱体Ⅰ与锂源混匀,加入植酸溶液与纳米铝粉形成胶体溶液,得到包覆改性后的高强度的前驱体Ⅱ;最后将前驱体Ⅱ在放电等离子体炉中烧结,得到高性能的纳米单晶正极材料。本发明提供的单晶材料前驱体,具有大小均匀,颗粒细小,颗粒强度高,增强了材料的循环稳定性。本发明利用等离子体的活化和快速升温烧结的综合作用,使得最终的产品具有氧空位、致密度高等特点,有利于显著提高材料的容量、倍率性能。

Description

一种高性能的纳米单晶正极材料及其制备方法
技术领域
本发明属于锂离子电池正极材料制备技术领域,具体涉及一种高性能的纳米单晶正极材料及其制备方法。
背景技术
随着智能手机、平板电脑、电动汽车等行业的快速发展,人们对锂离子电池的能量密度、安全性能和循环寿命等性能的要求不断提升,待机时间和续航里程成为评估锂电池性能的重要因素。
目前商业化的锂离子电池正极材料大多是由纳米级的一次颗粒组成的微米级二次球形颗粒团聚体。在团聚体中,存在大量晶界,如果一次颗粒之间空隙较多时,材料的比表面积增大,与电解液的接触面积增加,导致循环容量的衰减;其次,球形二次颗粒团聚体的机械强度不高,在较高压力下,造成二次颗粒破碎,从而导致电化学性能下降;另外,团聚体材料的热稳定性不佳,对电池安全性产生隐患。
然而,单晶材料内部不存在晶界以及界面应力等不稳定影响因素,具备较高的机械强度和结构稳定性的特点,可以解决电池长久以来面对的产气、长循环和热稳定性等问题,可以在高电压电解液体系中应用,大幅度地提升了电池的循环稳定性和安全性。
但是单晶正极材料也存在很多不足:(1)前驱体破碎时,会存在破碎时间长、能耗高、破碎不完全、一次颗粒大小不均等现象,严重影响单晶材料的形貌,导致在充放电过程中锂离子脱嵌程度不同,影响其循环稳定性;(2)单晶材料较大的粒径会导致在充放电过程中,锂离子扩散和迁移的通道较长,同时颗粒本身较差的电子电导,会导致单晶正极材料的倍率性能较差;(3)单晶材料在合成过程中周期长、能耗高。因此,针对这些问题,目前单晶正极材料的制备工艺需要进一步改进,
发明内容
本发明解决的技术问题在于提供一种高性能的纳米单晶正极材料及其制备方法,本发明利用液氮球磨法-放电等离子体烧结技术,制备具有低能耗、生产周期短、容量高、循环稳定性强和倍率性能好的纳米级锂离子电池的正极材料。
本发明提供一种高性能的纳米单晶正极材料的制备方法,包括以下步骤:
步骤1:将二次球形前驱体进行低温球磨,得到粒度均匀的纳米级一次颗粒前驱体Ⅰ;
步骤2:将植酸分散于非水性溶剂中形成溶液A;加入适量的纳米铝粉于A溶液中,搅拌均匀,形成胶体溶液B;
步骤3:将一次颗粒前驱体Ⅰ与锂源,在高混机中混合均匀,再加入胶体溶液B,混匀后,干燥,得到包覆改性后颗粒强度高的前驱体Ⅱ;
步骤4:将前驱体Ⅱ置于石墨模具中,放入放电等离子体烧结炉的炉腔内,在真空、惰性气氛下进行烧结,并粉碎、过筛制备成高性能的纳米单晶正极材料。
进一步,所述二次球形前驱体为锂离子电池正极材料前驱体:NixCoyMn1-x-yCO3或NixCoyMn1-x-y(OH)2,其中0≤x≤1.0,0≤y≤ 1.0,x+y≤ 1.0。
进一步,所述球磨是在液氮行星式球磨机中进行,球料比为17~20:1,液氮占球磨罐体积的50%~65%,球磨速度200~400rpm,球磨时间0.5~2h。
进一步,所述植酸为质量分数为60~70%的植酸溶液;所述植酸的摩尔量与前驱体Ⅰ中的过渡金属总摩尔量的比为1:(3~7);所述非水性溶剂均为乙醇、甲醇、异丙醇、乙二醇中的任意一种。
进一步,所述纳米铝粉用量为前驱体Ⅰ质量分数的0.5~1.5%,所述锂源为碳酸锂、氢氧化锂、硝酸锂、醋酸锂、氯化锂等,其中锂元素与前驱体Ⅰ中的过渡金属总摩尔数的摩尔比为(1.05~1.2):1。
进一步,所述高混机转速为20~50HZ,混合时间为4~12min;所述放电等离子体烧结炉的条件为:烧结压力40~60MPa、烧结温度800~900℃、烧结时间6~8min。
本发明还提供一种高性能的纳米单晶正极材料,使用上述的方法制备得到。
有益效果
利用液氮球磨法对二次球形前驱体进行破碎,液氮可使球形颗粒在低温下脆化,在外力作用下易破碎,提高球形颗粒的破碎效率,减少球磨时间,且得到的颗粒更均匀。
(2)植酸溶液与纳米铝粉形成胶体溶液,不仅有助于提高前驱体Ⅰ颗粒的强度和缓解团聚问题,还可以作为包覆液对前驱体进行改性,在材料表面形成磷酸锂、偏铝酸锂包覆层作为快离子导体,有助于促进锂离子扩散,同时植酸自身发生碳化,也可作为保护层,都可抑制电解液与活性材料之间有害的副反应;同时,植酸呈酸性,与过渡金属有较强的螯合能力,可以有效抑制在电池充放电过程中过渡金属离子的溶出,酸性溶液还能降低材料的pH值,降低纳米单晶材料表面残锂量。
(3)利用放电等离子体烧结技术的等离子体的活化和快速升温烧结的综合作用处理前驱体,等离子体对过渡金属氧化物进行活化,引入氧空位,提高纳米单晶正极材料表面的导电性;具有快速升温烧结、加热均匀、生产周期短、节能等优点,抑制晶粒的长大,有助于实现单晶材料的纳米化、颗粒均匀、振实密度高、电化学性能好的特点。
(4)制备得到的纳米级单晶正极材料的振实密度大幅度地提升,显著提升了材料的体积能量密度。
(5)制备得到的纳米级单晶正极材料,颗粒粒径小且均匀,大大缩短了锂离子在电池充放电过程中嵌入和脱出的扩散通道,从而有效改善了材料的倍率性能。
附图说明
图1为实施例1制备的纳米单晶正极材料的SEM示意图;
图2为对比例1制备的纳米单晶正极材料的SEM示意图;
图3为对比例3制备的纳米单晶正极材料的SEM示意图;
图4为对比例2制备的纳米单晶正极材料的SEM示意图。
具体实施例
下面结合具体例子对本发明进行详细的分析,实施例和对比例选用的二次球形前驱体均为Ni0.5Co0.2Mn0.3(OH)2 。
实施例1
步骤1:10.0g二次球形前驱体在占球磨罐体积60%的液氮中,进行低温球磨,球磨速度300rpm,球磨时间1h,得到粒度均匀的纳米级一次颗粒前驱体Ⅰ;
步骤2:将2.0g(含量为60%)植酸分散于50m L乙二醇中形成溶液A;加入1.0g的纳米铝粉于A溶液中,搅拌均匀,形成胶体溶液B;
步骤3:将碳酸锂与前驱体Ⅰ在高混机中转速为30HZ,混合时间为8min,混合均匀,其中nLi/n(Ni+Co+Mn)=1.10,再加入胶体溶液B,混合时间为4min后,于烘箱中100℃干燥,得到包覆改性后颗粒强度高的前驱体Ⅱ;
步骤4:将前驱体Ⅱ置于石墨模具中,放电等离子体烧结炉的炉腔内,在烧结压力50MPa、烧结温度900℃、烧结时间5min 的真空气氛下进行烧结,将烧结后的物料自然冷却至室温,经粉碎、过筛制备成高性能的纳米单晶正极材料。
实施例2
与实施例1的区别在于,步骤1中10.0g二次球形前驱体在占球磨罐体积50%的液氮中,进行低温球磨,球磨速度300rpm,球磨时间0.5h,得到粒度均匀的纳米级一次颗粒前驱体Ⅰ;
实施例3
与实施例1的区别在于,步骤1中10.0g二次球形前驱体在占球磨罐体积65%的液氮中,进行低温球磨,球磨速度300rpm,球磨时间0.5h,得到粒度均匀的纳米级一次颗粒前驱体Ⅰ;
实施例4
与实施例1的区别在于,步骤2中将1.5g(含量为60%)植酸分散于50m L乙二醇中形成溶液A;加入1.0g的纳米铝粉于A溶液中,搅拌均匀,形成胶体溶液B;
实施例5
与实施例1的区别在于,步骤2中将3.0g(含量为60%)植酸分散于50m L乙二醇中形成溶液A;加入1.5g的纳米铝粉于A溶液中,搅拌均匀,形成胶体溶液B;
实施例6
与实施例1的区别在于,步骤3中nLi/n(Ni+Co+Mn)=1.05。
实施例7
与实施例1的区别在于,步骤3中nLi/n(Ni+Co+Mn)=1.15。
实施例8
与实施例1的区别在于,步骤3中nLi/n(Ni+Co+Mn)=1.20。
实施例9
与实施例1的区别在于,步骤4中烧结压力50MPa、烧结温度800℃、烧结时间7min 。
实施例10
与实施例1的区别在于,步骤4中烧结压力40MPa、烧结温度800℃、烧结时间8min 。
对比例1
步骤1:10.0g二次球形前驱体在占球磨罐体积60%的液氮中,进行低温球磨,球磨速度300rpm,球磨时间1h,得到粒度均匀的纳米级一次颗粒前驱体Ⅰ;
步骤2:将2.5g(含量为60%)植酸分散于50m L乙二醇中形成溶液A;加入1.0g的纳米铝粉于A溶液中,搅拌均匀,形成胶体溶液B;
步骤3:nLi/n(Ni+Co+Mn)=1.10,将90%的碳酸锂与前驱体Ⅰ在高混机中转速为30HZ,混合时间为8min,混合均匀,再加入胶体溶液B,混合时间为4min后,于烘箱中100℃干燥,得到包覆改性后颗粒强度高的的前驱体Ⅱ,进行970℃*8h高温烧结,研磨后;再加入剩余10%的碳酸锂,进行900℃*10h烧结,得到微米级单晶正极材料。
对比例2
步骤1:10.0g二次球形前驱体进行球磨,球磨速度300rpm,球磨时间1h,得到一次颗粒前驱体Ⅰ;
步骤2:将2.5g(含量为60%)植酸分散于50m L乙二醇中形成溶液A;加入1.0g的纳米铝粉于A溶液中,搅拌均匀,形成胶体溶液B;
步骤3:将碳酸锂与前驱体Ⅰ在高混机中转速为30HZ,混合时间为8min,混合均匀,其中nLi/n(Ni+Co+Mn)=1.05,再加入胶体溶液B,混合时间为4min后,于烘箱中100℃干燥,得到包覆改性后颗粒强度高的前驱体Ⅱ;
步骤4:将前驱体Ⅱ置于石墨模具中,放电等离子体烧结炉的炉腔内,在烧结压力50MPa、烧结温度900℃、烧结时间5min 的真空气氛下进行烧结,将烧结后的物料自然冷却至室温,经粉碎、过筛制备成高性能的纳米单晶正极材料。
对比例3
步骤1:10.0g二次球形前驱体在占球磨罐体积60%的液氮中,进行低温球磨,球磨速度300rpm,球磨时间1h,得到粒度均匀的纳米级一次颗粒前驱体Ⅰ;
步骤2:将1.0g的纳米铝粉分散于50m L乙二醇中,搅拌均匀,形成胶体溶液B;
步骤3:将碳酸锂与前驱体Ⅰ在高混机中转速为30HZ,混合时间为8min,混合均匀,其中nLi/n(Ni+Co+Mn)=1.05,再加入胶体溶液B,混合时间为4min后,于烘箱中100℃干燥,得到包覆改性后颗粒强度高的前驱体Ⅱ;
步骤4:将前驱体Ⅱ置于石墨模具中,放电等离子体烧结炉的炉腔内,在烧结压力50MPa、烧结温度900℃、烧结时间5min 的真空气氛下进行烧结,将烧结后的物料自然冷却至室温,经粉碎、过筛制备成高性能的纳米单晶正极材料。
扣式电池制作:分别用上述实施例和对比例制作的正极材料,按照正极材料、导电剂SP、粘结剂PVDF的质量比8:1:1称量,与NMP混合均匀后,制备成浆料;再涂布在集流体铝箔上,真空干燥、辊压成正极片, 裁成Φ14mm的圆片,以锂片为负极,采用玻璃纤维隔膜,高压电解液,组装成扣式电池。
材料的性能测试采用蓝电电池测试系统,在25℃下进行测试,测试电压范围为2.75-4.3V,电流密度为1C的条件下,测试材料的倍率性能和循环性能、放电比容量。另外,采用电位滴定法测试材料的残余碱量,测试结果如表1。
从表中数据和SEM图可知,通过实施例1、2、3 与对比例2相比,利用液氮球磨法对二次球形前驱体进行破碎,提高球形颗粒的破碎效率,减少球磨时间,且得到的颗粒更均匀,物料的振实密度增大。
通过实施例1、4、5 与对比例3相比,植酸溶液与纳米铝粉形成的胶体溶液,可缓解纳米单晶颗粒的团聚问题,同时植酸呈酸性,与过渡金属有较强的螯合能力,可以有效抑制在电池充放电过程中过渡金属离子的溶出,显著地提高了材料的放电比容量、循环稳定性,植酸特有的酸性,还能降低材料的pH值,使材料表面残锂量降低。
通过实施例1、9、10与对比例1相比,利用放电等离子体烧结技术的等离子体的活化和快速升温烧结的综合作用处理前驱体,引入氧空位,提高纳米单晶正极材料电性能,快速升温烧结、加热均匀、生产周期短、节能等优点,抑制晶粒的长大,有助于实现单晶材料的纳米化、颗粒均匀、振实密度高的特点。

Claims (5)

1.一种纳米单晶正极材料的制备方法,其特征在于,包括以下步骤:
步骤1:将二次球形前驱体进行低温球磨,得到粒度均匀的纳米级一次颗粒前驱体Ⅰ;所述二次球形前驱体为锂离子电池正极材料前驱体:NixCoyMn1-x-yCO3或NixCoyMn1-x-y(OH)2,其中0≤x≤1.0,0≤y≤ 1.0,x+y≤ 1.0;所述球磨是在液氮行星式球磨机中进行,球料比为17~20:1,液氮占球磨罐体积的50%~65%,球磨速度200~400rpm,球磨时间0.5~2h;
步骤2:将植酸分散于非水性溶剂中形成溶液A;加入适量的纳米铝粉于A溶液中,搅拌均匀,形成胶体溶液B;
步骤3:将一次颗粒前驱体Ⅰ与锂源,在高混机中混合均匀,再加入胶体溶液B,混匀后,干燥,得到包覆改性后颗粒强度高的前驱体Ⅱ;
步骤4:将前驱体Ⅱ置于石墨模具中,放入放电等离子体烧结炉的炉腔内,在真空、惰性气氛下进行烧结,并粉碎、过筛制备成高性能的纳米单晶正极材料;所述放电等离子体烧结炉的条件为:烧结压力40~60MPa、烧结温度800~900℃、烧结时间6~8min。
2.如权利要求1所述的一种纳米单晶正极材料的制备方法,其特征在于,
所述植酸为质量分数为60~70%的植酸溶液;所述植酸的摩尔量与前驱体Ⅰ中的过渡金属总摩尔量的比为1:(3~7);所述非水性溶剂为乙醇、甲醇、异丙醇、乙二醇中的任意一种。
3.如权利要求1所述的一种纳米单晶正极材料的制备方法,其特征在于,
所述纳米铝粉用量为前驱体Ⅰ质量分数的0.5~1.5%,所述锂源为碳酸锂、氢氧化锂、硝酸锂、醋酸锂、氯化锂,其中锂元素与前驱体Ⅰ中的过渡金属总摩尔数的摩尔比为(1.05~1.2):1。
4.如权利要求1所述的一种纳米单晶正极材料的制备方法,其特征在于,
所述高混机转速为20~50HZ,混合时间为4~12min。
5.一种纳米单晶正极材料,使用权利要求1-4任一所述的方法制备得到。
CN202311720045.1A 2023-12-14 2023-12-14 一种高性能的纳米单晶正极材料及其制备方法 Active CN117410481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311720045.1A CN117410481B (zh) 2023-12-14 2023-12-14 一种高性能的纳米单晶正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311720045.1A CN117410481B (zh) 2023-12-14 2023-12-14 一种高性能的纳米单晶正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN117410481A CN117410481A (zh) 2024-01-16
CN117410481B true CN117410481B (zh) 2024-03-29

Family

ID=89492913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311720045.1A Active CN117410481B (zh) 2023-12-14 2023-12-14 一种高性能的纳米单晶正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117410481B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148368A (zh) * 2011-02-24 2011-08-10 宁波工程学院 一种锂离子电池正极复合材料的制备方法及其专用装置
CN103658677A (zh) * 2013-12-30 2014-03-26 北京科技大学 一种纳米碳化钨粉末的制备方法
CN103831440A (zh) * 2014-03-24 2014-06-04 山东大学 一种将非晶Fe78Si9B13进行粉碎的方法
CN105938899A (zh) * 2016-06-01 2016-09-14 中南大学 一种快离子导体包覆改性锂离子电池正极材料的制备方法及应用
WO2016155314A1 (zh) * 2015-03-31 2016-10-06 南通瑞翔新材料有限公司 高能量密度的镍钴基锂离子正极材料及其制备方法
CN107204448A (zh) * 2017-05-29 2017-09-26 苏州思创源博电子科技有限公司 一种包覆型镍掺杂锰酸锂复合正极材料的制备方法
CN108539146A (zh) * 2018-03-15 2018-09-14 南京国轩电池有限公司 一种锂离子电池复合正极材料及其制备方法与应用
CN109930019A (zh) * 2019-04-03 2019-06-25 安徽工业大学 一种微波快速加热熔融-液氮淬火制备高性能SnTe合金的方法
CN110195248A (zh) * 2019-06-24 2019-09-03 哈尔滨工业大学 一种改性的金属材料及金属表面的改性方法
CN111116203A (zh) * 2020-02-28 2020-05-08 中国工程物理研究院流体物理研究所 一种高致密纳米碳化硼陶瓷材料的制备方法
CN111200128A (zh) * 2020-03-12 2020-05-26 河南电池研究院有限公司 一种高性能的抑制锂离子电池正极材料过渡金属离子溶出的正极材料的制备方法
CN113120959A (zh) * 2021-02-25 2021-07-16 惠州学院 一种改性球形锰酸锂正极材料制备方法
CN114574728A (zh) * 2022-03-10 2022-06-03 合肥工业大学 一种具有优异综合性能的Cu-Y3Zr4O12复合材料制备方法
CN115010189A (zh) * 2022-01-26 2022-09-06 昆明理工大学 一种多晶三元正极材料的单晶化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775578B (zh) * 2009-01-12 2012-09-19 E.I.内穆尔杜邦公司 制备ZnAl靶材的方法以及制得的ZnAl靶材
US20200295356A1 (en) * 2019-03-11 2020-09-17 Nanotek Instruments, Inc. Process for producing semiconductor nanowires and carbon/semiconductor nanowire hybrid materials

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148368A (zh) * 2011-02-24 2011-08-10 宁波工程学院 一种锂离子电池正极复合材料的制备方法及其专用装置
CN103658677A (zh) * 2013-12-30 2014-03-26 北京科技大学 一种纳米碳化钨粉末的制备方法
CN103831440A (zh) * 2014-03-24 2014-06-04 山东大学 一种将非晶Fe78Si9B13进行粉碎的方法
WO2016155314A1 (zh) * 2015-03-31 2016-10-06 南通瑞翔新材料有限公司 高能量密度的镍钴基锂离子正极材料及其制备方法
CN105938899A (zh) * 2016-06-01 2016-09-14 中南大学 一种快离子导体包覆改性锂离子电池正极材料的制备方法及应用
CN107204448A (zh) * 2017-05-29 2017-09-26 苏州思创源博电子科技有限公司 一种包覆型镍掺杂锰酸锂复合正极材料的制备方法
CN108539146A (zh) * 2018-03-15 2018-09-14 南京国轩电池有限公司 一种锂离子电池复合正极材料及其制备方法与应用
CN109930019A (zh) * 2019-04-03 2019-06-25 安徽工业大学 一种微波快速加热熔融-液氮淬火制备高性能SnTe合金的方法
CN110195248A (zh) * 2019-06-24 2019-09-03 哈尔滨工业大学 一种改性的金属材料及金属表面的改性方法
CN111116203A (zh) * 2020-02-28 2020-05-08 中国工程物理研究院流体物理研究所 一种高致密纳米碳化硼陶瓷材料的制备方法
CN111200128A (zh) * 2020-03-12 2020-05-26 河南电池研究院有限公司 一种高性能的抑制锂离子电池正极材料过渡金属离子溶出的正极材料的制备方法
CN113120959A (zh) * 2021-02-25 2021-07-16 惠州学院 一种改性球形锰酸锂正极材料制备方法
CN115010189A (zh) * 2022-01-26 2022-09-06 昆明理工大学 一种多晶三元正极材料的单晶化方法
CN114574728A (zh) * 2022-03-10 2022-06-03 合肥工业大学 一种具有优异综合性能的Cu-Y3Zr4O12复合材料制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries";Zhaoling Ma 等;《J. Mater. Chem. A》;20170413;第5卷;第9412-9417页 *
"感应等离子体球化处理难熔金属(W、Cr)粉末的研究";邱振涛 等;《稀有金属与硬质合金》;20170831;第45卷(第4期);第21-27页 *
"高能球磨辅助固相法合成电池材料Li4Ti5O12)";王丹 等;《电源技术》;20130920;第37卷(第09期);第1520-1523页 *

Also Published As

Publication number Publication date
CN117410481A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN109244365B (zh) 锂离子电池正极材料及其制备方法、正极和锂离子电池
CN110699744A (zh) 一种含有微量元素的单晶三元正极材料
CN114094068B (zh) 钴包覆的正极材料及其制备方法、正极片和锂离子电池
CN114447297B (zh) 一种镍钴锰酸锂高镍单晶正极材料及其制备方法
CN112635752B (zh) 三元正极材料及其制备方法、锂电池
CN113809320A (zh) 一种四元多晶正极材料、其制备方法和用途
CN113725403A (zh) 一种复合无钴正极材料及其制备方法
CN114368748A (zh) 一种人造石墨材料的制备方法、负极材料及电池
CN114267841B (zh) 一种表面全包覆的高镍单晶三元材料的制备方法及应用
CN114050263B (zh) 负极材料及其制备方法和应用
CN111129462A (zh) 一种快充型锂电池正极材料及其制备方法
CN114597372A (zh) 一种超高镍正极材料及其制备方法和应用
CN113582254B (zh) 一种层状正极材料及其制备方法与用途
CN110620217A (zh) 一种锌掺杂磷酸铁锂/碳复合材料及制备方法
CN113023790B (zh) 一种正极材料及其制备方法与应用
CN112234186B (zh) 一种MXene纳米点包覆改性的锂离子电池正极材料及其制备方法
CN109638231B (zh) 氧化亚硅复合负极材料及其制备方法和锂离子电池
CN112467127A (zh) 一种包覆改性的锂离子三元正极材料及其制备方法
CN116936767A (zh) 一种高容量水系加工磷酸铁锂正极制备方法
CN116565180A (zh) 一种高振实密度磷酸铁锂正极材料及其制备方法和应用
CN117410481B (zh) 一种高性能的纳米单晶正极材料及其制备方法
CN111313011B (zh) 一种低成本高性能磷酸铁锂的制备方法
CN113903894A (zh) 一种复合无钴正极及其制备方法和应用
CN111276691A (zh) 一种高电压单晶低钴三元正极材料及其制备方法
CN111180683A (zh) 一种高振实密度锂离子电池正极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant