CN117353152A - Semiconductor laser element with three-dimensional high-order topological insulator layer - Google Patents

Semiconductor laser element with three-dimensional high-order topological insulator layer Download PDF

Info

Publication number
CN117353152A
CN117353152A CN202311344657.5A CN202311344657A CN117353152A CN 117353152 A CN117353152 A CN 117353152A CN 202311344657 A CN202311344657 A CN 202311344657A CN 117353152 A CN117353152 A CN 117353152A
Authority
CN
China
Prior art keywords
snte
layer
dimensional
topological insulator
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311344657.5A
Other languages
Chinese (zh)
Inventor
蓝家彬
王星河
李晓琴
胡志勇
黄军
蔡鑫
请求不公布姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Geen Semiconductor Co ltd
Original Assignee
Anhui Geen Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Geen Semiconductor Co ltd filed Critical Anhui Geen Semiconductor Co ltd
Priority to CN202311344657.5A priority Critical patent/CN117353152A/en
Publication of CN117353152A publication Critical patent/CN117353152A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The invention provides a semiconductor laser element with a three-dimensional high-order topological insulator layer, which comprises a substrate, a lower limiting layer, a lower waveguide layer, an active layer, an upper waveguide layer and an upper limiting layer which are sequentially arranged from bottom to top, wherein the three-dimensional high-order topological insulator layer is arranged between the upper limiting layer and the upper waveguide layer and/or between the lower limiting layer and the lower waveguide layer. According to the invention, the three-dimensional high-order topological insulator layer is arranged between the upper limiting layer and the upper waveguide layer and/or between the lower limiting layer and the lower waveguide layer, so that the radiation recombination efficiency of the active layer of the laser element can be improved, the excitation threshold of the laser element is reduced, and the light power and slope efficiency of the laser element are improved.

Description

Semiconductor laser element with three-dimensional high-order topological insulator layer
Technical Field
The present application relates to the field of semiconductor optoelectronic devices, and in particular, to a semiconductor laser element having a three-dimensional high-order topological insulator layer.
Background
The laser is widely applied to the fields of laser display, laser television, laser projector, communication, medical treatment, weapon, guidance, distance measurement, spectrum analysis, cutting, precise welding, high-density optical storage and the like. The laser has various types and various classification modes, and mainly comprises solid, gas, liquid, semiconductor, dye and other types of lasers; compared with other types of lasers, the all-solid-state semiconductor laser has the advantages of small volume, high efficiency, light weight, good stability, long service life, simple and compact structure, miniaturization and the like.
The laser is largely different from the nitride semiconductor light emitting diode:
1) The laser is generated by stimulated radiation generated by carriers, the half-width of a spectrum is small, the brightness is high, the output power of a single laser can be in W level, the nitride semiconductor light-emitting diode is spontaneous radiation, and the output power of the single light-emitting diode is in mW level;
2) Use of lasers current densities up to KA/cm 2 More than 2 orders of magnitude higher than nitride light emitting diodes, thereby causing stronger electron leakage, more severe auger recombination, stronger polarization effect, more severe electron-hole mismatch, resulting in more severe efficiency decay Droop effect;
3) The light-emitting diode emits self-transition radiation, no external effect exists, incoherent light transiting from a high energy level to a low energy level, the laser is stimulated transition radiation, the energy of an induced photon is equal to the energy level difference of electron transition, and the full coherent light of the photon and the induced photon is generated;
4) The principle is different: the light emitting diode generates radiation composite luminescence by transferring electron holes to an active layer or a p-n junction under the action of external voltage, and the laser can perform lasing only when the lasing condition is satisfied, the inversion distribution of carriers in an active area is necessarily satisfied, the stimulated radiation oscillates back and forth in a resonant cavity, light is amplified by propagation in a gain medium, the gain is larger than loss when the threshold condition is satisfied, and finally laser is output.
The nitride semiconductor laser has the following problems:
1) The p-type semiconductor has the advantages that the Mg acceptor activation energy is large, the ionization efficiency is low, the hole concentration is far lower than the electron concentration, the hole mobility is far lower than the electron mobility, the quantum well polarization electric field promotes the problems that a hole injection barrier, the hole overflows an active layer and the like, the hole injection is uneven and the efficiency is low, the serious asymmetry mismatch of electron holes in the quantum well, the electron leakage and the carrier de-localization are caused, the hole transportation in the quantum well is more difficult, the carrier injection is uneven, the gain is uneven, meanwhile, the gain spectrum of the laser is widened, the peak gain is reduced, the threshold current of the laser is increased, and the slope efficiency is reduced.
2) The valence band step difference of the laser is increased, the hole is more difficult to transport in the quantum well, the carrier injection is uneven, and the gain is uneven; after the laser is excited, the carrier concentration of the active region of the multiple quantum well is saturated, the bipolar conductivity effect is weakened, the series resistance of the laser is increased, and the voltage of the laser is increased.
3) The increase of the In component of the quantum well can generate fluctuation and strain of the In component, the gain spectrum of the laser is widened, and the peak gain is reduced; the In component of the quantum well is increased, the thermal stability is deteriorated, the high-temperature p-type semiconductor and the growth of the limiting layer can cause thermal degradation of the active layer, and the quality of the active layer and the interface quality are reduced; the active layer has high internal defect density, larger intersolubility gap between InN and GaN, phase separation segregation of InN, thermal degradation and non-ideal crystal quality, so that the quantum well quality and interface quality are non-ideal, and electric leakage and ESD breakdown are easy to generate.
Disclosure of Invention
In order to solve one of the technical problems, the invention provides a semiconductor laser element with a three-dimensional high-order topological insulator layer.
The embodiment of the invention provides a semiconductor laser element with a three-dimensional high-order topological insulator layer, which comprises a substrate, a lower limiting layer, a lower waveguide layer, an active layer, an upper waveguide layer and an upper limiting layer which are sequentially arranged from bottom to top, and is characterized in that the three-dimensional high-order layer is arranged between the upper limiting layer and the upper waveguide layer and/or between the lower limiting layer and the lower waveguide layerA topological insulator layer, wherein the three-dimensional high-order topological insulator layer is 3D-Bi 2 Te 3 @3D-Sb 2 Te 3 、3D-Sb 2 Te 3 @3D-SnTe、3D-SnTe@3D-Bi 2 Te 2 Se、3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te、3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 、3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 A multi-dimensional Gao Jiefan deluxe heterostructure of any one or any combination of the above.
Preferably, the three-dimensional high-order topological insulator layer comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following binary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
preferably, the three-dimensional high-order topological insulator layer comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following ternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
preferably, the three-dimensional high-order topological insulator layer comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following quaternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
preferably, the three-dimensional high-order topological insulator layer comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following five-membered combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
preferably, the thickness of the three-dimensional high-order topological insulator layer is 5nm to 500nm.
Preferably, the active layer is a periodic structure consisting of a well layer and a barrier layer, and the period number is 3-1;
well layerInGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga of a shape of InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, and the thickness is 10 to 80 Emi;
the barrier layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, and the thickness is 10 to 120 Emi.
Preferably, the lower confinement layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 50nm to 5000nm, and the doping concentration of Si is 1E18 cm -3 To 1E20cm -3
The electron blocking layer and the upper limiting layer are InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 20nm to 1000nm, and the doping concentration of Mg is 1E18 cm -3 To 1E20cm -3
Preferably, the lower and upper waveguide layers are InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 50nm to 1000nm, and the doping concentration of Si is 1E16 cm -3 To 5E19 cm -3
Preferably, the substrate comprises sapphire, silicon, diamond, ge, siC, alN, gaN, gaAs, inP, sapphire/SiO 2 Composite substrate, sapphire/AlN composite substrate, sapphire/SiNx, sapphire/SiO 2 SiNx composite substrate and magnesia-alumina spinel MgAl 2 O 4 、MgO、ZnO、ZrB 2 、LiAlO 2 And LiGaO 2 Any one of the composite substrates.
The beneficial effects of the invention are as follows: according to the invention, the three-dimensional high-order topological insulator layers are arranged between the upper limiting layer and the upper waveguide layer and/or between the lower limiting layer and the lower waveguide layer, and break the corresponding relation of the edges of the interfaces of the upper limiting layer, the upper waveguide layer, the lower limiting layer and the lower waveguide layer to generate the high-order topological angle state and nonlinear angle state rotation effect, and the electronic state which is topologically protected is formed at the interface, so that interface carriers are prevented from being scattered by impurities, back scattering is inhibited, a low-resistance interface is formed, the power consumption of the laser element is reduced, and the efficiency of carrier injection into the active layer is improved. And the interface state electrons and the surface state electrons of the three-dimensional high-order topological insulator layer also have spin structures, so that energy band inversion and spin orbit coupling are generated, the upward or downward electron flow of spin can be regulated and controlled, the Hall conductivity is improved, the series resistance and the voltage of laser are reduced, and the gain of the laser element is improved. Meanwhile, the three-dimensional topological insulating layer is internally provided with insulating characteristics, so that electric leakage related to defects can be restrained, and the ESD resistance performance is improved, thereby improving the radiation recombination efficiency of the active layer of the laser element, reducing the excitation threshold value of the laser element and improving the optical power and slope efficiency of the laser element.
Drawings
The accompanying drawings, which are included to provide a further understanding of the application and are incorporated in and constitute a part of this application, illustrate embodiments of the application and together with the description serve to explain the application and do not constitute an undue limitation to the application. In the drawings:
fig. 1 is a schematic structural diagram of a semiconductor laser device with a three-dimensional high-order topological insulator layer according to embodiment 1 of the present invention;
fig. 2 is a schematic structural diagram of a semiconductor laser device with a three-dimensional high-order topological insulator layer according to embodiment 2 of the present invention;
fig. 3 is a schematic structural diagram of a semiconductor laser device with a three-dimensional high-order topological insulator layer according to embodiment 3 of the present invention.
Reference numerals:
100. a substrate, 101, a lower confinement layer, 102, a lower waveguide layer, 103, an active layer, 104, an upper waveguide layer, 105, an upper confinement layer, 106, a three-dimensional high-order topological insulator layer.
Detailed Description
In order to make the technical solutions and advantages of the embodiments of the present application more apparent, the following detailed description of exemplary embodiments of the present application is given with reference to the accompanying drawings, and it is apparent that the described embodiments are only some of the embodiments of the present application and not exhaustive of all the embodiments. It should be noted that, in the case of no conflict, the embodiments and features in the embodiments may be combined with each other.
Example 1
As shown in fig. 1, the present embodiment proposes a semiconductor laser element having a three-dimensional higher-order topological insulator layer, including a substrate 100, a lower confinement layer 101, a lower waveguide layer 102, an active layer 103, an upper waveguide layer 104, and an upper confinement layer 105, which are disposed in this order from bottom to top. Wherein a three-dimensional higher order topological insulator layer 106 is provided between the upper confinement layer 105 and the upper waveguide layer 104.
Specifically, in the present embodiment, a three-dimensional high-order topological insulator is provided between the upper confinement layer 105 and the upper waveguide layer 104. The three-dimensional high-order topological insulator is of a multi-dimensional Gao Jiefan-Hua Yizhi structure and has a thickness of 5nm to 500nm. In particular 3D-Bi 2 Te 3 @3D-Sb 2 Te 3 、3D-Sb 2 Te 3 @3D-SnTe、3D-SnTe@3D-Bi 2 Te 2 Se、3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te、3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 、3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 Any one or any combination of the above. The specific forms of the above combinations are described as follows:
(1) The three-dimensional higher-order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following binary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(2) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following ternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(3) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following quaternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(4) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following five-membered combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
in this embodiment, a three-dimensional high-order topological insulator layer 106 is disposed between the upper confinement layer 105 and the upper waveguide layer 104, and the three-dimensional high-order topological insulator layer 106 breaks the body edge correspondence at the interface between the upper confinement layer 105 and the upper waveguide layer 104, so as to generate a high-order topological angle state and a nonlinear angle state rotation effect, form a topologically protected electronic state at the interface, prevent interface carriers from being scattered by impurities, inhibit back scattering, form a low-resistance interface, reduce the power consumption of the laser element, and improve the efficiency of carrier injection into the active layer 103. And, the interface state electron and the surface state electron of the three-dimensional high-order topological insulator layer 106 also have a spin structure, so that energy band inversion and spin orbit coupling are generated, the upward or downward electron flow of spin can be regulated and controlled, the Hall conductivity is improved, the series resistance and voltage of laser are reduced, and the gain of the laser element is improved. Meanwhile, the three-dimensional topological insulating layer has insulating property, so that the electric leakage related to defects can be restrained, and the ESD resistance performance is improved, thereby improving the radiation recombination efficiency of the active layer 103 of the laser element, reducing the excitation threshold of the laser element and improving the optical power and slope efficiency of the laser element.
Further, the active layer 103 is a wellThe periodic structure formed by the layers and the barrier layers has the period number of 3-1. Wherein the well layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, and the thickness is 10 to 80 Emi. The barrier layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, and the thickness is 10 to 120 Emi.
In the present embodiment, the lower confinement layer 101 is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 50nm to 5000nm, and the doping concentration of Si is 1E18 cm -3 To 1E20cm -3
The electron blocking layer and the upper confinement layer 105 were InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 20nm to 1000nm, and the doping concentration of Mg is 1E18 cm -3 To 1E20cm -3
The lower waveguide layer 102 and the upper waveguide layer 104 are InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 50nm to 1000nm, and the doping concentration of Si is 1E16 cm -3 To 5E19 cm -3
The substrate 100 includes sapphire, silicon, diamond, ge, siC, alN, gaN, gaAs, inP, sapphire/SiO 2 Composite substrate, sapphire/AlN composite substrate, sapphire/SiNx, sapphire/SiO 2 SiNx composite substrate and magnesia-alumina spinel MgAl 2 O 4 、MgO、ZnO、ZrB 2 、LiAlO 2 And LiGaO 2 Any one of the composite substrates.
Example 2
As shown in fig. 2, the present embodiment proposes a semiconductor laser element having a three-dimensional higher-order topological insulator layer, including a substrate 100, a lower confinement layer 101, a lower waveguide layer 102, an active layer 103, an upper waveguide layer 104, and an upper confinement layer 105, which are disposed in this order from bottom to top. Wherein a three-dimensional higher order topological insulator layer 106 is provided between the lower confinement layer 101 and the lower waveguide layer 102.
Specifically, in the present embodiment, a three-dimensional high-order topological insulator is provided between the lower confinement layer 101 and the lower waveguide layer 102. The three-dimensional high-order topological insulator is of a multi-dimensional Gao Jiefan-Hua Yizhi structure and has a thickness of 5nm to 500nm. In particular 3D-Bi 2 Te 3 @3D-Sb 2 Te 3 、3D-Sb 2 Te 3 @3D-SnTe、3D-SnTe@3D-Bi 2 Te 2 Se、3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te、3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 、3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 Any one or any combination of the above. The specific forms of the above combinations are described as follows:
(1) The three-dimensional higher-order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following binary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(2) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following ternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(3) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following quaternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(4) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following five-membered combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
in this embodiment, a three-dimensional high-order topological insulator layer 106 is disposed between the lower confinement layer 101 and the lower waveguide layer 102, and the three-dimensional high-order topological insulator layer 106 breaks the body-edge correspondence at the interface between the lower confinement layer 101 and the lower waveguide layer 102, so as to generate a high-order topological angle state and a nonlinear angle state rotation effect, form a topologically protected electronic state at the interface, prevent interface carriers from being scattered by impurities, inhibit back scattering, form a low-resistance interface, reduce the power consumption of the laser element, and improve the efficiency of carrier injection into the active layer 103. And, the interface state electron and the surface state electron of the three-dimensional high-order topological insulator layer 106 also have a spin structure, so that energy band inversion and spin orbit coupling are generated, the upward or downward electron flow of spin can be regulated and controlled, the Hall conductivity is improved, the series resistance and voltage of laser are reduced, and the gain of the laser element is improved. Meanwhile, the three-dimensional topological insulating layer has insulating property, so that the electric leakage related to defects can be restrained, and the ESD resistance performance is improved, thereby improving the radiation recombination efficiency of the active layer 103 of the laser element, reducing the excitation threshold of the laser element and improving the optical power and slope efficiency of the laser element.
Further, the active layer 103 is a periodic structure composed of a well layer and a barrier layer, and the period number is 3 not less than m not less than 1. Wherein the well layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, with a thickness of 10 to 80 a m. The barrier layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any group of BNAnd the thickness is 10 to 120.
In the present embodiment, the lower confinement layer 101 is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, a thickness of 50nm to 5000nm, a si doping concentration of 1e18 cm -3 To 1E20cm -3
The electron blocking layer and the upper confinement layer 105 were InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, a thickness of 20nm to 1000nm, a mg doping concentration of 1e18 cm -3 To 1E20cm -3
The lower waveguide layer 102 and the upper waveguide layer 104 are InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, a thickness of 50nm to 1000nm, a si doping concentration of 1e16 cm -3 To 5E19 cm -3
The substrate 100 includes sapphire, silicon, ge, siC, alN, gaN, gaAs, inP, sapphire/SiO 2 Composite substrate, sapphire/AlN composite substrate, sapphire/SiNx, sapphire/SiO 2 SiNx composite substrate and magnesia-alumina spinel MgAl 2 O 4 、MgO、ZnO、ZrB 2 、LiAlO 2 And LiGaO 2 Any one of the composite substrates.
Example 3
As shown in fig. 3, the present embodiment proposes a semiconductor laser element having a three-dimensional higher-order topological insulator layer, including a substrate 100, a lower confinement layer 101, a lower waveguide layer 102, an active layer 103, an upper waveguide layer 104, and an upper confinement layer 105, which are disposed in this order from bottom to top. Wherein a three-dimensional high-order topological insulator layer 106 is disposed between the upper confinement layer 105 and the upper waveguide layer 104, and between the lower confinement layer 101 and the lower waveguide layer 102.
In particular, the method comprises the steps of,in this embodiment, three-dimensional high-order topological insulators are disposed between upper confinement layer 105 and upper waveguide layer 104 and between lower confinement layer 101 and lower waveguide layer 102. The three-dimensional high-order topological insulator is of a multi-dimensional Gao Jiefan-Hua Yizhi structure and has a thickness of 5nm to 500nm. In particular 3D-Bi 2 Te 3 @3D-Sb 2 Te 3 、3D-Sb 2 Te 3 @3D-SnTe、3D-SnTe@3D-Bi 2 Te 2 Se、3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te、3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 、3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 Any one or any combination of the above. The specific forms of the above combinations are described as follows:
(1) The three-dimensional higher-order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following binary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(2) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following ternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(3) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following quaternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
(4) The three-dimensional higher order topological insulator layer 106 comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following five-membered combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
in the embodiment, a three-dimensional high-order topological insulator layer 106 is arranged between the upper limiting layer 105 and the upper waveguide layer 104 and between the lower limiting layer 101 and the lower waveguide layer 102, and the three-dimensional high-order topological insulator layer 106 breaks the corresponding relation of the body edges between the upper limiting layer 105 and the upper waveguide layer 104 and between the lower limiting layer 101 and the lower waveguide layer 102, so that a high-order topological angle state and nonlinear angle state rotation effect is generated, a topologically protected electronic state is formed at the interface, interface carriers are prevented from being scattered by impurities, back scattering is inhibited, a low-resistance interface is formed, the power consumption of the laser element is reduced, and the efficiency of carrier injection into the active layer 103 is improved. And, the interface state electron and the surface state electron of the three-dimensional high-order topological insulator layer 106 also have a spin structure, so that energy band inversion and spin orbit coupling are generated, the upward or downward electron flow of spin can be regulated and controlled, the Hall conductivity is improved, the series resistance and voltage of laser are reduced, and the gain of the laser element is improved. Meanwhile, the three-dimensional topological insulating layer has insulating property, so that the electric leakage related to defects can be restrained, and the ESD resistance performance is improved, thereby improving the radiation recombination efficiency of the active layer 103 of the laser element, reducing the excitation threshold of the laser element and improving the optical power and slope efficiency of the laser element.
Further, the active layer 103 is a periodic structure composed of a well layer and a barrier layer, and the period number is 3 not less than m not less than 1. Wherein the well layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, with a thickness of 10 to 80 a m. The barrier layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, with a thickness of 10 to 120 a m.
In the present embodiment, the lower confinement layer 101 is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, a thickness of 50nm to 5000nm, a si doping concentration of 1e18 cm -3 To 1E20cm -3
The electron blocking layer and the upper confinement layer 105 were InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, a thickness of 20nm to 1000nm, a mg doping concentration of 1e18 cm -3 To 1E20cm -3
The lower waveguide layer 102 and the upper waveguide layer 104 are InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 BN, a thickness of 50nm to 1000nm, a si doping concentration of 1e16 cm -3 To 5E19 cm -3
The substrate 100 includes sapphire, silicon, ge, siC, alN, gaN, gaAs, inP, sapphire/SiO 2 Composite substrate, sapphire/AlN composite substrate, sapphire/SiNx, sapphire/SiO 2 SiNx composite substrate and magnesia-alumina spinel MgAl 2 O 4 、MgO、ZnO、ZrB 2 、LiAlO 2 And LiGaO 2 Any one of the composite substrates.
The following table shows the performance comparison of the semiconductor laser device with three-dimensional high-order topological insulator layer proposed in this embodiment with the conventional semiconductor laser:
from this, it can be seen that the semiconductor laser element with the three-dimensional high-order topological insulator layer provided in this embodiment can effectively improve the radiation recombination efficiency of the active layer 103 of the laser element, reduce the excitation threshold of the laser element, and improve the optical power and slope efficiency of the laser element.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present application without departing from the spirit or scope of the application. Thus, if such modifications and variations of the present application fall within the scope of the claims and the equivalents thereof, the present application is intended to cover such modifications and variations.

Claims (10)

1. A semiconductor laser element with three-dimensional high-order topological insulator layer comprises a substrate, a lower limiting layer, a lower waveguide layer, an active layer, an upper waveguide layer and an upper limiting layer which are sequentially arranged from bottom to top, and is characterized in that the three-dimensional high-order topological insulator layer is arranged between the upper limiting layer and the upper waveguide layer and/or between the lower limiting layer and the lower waveguide layer, and is 3D-Bi 2 Te 3 @3D-Sb 2 Te 3 、3D-Sb 2 Te 3 @3D-SnTe、3D-SnTe@3D-Bi 2 Te 2 Se、3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te、3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 、3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 A multi-dimensional Gao Jiefan deluxe heterostructure of any one or any combination of the above.
2. The semiconductor laser element of claim 1, wherein the three-dimensional high order topological insulator layer comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the binary combination of:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
3. the semiconductor laser element of claim 1, wherein the three-dimensional high order topological insulator layer comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the following ternary combination:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
4. the semiconductor laser element of claim 1, wherein the three-dimensional high order topological insulator layer comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of the quaternary combination of:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
5. the semiconductor laser device as claimed in claim 1, wherein the three-dimensional high-order topological insulator layer comprises a multi-dimensional Gao Jiefan d Hua Yizhi structure of five-membered combination of:
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3 ,
3D-Bi 2 Te 3 @3D-Sb 2 Te 3 /3D-Sb 2 Te 3 @3D-SnTe/3D-SnTe@3D-Bi 2 Te 2 Se/3D-Bi 2 Te 2 Se@3D-Bi 2 Se 2 Te/3D-Bi 2 Se 2 Te@3D-Pb(C 6 H 5 ) 3 /3D-Pb(C 6 H 5 ) 3 @3D-Bi(C 6 H 5 ) 3
6. the semiconductor laser element according to claim 1, wherein the thickness of the three-dimensional high-order topological insulator layer is 5nm to 500nm.
7. The semiconductor laser device according to claim 1, wherein the active layer has a periodic structure comprising a well layer and a barrier layer, and the number of periods is 3.gtoreq.m.gtoreq.1;
the well layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, and the thickness is 10 to 80 Emi;
the barrier layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, and the thickness is 10 to 120 Emi.
8. The semiconductor laser device as claimed in claim 1, wherein the lower confinement layer is InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 50nm to 5000nm, and the doping concentration of Si is 1E18 cm -3 To 1E20cm -3
The electron blocking layer and the upper limiting layer are InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 20nm to 1000nm, and the doping concentration of Mg is 1E18 cm -3 To 1E20cm -3
9. The semiconductor laser device according to claim 1, wherein the lower waveguide layer and the upper waveguide layer are InGaN, inN, gaN, alInGaN, alN, alGaN, alInN, gaAs, gaP, inP, alGaAs, alInGaAs, alGaInP, inGaAs, alInAs, alInP, alGaP, inGaP, siC, ga 2 O 3 Any one or any combination of BN and diamond, the thickness is 50nm to 1000nm, and the doping concentration of Si is 1E16 cm -3 To 5E19 cm -3
10. The semiconductor laser element according to claim 1, wherein the substrate comprises sapphire, silicon, diamond, ge, siC, alN, gaN, gaAs, inP, sapphire/SiO 2 Composite substrate, sapphire/AlN composite substrate, sapphire/SiNx, sapphire/SiO 2 SiNx composite substrate and magnesia-alumina spinel MgAl 2 O 4 、MgO、ZnO、ZrB 2 、LiAlO 2 And LiGaO 2 Any one of the composite substrates.
CN202311344657.5A 2023-10-18 2023-10-18 Semiconductor laser element with three-dimensional high-order topological insulator layer Pending CN117353152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311344657.5A CN117353152A (en) 2023-10-18 2023-10-18 Semiconductor laser element with three-dimensional high-order topological insulator layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311344657.5A CN117353152A (en) 2023-10-18 2023-10-18 Semiconductor laser element with three-dimensional high-order topological insulator layer

Publications (1)

Publication Number Publication Date
CN117353152A true CN117353152A (en) 2024-01-05

Family

ID=89368763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311344657.5A Pending CN117353152A (en) 2023-10-18 2023-10-18 Semiconductor laser element with three-dimensional high-order topological insulator layer

Country Status (1)

Country Link
CN (1) CN117353152A (en)

Similar Documents

Publication Publication Date Title
CN116191200A (en) Semiconductor laser element with phonon scattering regulation and control layer
CN116131102A (en) Semiconductor laser element with quantum confinement Stark control layer
CN117353152A (en) Semiconductor laser element with three-dimensional high-order topological insulator layer
CN220066405U (en) Semiconductor laser element with topological phonon state layer
CN116995533A (en) Semiconductor laser element with multiple vacancy electron phonon regulating layer
CN116646822A (en) Semiconductor laser element with fermi surface topological layer
CN117096731A (en) Semiconductor laser with magneto-electric coupling layer
CN116565690A (en) Semiconductor laser element with resonance tunneling layer
CN117791308A (en) Semiconductor laser
CN117691467A (en) Gallium nitride-based semiconductor ultraviolet laser chip
CN116154615A (en) Semiconductor laser element with quantum spin electron layer
CN116316070A (en) Semiconductor laser element with current-induced spin polarization layer
CN117613671A (en) Semiconductor laser chip with quantum Hall electric conduction layer
CN117526088A (en) Semiconductor laser element with spin polarized electron layer
CN118117444A (en) Semiconductor laser element with three-dimensional spin-coupled electron layer
CN117691466A (en) Semiconductor ultraviolet laser diode
CN116667147A (en) Semiconductor laser element with built-in topological flat belt layer
CN116345307A (en) Semiconductor laser element with van der Waals gas nonlinear layer
CN116759889A (en) Semiconductor laser element with ion conjugated layer
CN117410831A (en) Semiconductor laser element with dirac spin zero band gap layer
CN116470387A (en) Semiconductor laser element
CN116316050A (en) Semiconductor laser element with franker defect layer
CN117954966A (en) Epitaxial structure of gallium nitride-based semiconductor laser
CN117498154A (en) Gallium nitride-based semiconductor laser
CN117526093A (en) Gallium nitride-based semiconductor laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination