CN117313399A - 一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法 - Google Patents

一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法 Download PDF

Info

Publication number
CN117313399A
CN117313399A CN202311327096.8A CN202311327096A CN117313399A CN 117313399 A CN117313399 A CN 117313399A CN 202311327096 A CN202311327096 A CN 202311327096A CN 117313399 A CN117313399 A CN 117313399A
Authority
CN
China
Prior art keywords
wake
wind
speed
dimensional
vertical direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311327096.8A
Other languages
English (en)
Inventor
罗竹梅
李野
代林昇
张晓旭
于凤荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202311327096.8A priority Critical patent/CN117313399A/zh
Publication of CN117313399A publication Critical patent/CN117313399A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Abstract

本发明公开了一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法,涉及风力发电技术领域。该方法的步骤包括:获取风电机组参数以及风电场环境参数,基于能量守恒定律得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流风速分布;再在垂直方向上考虑风切变效应、Coanda效应以及风加速效应,得到垂直方向上考虑风切变工况的适用于复杂地形的二维超高斯风速分布;最后结合水平方向上对称的超高斯分布,得到整个复杂地形水平轴风力机三维各向异性超高斯全尾流模型,代入风电场和风力机以及空间位置参数,得到任意位置尾流风速。此模型能更准确的描述复杂地形风力机下游尾流区任意空间位置的尾流分布情况。

Description

一种适用于复杂地形的水平轴风力机三维各向异性超高斯全 尾流模型的建立及应用方法
技术领域
本发明涉及风力发电技术领域,具体涉及一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法。
背景技术
在风电场中,当下游风力机受到上游一台或者多台风力机尾流的影响时会导致其周围风速降低,湍流强度升高,使其功率降低,进而影响整个风电场的发电量。了解尾流效应和准确预测风电场内尾流损失对风力发电机组的布局优化和风电场的经济运行具有重要意义。但随着风电机组装机容量的不断增加,建立在平坦地形的风电场逐渐达到饱和,风电场的选址逐渐朝着复杂地形发展。与平坦地形相比,建立在复杂地形中的风力机因为气流与地形的相互作用,其尾流效应更加复杂。但现有分析方法大多未将地形因素考虑进来,导致在模型建立以及尾流风速计算存在偏差,因此,亟需开发一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法。
发明内容
本发明的目的在于提供一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法,解决现有方法未考虑地形因素导致计算不准确的问题。
为解决上述的技术问题,本发明采用以下技术方案:一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法,特征在于,具体步骤如下:
S1.获取风电机组参数以及风电场环境参数;
S2.构建均匀来流下三维超高斯尾流风速分布的归一化速度衰减公式,依此得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流模型,并对其中参数求解,进而得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流风速分布;
S3.考虑垂直方向上的由风切变效应、Coanda效应以及风加速效应生成的风速曲线与均匀来流之间的速度差导致质量差,对均匀来流条件下二维超高斯尾流模型进行修正,得到垂直方向上考虑风切变工况的适用于复杂地形的二维超高斯风速分布;
S4.根据考虑风切变工况的二维超高斯风速分布求解水平方向全尾流风速分布,结合垂直方向上超高斯尾流风速分布与水平方向上全尾流风速分布,构建出适用于复杂地形的三维各向异性超高斯全尾流模型;
S5.获取待测风电场的环境参数和风电机组参数,代入步骤S4中的模型中,得到复杂地形的三维各向异性超高斯全尾流风速分布。
更进一步的技术方案是所述步骤1中获取风电机组参数以及风电场环境参数,包括风轮直径D、轮毂高度z0、推力系数CT、来流风速u0、环境湍流强度I0、和风剪切系数α。
更进一步的技术方案是所述步骤S2具体如下:
S2-1.构建均匀来流下三维超高斯尾流风速分布的归一化速度衰减公式,如下所示:
其中,u0表示轮毂高度处来流风速,u0(x,y,z)表示均匀入流的三维超高斯尾流模型的预测速度;表示出现在尾流中心的每个下游位置的最大归一化速度亏损;/>为超高斯形状函数;/>表示距离风机的轴向距离;/>表示特征尾流宽度;/>表示距尾流中心的径向距离,其表达式为/>y表示距离尾流中心线的水平距离,z表示距离地面的垂直距离,z0为风力机轮毂高度,Δz为风力机在复杂地形中尾流下沉高度;
S2-2.令上式r中的参数y趋近于0得到垂直方向上均匀入流条件下适用于复杂地形的二维超高斯尾流模型的速度分布:
其中,z1的表达式为z1=|z-z0+Δz|,通过应用整体质量和动量守恒定律并忽略动量方程中的粘性和压力项,再进行参数拟合得到上式速度分布中参数表达式如下:
其中,I0表示环境湍流强度,β是关于CT的一个函数,其表达式为:af的值由当cf=2.98、/>时/>等于a得到,a为轴向诱导因子,其表达式为:cf的表达式如下:
由此得到垂直方向上均匀来流条件下下适用于复杂地形的二维超高斯尾流风速分布为:
5.更进一步的技术方案是所述步骤S3具体步骤如下:
S3-1.切变风与均匀风的速度差为:
其中,α为风剪切系数,z0为风力机轮毂高度,Δz为风力机在复杂地形中尾流下沉高度,ΔS(x,z)为山坡上的分数加速比,其表达式为:
其中,H为山的高度,L为山半高处H/2对应点与山顶点之间的水平距离,x为距离风机的轴向距离,z表示距离地面的垂直距离;
S3-2.质量差的表达式为:
其中,Δm为质量差,rz为垂直方向上尾流中心到尾流边界的距离,r0为初始尾流半径,其表达式为:a为轴向诱导因子;
S3-3.得到垂直方向上考虑风切变的复杂地形二维超高斯尾流模型的速度分布为:
更进一步的技术方案是所述步骤S4的具体步骤如下:S4-1.任意高度水平
剖面速度分布为:
S4-2.所述复杂地形三维各向异性超高斯全尾流模型,其计算公式如下:
其中,u0表示轮毂高度处来流风速,x表示距离风机的轴向距离,y表示距离尾流中心线的水平距离,z表示距离地面的垂直距离,z0为风力机轮毂高度,Δz为风力机在复杂地形中尾流下沉高度,ΔS(x,z)为山坡上的分数加速比,α为风剪切系数,e时自然常数,a是轴向诱导因子,r0为初始尾流半径,CT为推力系数;其中,ry和rz分别表示水平方向和垂直方向上尾流中心到尾流边界的距离,其表达式分别为:
和/>分别表示水平方向和垂直方向上的特征尾流宽度,其表达式分别为:
与现有技术相比,本发明的有益效果是:
本发明提出了复杂地形三维各向异性超高斯全尾流模型,此尾流模型表达式简单、计算尺度全面且计算精度高,适用于各种地形风电场的各种尺寸风力机。尾流模型描述为近尾流区呈由高斯形状和顶帽形状结合的更平滑的“高斯-顶帽”形状,逐渐过渡到远尾流区的高斯形状。此模型不仅能够较为准确的描述复杂地形风力机下游尾流区任意空间位置的尾流分布情况,而且可以为复杂地形尾流速度的预测以及基于此的其他工作提供更精确的指导,减少尾流对风力机的影响,提高复杂地形风电场的经济效应。
附图说明
图1为本发明的流程图;
图2为本发明构建的全尾流模型在水平方向和垂直方向上的尾流分布图;
图3为Coanda效应简化图;
图4为风加速效应简化图;
图5为垂直方向上复杂地形三维超高斯全尾流模型的预测结果与风电场实测尾流数据对比图;
图6为水平方向上复杂地形三维超高斯全尾流模型的预测结果与风电场实测尾流数据对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
如图1所示,一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法,具体步骤如下:
步骤1,确定所需计算的基础参数。根据所选风电场和风力机型号,得到风电场的环境参数(来流风速u0、环境湍流强度I0、和风剪切系数α)和风力机参数(风轮直径D、轮毂高度z0、推力系数CT),用于后续建模以及尾流风速的计算。
步骤2,基于能量守恒定律,通过构建均匀来流下三维超高斯尾流风速分布的归一化速度衰减,得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流表达式并求解,进而得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流风速分布。超高斯尾流表现为近尾流区呈由高斯形状和顶帽形状结合的更平滑的“高斯-顶帽”形状,逐渐过渡到远尾流区的高斯形状,如图2所示。当x小于约3倍风轮直径D时,下游距离x所处的尾流截面位于近尾流区;当x大于约3倍风轮直径小于约5倍风轮直径时,下游距离x所处的尾流截面位于过渡区;当x大于约5倍风轮直径时,则下游距离x所处的尾流截面位于远尾流区。
构建超高斯尾流模型函数为uw(x,y,z)来反映三维空间变化,其中x表示尾流区域的流向方向;y表示尾流区域的水平方向;z轴表示尾流区的垂直方向,轮毂中心坐标点为(0,0,z0),其中z0表示轮毂高度。
基于尾流自相似性的高斯假设,构建均匀来流下三维超高斯尾流风速分布的归一化速度衰减为:
其中,u0表示轮毂高度处来流风速,u0(x,y,z)表示均匀入流的三维超高斯尾流模型的预测速度;表示出现在尾流中心的每个下游位置的最大归一化速度亏损;/>为超高斯形状函数(波浪号表示风机直径的归一化);/>表示距离风力机的轴向距离;/>表示特征尾流宽度;/>表示距尾流中心的径向距离,其表达式为/>y表示距离尾流中心线的水平距离,z表示距离地面的垂直距离,z0为风力机轮毂高度,Δz为风力机在复杂地形中尾流下沉高度。
为了体现三维超高斯尾流模型的各向异性,首先需要得到垂直平面x-z的尾流速度分布。为了得到垂直方向上的尾流速度分布,需要先得到垂直方向上均匀来流条件下二维超高斯尾流的表达式,再对其进行修正。令表达式r中的距离尾流中心线的水平距离y趋近于0,化简得到垂直方向上均匀入流条件下适用于复杂地形的二维超高斯尾流模型的速度分布:
其中,z1的表达式为z1=|z-z0+Δz|。选取两台风力机之间的尾流场为控制体,且假设该尾流场为均匀场。通过应用整体质量和动量守恒定律并忽略动量方程中的粘性和压力项得到表达式:
其中,T为推力,其表达式为T=CTρA0u0 2/2,CT为推力系数。联立上式求解得到:
其中,垂直方向上的特征尾流宽度及参数n的表达式如下:
式中,I0表示环境湍流强度,β是关于CT的一个函数,其表达式为:af的值由当cf=2.98时C(0)=a得到,/>cf通过数值拟合得到。
结合所有上述公式得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流风速分布:
步骤3,考虑风切变效应、Coanda效应以及风加速效应。在复杂地形风电场中,由于下游风力机与上游风力机之间可能存在一定的高度差,它们之间的地形会发生波动,迎风侧由于阻力压力增大,来流风会产生向上运动的趋势;又由于风的加速作用,下风侧的压力减小,来流风会形成向下的运动趋势。两种趋势的结合会导致流场流线与地形表面变化的趋势相似,这种趋势被称为Coanda效应,如图3所示。在复杂地形中,来流风经过上游山脚处时会略有减速,然后加速到山顶,这种现象被描述为风加速现象,如图4所示。实际风电场中因为地形环境等因素导致来流风更符合切变风,切变风流入不对称导致尾流速度分布不对称。引入速度差Δu表示切变风与均匀风的速度差:
其中,α为风剪切系数,ΔS(x,z)为山坡上的分数加速比,其表达式为:
式中,H为山的高度,L为山半高处H/2对应点与山顶点之间的水平距离。速度差Δu导致尾流中相应的质量差Δm,质量差Δm的公式为:
其中,r0为初始尾流半径,其表达式为:rD为风电机组风轮半径;a是轴向诱导因子,其表达式为/>rz表示垂直方向上尾流中心到尾流边界的距离。
修正后的风速为uw(x,z),在尾流区域应用质量守恒定律:
联立上述公式得到垂直方向上考虑风切变二维超高斯尾流模型的速度分布:
即:
步骤4中,由于在一定高度下,风切变效应不影响水平方向上尾流速度分布,可以假设水平方向上的尾流风速分布是对称的超高斯分布。则尾迹区下游任意高度水平剖面速度分布为:
上述步骤中质量守恒推导过程仅针对x-z平面,因此可得到uw(x,0,z)=uw(x,z),即:
得到参数的表达式:
进而得到适用于复杂地形的三维各向异性超高斯尾流模型速度分布:
其中,ry和rz分别表示水平方向和垂直方向上尾流中心到尾流边界的距离,其表达式分别为:
和/>分别表示水平方向和垂直方向上的特征尾流宽度,其表达式分别为:
最后,复杂地形三维各向异性超高斯全尾流模型如下:
步骤5中,基于复杂地形三维各向异性超高斯全尾流模型,代入风轮直径、轮毂高度、推力系数、来流风速、环境湍流强度以及风剪切系数,计算风力机尾流区域内任意位置的尾流速度。具体方法为:根据具体风电场环境确定环境参数:来流风速u0、环境湍流强度I0、风剪切系数α,根据选取的风电机组型号确定风轮直径D、轮毂高度z0、推力系数CT,并将这些参数代入复杂地形三维各向异性超高斯全尾流模型表达式,得到尾流区域内任意空间位置的尾流速度计算结果。
所述复杂地形三维超高斯尾流模型分为两部分:垂直方向上考虑风切变效应的复杂地形全尾流风速分布和水平方向上全尾流风速分布;两部分结合即为复杂地形三维各向异性超高斯全尾流模型,可以对复杂地形风力机下游三维尾流区域进行准确描述,进而应用于风电场布局优化以及风功率预测等工作中。
为了验证本发明方案的有效性,将复杂地形三维各向异性超高斯全尾流模型在不同工况下的计算结果与风电场实测结果进行对比。
风力机尾流风速分布变化规律如图2所示,近尾流区呈由高斯形状和顶帽形状结合的更平滑的“高斯-顶帽”形状,逐渐过渡到远尾流区的高斯形状。
步骤1中,提取风电场环境以及风力机参数,垂直方向验证机组参数:风轮直径D=77m,风机轮毂高度z0=65m,推力系数CT=0.68,轮毂高度来流风速u0=9.9m/s,环境湍流强度I0=8%,风剪切系数α=0.14;水平方向验证机组参数:风轮直径D=77m,风机轮毂高度z0=65m,推力系数CT=0.72,轮毂高度来流风速u0=9.5m/s,环境湍流强度I0=10%,风剪切系数α=0.16;
步骤2中,确定下游位置x,垂直高度z,通过特征尾流宽度参数n和/>的表达式得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流风速分布u0(x,z)。
步骤3中,通过引入切变风与均匀风的速度差Δu导致尾流中相应的质量亏损Δm,考虑Coanda效应和风加速效应,再通过质量守恒定律得到质量守恒表达式对垂直方向上均匀来流条件下二维超高斯尾流风速分布进行修正,得到垂直方向上考虑风切变的复杂地形二维超高斯尾流模型的速度分布uw(x,z)。
步骤4中,通过对整个复杂地形三维全尾流模型uw(x,y,z)的表达式做出假设,得到等式uw(x,0,z)=uw(x,z)进行求解,得到复杂地形三维各向异性超高斯尾流模型速度分布uw(x,y,z)。
步骤5中,将步骤1中获得的风电机组参数以及风电场环境参数(风轮直径D、轮毂高度z0、推力系数CT、来流风速u0、环境湍流强度I0、和风剪切系数α)以及下游任意空间位置(x,y,z)代入步骤4得到的复杂地形三维各向异性超高斯尾流模型速度分布uw(x,y,z)中,即可得到该位置的尾流风速。
图5和图6给出了本发明提出的尾流模型得到的尾流速度分布与尾流实测数据结果对比情况。图中未改进模型是指未考虑复杂地形Coanda效应和风加速效应的三维超高斯尾流模型。对比结果表明,本发明提出的尾流模型在水平和垂直方向上均能较好的描述出近尾流区和远尾流区的尾流变化情况,模型“高斯-顶帽”分布与高斯分布相比能更好的反映近尾流区尾流变化,本发明模型在全尾流区的复杂地形尾流风速预测中都能保持较好的精度。
以上所述实施例仅为了本发明的几种优选实施例,并非对本发明做出范围限制,本领域的技术人员在不脱离本申请构思的前提下可以做出各种变形和改进,都包含在本申请的保护范围内。因此,应以所附权利要求作为本申请专利的保护范围。

Claims (5)

1.一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法,特征在于,具体步骤如下:
S1.获取风电机组参数以及风电场环境参数;
S2.构建均匀来流下三维超高斯尾流风速分布的归一化速度衰减公式,依此得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流模型,并对其中参数求解,进而得到垂直方向上均匀来流条件下适用于复杂地形的二维超高斯尾流风速分布;
S3.考虑垂直方向上的由风切变效应、Coanda效应以及风加速效应生成的风速曲线与均匀来流之间的速度差导致质量差,对均匀来流条件下二维超高斯尾流模型进行修正,得到垂直方向上考虑风切变工况的适用于复杂地形的二维超高斯风速分布;
S4.根据考虑风切变工况的二维超高斯风速分布求解水平方向全尾流风速分布,结合垂直方向上超高斯尾流风速分布与水平方向上全尾流风速分布,构建出适用于复杂地形的三维各向异性超高斯全尾流模型;
S5.获取待测风电场的环境参数和风电机组参数,代入步骤S4中的模型中,得到复杂地形的三维各向异性超高斯全尾流风速分布。
2.根据权利要求1所述的方法,其特征在于,所述步骤1中获取风电机组参数以及风电场环境参数,包括风轮直径D、轮毂高度z0、推力系数CT、来流风速u0、环境湍流强度I0、和风剪切系数α。
3.根据权利要求1所述的方法,其特征在于,所述步骤S2具体如下:
S2-1.构建均匀来流下三维超高斯尾流风速分布的归一化速度衰减公式,如下所示:
其中,u0表示轮毂高度处来流风速,u0(x,y,z)表示均匀入流的三维超高斯尾流模型的预测速度;表示出现在尾流中心的每个下游位置的最大归一化速度亏损;/>为超高斯形状函数;/>表示距离风机的轴向距离;/>表示特征尾流宽度;/>表示距尾流中心的径向距离,其表达式为/>y表示距离尾流中心线的水平距离,z表示距离地面的垂直距离,z0为风力机轮毂高度,Δz为风力机在复杂地形中尾流下沉高度;
S2-2.令上式r中的参数y趋近于0得到垂直方向上均匀入流条件下适用于复杂地形的二维超高斯尾流模型的速度分布:
其中,z1的表达式为z1=|z-z0+Δz|,通过应用整体质量和动量守恒定律并忽略动量方程中的粘性和压力项,再进行参数拟合得到上式速度分布中参数表达式如下:
其中,I0表示环境湍流强度,β是关于CT的一个函数,其表达式为:af的值由当cf=2.98、/>时/>等于a得到,a为轴向诱导因子,其表达式为:/> cf的表达式如下:
由此得到垂直方向上均匀来流条件下下适用于复杂地形的二维超高斯尾流风速分布为:
4.根据权利要求3所述的方法,其特征在于,所述步骤S3具体步骤如下:
S3-1.切变风与均匀风的速度差为:
其中,α为风剪切系数,z0为风力机轮毂高度,Δz为风力机在复杂地形中尾流下沉高度,ΔS(x,z)为山坡上的分数加速比,其表达式为:
其中,H为山的高度,L为山半高处H/2对应点与山顶点之间的水平距离,x为距离风机的轴向距离,z表示距离地面的垂直距离;
S3-2.质量差的表达式为:
其中,Δm为质量差,rz为垂直方向上尾流中心到尾流边界的距离,r0为初始尾流半径,其表达式为:a为轴向诱导因子;
S3-3.得到垂直方向上考虑风切变的复杂地形二维超高斯尾流模型的速度分布为:
5.根据权利要求1所述的方法,其特征在于,所述步骤S4的具体步骤如下:
S4-1.任意高度水平剖面速度分布为:
S4-2.所述复杂地形三维各向异性超高斯全尾流模型,其计算公式如下:
其中,u0表示轮毂高度处来流风速,x表示距离风机的轴向距离,y表示距离尾流中心线的水平距离,z表示距离地面的垂直距离,z0为风力机轮毂高度,z1为垂直方向参数,Δz为风力机在复杂地形中尾流下沉高度,ΔS(x,z)为山坡上的分数加速比,α为风剪切系数,e是自然常数,a是轴向诱导因子,r0为初始尾流半径,CT为推力系数;其中,ry和rz分别表示水平方向和垂直方向上尾流中心到尾流边界的距离,其表达式分别为:
和/>分别表示水平方向和垂直方向上的特征尾流宽度,其表达式分别为:
CN202311327096.8A 2023-10-13 2023-10-13 一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法 Pending CN117313399A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311327096.8A CN117313399A (zh) 2023-10-13 2023-10-13 一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311327096.8A CN117313399A (zh) 2023-10-13 2023-10-13 一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法

Publications (1)

Publication Number Publication Date
CN117313399A true CN117313399A (zh) 2023-12-29

Family

ID=89261866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311327096.8A Pending CN117313399A (zh) 2023-10-13 2023-10-13 一种适用于复杂地形的水平轴风力机三维各向异性超高斯全尾流模型的建立及应用方法

Country Status (1)

Country Link
CN (1) CN117313399A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114707437A (zh) * 2022-03-28 2022-07-05 华北电力大学(保定) 一种水平轴风力机三维全尾流模型的建立方法
CN115062563A (zh) * 2022-08-18 2022-09-16 南京理工大学 基于空间变化的风力机三维尾流风速计算方法
CN115310388A (zh) * 2022-10-13 2022-11-08 南京理工大学 空间变化的风力机三维不对称双高斯尾流风速计算方法
CN115544884A (zh) * 2022-10-12 2022-12-30 浙江大学 一种基于数据驱动的大型风电场尾流快速计算方法及系统
WO2023010812A1 (zh) * 2021-08-02 2023-02-09 中国华能集团清洁能源技术研究院有限公司 一种基于双变量高斯函数的尾流计算方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010812A1 (zh) * 2021-08-02 2023-02-09 中国华能集团清洁能源技术研究院有限公司 一种基于双变量高斯函数的尾流计算方法、装置及存储介质
CN114707437A (zh) * 2022-03-28 2022-07-05 华北电力大学(保定) 一种水平轴风力机三维全尾流模型的建立方法
CN115062563A (zh) * 2022-08-18 2022-09-16 南京理工大学 基于空间变化的风力机三维尾流风速计算方法
CN115544884A (zh) * 2022-10-12 2022-12-30 浙江大学 一种基于数据驱动的大型风电场尾流快速计算方法及系统
CN115310388A (zh) * 2022-10-13 2022-11-08 南京理工大学 空间变化的风力机三维不对称双高斯尾流风速计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
苏万清: "H型垂直轴风力机场远场尾流特性研究", 《盐城工学院学报(自然科学版)》, no. 3, 20 September 2020 (2020-09-20) *
高晓霞,等: "水平轴风力机三维全尾流模型推导及验证", 《太阳报 工程科技Ⅱ辑 电力工业 》, vol. 44, no. 4, 6 April 2023 (2023-04-06), pages 203 - 208 *

Similar Documents

Publication Publication Date Title
Gao et al. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model
CN107194097B (zh) 基于风电场气动模拟和风速风向数据的分析方法
CN108108562B (zh) 一种基于高斯分布的风电机组尾流的解析建模方法
Adaramola et al. Experimental investigation of wake effects on wind turbine performance
CN106897486B (zh) 考虑湍流强度影响的抛物线形风电机组尾流模型计算方法
CN109376389B (zh) 一种基于2D_k Jensen模型的三维尾流数值模拟方法
He et al. A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes
CN103745024B (zh) 基于三维尾流模型修正风电机组尾部风速功率特性评估法
CN111881572B (zh) 一种基于多目标优化的风电场协同偏航智能控制方法
Tian et al. An experimental investigation on the aeromechanics and wake interferences of wind turbines sited over complex terrain
CN104794287B (zh) 一种风工程尾流计算方法
CN108717593A (zh) 一种基于风轮面等效风速的微观选址发电量评估方法
CN112784509A (zh) 基于改进高斯分布尾流模型的风力发电机功率计算方法
CN106815773A (zh) 一种风电场功率特性评估方法
CN112001131B (zh) 一种改进风力机尾流叠加计算方法
CN113627101A (zh) 一种基于改进型ad/rsm模型的风力机尾流模拟方法
Ghadirian et al. Considering induction factor using BEM method in wind farm layout optimization
CN108509718B (zh) 一种基于质量守恒的远场尾流二维解析模型
CN115544884A (zh) 一种基于数据驱动的大型风电场尾流快速计算方法及系统
CN109255184A (zh) 一种风力机全尾流场风速分布的确定方法及系统
Wang et al. Evolution mechanism of wind turbine wake structure in yawed condition by actuator line method and theoretical analysis
Zhao et al. Research on the rotor speed and aerodynamic characteristics of a dynamic yawing wind turbine with a short-time uniform wind direction variation
Wang et al. A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow
CN106919730B (zh) 一种采用风速衰减因子的风电场尾流确定方法
Zhang et al. Discussion on the spatial-temporal inhomogeneity characteristic of horizontal-axis wind turbine's wake and improvement of four typical wake models

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination