CN117143824A - 长链非编码rna sox6 au在调控牛骨骼肌细胞增殖和细胞周期中的应用 - Google Patents

长链非编码rna sox6 au在调控牛骨骼肌细胞增殖和细胞周期中的应用 Download PDF

Info

Publication number
CN117143824A
CN117143824A CN202311174077.6A CN202311174077A CN117143824A CN 117143824 A CN117143824 A CN 117143824A CN 202311174077 A CN202311174077 A CN 202311174077A CN 117143824 A CN117143824 A CN 117143824A
Authority
CN
China
Prior art keywords
sox6au
skeletal muscle
lncrna
coding rna
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311174077.6A
Other languages
English (en)
Inventor
蔡含芳
邢珊珊
李明
许会芬
李鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN202311174077.6A priority Critical patent/CN117143824A/zh
Publication of CN117143824A publication Critical patent/CN117143824A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/65MicroRNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖和细胞周期中的应用。本发明利用基因工程和干扰技术,在牛骨骼肌细胞中分别过表达和干扰lncRNA SOX6 AU的表达,通过RT‑qPCR、Western blot、CCK‑8、EdU和流式细胞周期检测技术,发现过表达lncRNA SOX6 AU能够显著促进骨骼肌细胞的增殖;抑制lncRNA SOX6 AU的表达后,能够抑制牛骨骼肌细胞的增殖。上述结果充分说明,lncRNA SOX6 AU对牛骨骼肌细胞的增殖具有重要调控作用。本发明为研究骨骼肌发育机制奠定基础,为我国肉牛遗传育种工作和促进养牛业发展提供新思路。

Description

长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖和细胞周 期中的应用
技术领域
本发明涉及长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖和细胞周期中的应用,属于分子生物学技术领域。
背景技术
骨骼肌是动物机体的重要组成部分,其与家养动物的产肉率等重要经济性状密切相关,而且骨骼肌的生长速度和质量是影响动物生产性能的重要因素之一。因此,解析肌肉生长发育的调控具有重要的理论和应用价值。
骨骼肌的生长发育是一个复杂的生物学过程,受多种转录因子以及信号通路的调控。骨骼肌起源于近轴中胚层,在神经管与脊索两侧分为体节,体节又分为腹侧体节和背侧体节,体节在发育过程中,板状伪足在细胞边缘突起,使细胞随肌动蛋白收缩而迁移,形成轴上和轴下生肌节。一部分生皮肌节上的肌肉祖细胞脱落并与生肌节进行融合形成骨骼肌;另一部分肌肉祖细胞迁移到四肢,最终发育为肢体骨骼肌。骨骼肌生成主要受肌源性调节因子、盒转录家族基因、生长因子、细胞生长因子以及蛋白激酶等调控。此外,DNA甲基化等表观遗传调控和非编码RNA在骨骼肌生长发育过程也发挥着关键作用。
长链非编码RNA(lncRNA)是一类长度大于200nt且无编码能力的RNA,在诸多生物学过程中发挥重要作用。lncRNA可以通过染色质重塑和组蛋白修饰等一些其它途径在转录水平、转录后水平以及表观遗传水平调控基因表达。近年来,已被发现的成千上万的lncRNA中,只有少数的lncRNA被报道参与骨骼肌发育,大多数的lncRNA的功能尚不清楚,在骨骼肌生长发育中的功能有待进一步探究。因此,为了阐明lncRNA对牛骨骼肌生长发育的作用,挖掘出更多能够参与骨骼肌增殖调控的lncRNA是亟待解决的问题。
发明内容
为解决上述问题,本发明的第一个目的是提供长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用,本发明通过实验表明lncRNA SOX6 AU与牛骨骼肌细胞增殖相关,过表达lncRNA SOX6 AU,能促进骨骼肌细胞的增殖,干扰lncRNA SOX6 AU的表达,能抑制骨骼肌细胞的增殖。
本发明的第二个目的是提供长链非编码RNA SOX6 AU在调控细胞周期中的应用,以解决上述问题。
为了实现上述目的,本发明中长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用的技术方案是:
长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用,所述长链非编码RNASOX6 AU的核苷酸序列如SEQ ID NO.1所示。
上述技术方案的有益效果在于:发明人团队前期工作证明了lncRNA SOX6 AU的存在,且在不同发育阶段夏南牛的肌肉组织中,表达量差异显著。为进一步揭示lncRNA SOX6AU在牛骨骼肌生长发育过程中的作用,利用过表达和干扰技术,研究SOX6 AU对牛骨骼肌细胞增殖过程中的调控作用,发现过表达lncRNA SOX6 AU,能促进骨骼肌细胞的增殖,干扰lncRNA SOX6 AU的表达,能抑制骨骼肌细胞的增殖。lncRNA SOX6 AU能够调控牛骨骼肌细胞增殖功能的发现,为揭示牛的骨骼肌发育及产肉性状改良提供新的理论依据,并且为提高家畜产肉性能提供新思路。
作为进一步地改进,所述调控为过表达或抑制长链非编码RNA SOX6 AU的表达,促进或抑制牛骨骼肌细胞的增殖。
上述技术方案的有益效果在于:本发明通过利用过表达和干扰技术,正反两方面验证了lncRNA SOX6 AU在牛骨骼肌细胞增殖中起关键作用。
作为进一步地改进,所述促进牛骨骼肌细胞的增殖包括加速细胞从G1期进入S期,提高CDK4和PCNA的表达,降低P21的表达。
上述技术方案的有益效果在于:CDK4作为细胞周期的调控因子,能够启动细胞周期;PCNA也是细胞周期调控蛋白,被作为检测细胞增殖的标志基因之一;P21基因能够通过特异性失活CDKs导致细胞周期停滞并参与抑制细胞增殖。这三个指标通常被用来作为增殖标志基因,检测这三个指标有利于发现SOX6 AU对牛骨骼肌细胞增殖的影响。
作为进一步地改进,所述过表达为构建长链非编码RNA SOX6 AU的腺病毒过表达载体,感染牛骨骼肌细胞。
上述技术方案的有益效果在于:腺病毒转基因效率高,体外实验通常接近100%的转导效率;而牛骨骼肌细胞作为一种原代骨骼肌细胞,构建传统的过表达质粒对于牛骨骼肌细胞来说转染效率低。因此,相比于传统过表达质粒,腺病毒感染更有利于提高基因过表达的效率。
作为进一步地改进,所述抑制为合成干扰RNA片段,转染牛骨骼肌细胞。
上述技术方案的有益效果在于:利用RNA干扰技术对lncRNA SOX6 AU的表达进行抑制,具有操作简单、抑制表达效果好的优点。
为了实现上述目的,本发明中长链非编码RNA SOX6 AU在调控细胞周期中的应用的技术方案是:
长链非编码RNA SOX6 AU在调控细胞周期中的应用,所述长链非编码RNA SOX6 AU的核苷酸序列如SEQ ID NO.1所示。
上述技术方案的有益效果在于:本发明通过流式细胞术检测lncRNA SOX6 AU对细胞生长周期的影响,发现过表达lncRNA SOX6 AU后,S期细胞的数量显著增加,G1期细胞数量显著减少;干扰lncRNA SOX6 AU表达后结果相反,说明lncRNA SOX6 AU能够通过调控G1和S期细胞数量进而调控细胞周期。
作为进一步地改进,所述调控为过表达或抑制长链非编码RNA SOX6 AU的表达,促进或抑制或抑制细胞从G1期进入S期。
作为进一步地改进,所述细胞为牛骨骼肌细胞。
附图说明
图1为本发明实施例1中lncRNA SOX6 AU PCR扩增结果(DNA Marker为Marker2000);
图2为本发明实施例2中分离的骨骼肌细胞免疫荧光鉴定(放大倍数200×):
图3为本发明实施例4中lncRNA SOX6 AU过表达及干扰效率检测(A图为过表达效率检测,B图为干扰抑制效率检测,***代表P<0.01,*代表P<0.05);
图4为本发明实施例5中牛骨骼肌细胞过表达及干扰lncRNA SOX6 AU后增殖相关基因的mRNA相对表达量的检测图(A图为过表达情况,B图为干扰情况,*代表P<0.05);
图5为本发明实施例6中牛骨骼肌细胞过表达及干扰lncRNA SOX6 AU后增殖相关基因的蛋白相对表达量的检测图(A图为过表达情况,B图为干扰情况,**代表P<0.01,*代表P<0.05);
图6为本发明实施例7中流式细胞仪检测过表达及干扰lncRNA SOX6 AU对牛骨骼肌细胞增殖的影响(A、B图为过表达情况,C、D图为干扰情况,**代表P<0.01);
图7为本发明实施例8中CCK-8与EdU检测过表达与干扰lncRNA SOX6 AU对牛骨骼肌细胞增殖能力的影响(A、C图为过表达情况,B、D图为干扰情况,***代表P<0.01,*代表P<0.05)。
具体实施方式
下面结合具体实施方式对本发明作进一步描述,但本发明的保护范围并不仅限于此;但这些实施例仅是个范例,并不对本发明的范围构成任何限制,在不偏离本发明的精神和范围下可以对本发明的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。下述实施例中的试验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂厂家购买得到的。
本发明长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用的具体实施例
实施例1 lncRNA SOX6 AU的获得
本实施例使用Trizol试剂(Invitrogen)提取12月龄牛的腿肌组织的总RNA,然后根据Monad的反转录试剂盒说明书合成cDNA。以获得的cDNA为模板,利用PCR手段获得lncRNA SOX6 AU,具体实施操作如下:
1、引物设计
根据网站NCBI中ID:LOC101904740所示的lncRNASOX6 AU的序列,设计lncRNASOX6 AU的PCR扩增引物,序列如表1所示。
表1lncRNASOX6 AU扩增引物
注:F代表上游引物,R代表下游引物。
2、PCR扩增
使用Trizol试剂(Invitrogen)提取12月龄牛的腿肌组织的总RNA,然后根据Monad的反转录试剂盒说明书合成cDNA。以获得的cDNA为模板,通过Touchdown程序进行PCR扩增(使用SOX6 AU(PCR)引物)并对目的片段进行1%琼脂糖凝胶电泳检测,纯化后将目的片段和pMD 19T Vector进行连接,转化后,涂板、挑菌和摇菌,最后进行菌液PCR检测(使用SOX6AU(pMD-19T)引物),把阳性克隆菌送至上海生工生物工程有限公司进行测序。
Touchdown反应体系为:2×Taq Plus Master Mix 5μL,上下游引物各0.5μL,cDNA2μL,RNase-free H2O补至10μL。
菌液PCR反应体系为:2×Taq DNA Master Mix 5μL,上下游引物各0.5μL,菌液0.5μL,RNase-free H2O补足10μL。
Touchdown反应程序与菌液PCR反应程序见表2与表3。
表2Touchdown程序
表3菌液PCR反应程序
基因克隆结果如图1所示,由图中可知,片段大小符合预期(706bp);阳性克隆测序结果与NCB1数据库中已知序列一致,说明成功获得lncRNASOX6 AU。
实施例2牛骨骼肌细胞的分离、鉴定
本实施例从胎牛背最长肌中分离牛骨骼肌细胞,并通过检测骨骼肌特异性基因Pax7的表达,对分离的细胞进行鉴定,具体实施操作如下:
1、牛骨骼肌细胞的分离
(1)胎牛用PBS洗2-3遍后拿到细胞间,用75%的无水乙醇清洗胎牛,再用棉球擦拭表面;
(2)剪取胎牛背最长肌,放入加有PBS的培养皿中并用眼科剪剪碎,将剪碎的组织转移到15mL离心管,1500rpm离心5min;
(3)弃上层的PBS,加入5mL 0.2%的胶原酶Ⅱ溶液,放入37℃,5% CO2培养箱消化1h,每间隔10min将组织液摇动1次;
(4)利用400目的滤网将消化的混合组织液过滤,收集滤液,1500rpm离心5min;
(5)弃上层组织液,加入生长培养基洗涤2次,1500rpm离心5min;
(6)根据离心管底部的细胞量,加入生长培养基重悬细胞并移入培养瓶内,放入37℃,5%CO2培养箱培养;
(7)纯化,将上步骤重悬浮细胞放入37℃,5% CO2培养箱中培养2-3h,此时贴壁细胞主要为成纤维细胞(成纤维细胞的贴壁速度比较快,一般2-3h贴壁。),然后将未贴壁细胞转移至新的培养瓶中继续培养,重复此步骤2-3次,第4天换液,去除液体中的血细胞以及未贴壁的死细胞,并观察细胞生长情况。
2、牛骨骼肌细胞的鉴定
对分离成功、体外培养的骨骼肌细胞进行免疫荧光鉴定,选用的骨骼肌特异性基因为Pax7,并使用DAPI进行染核。首先弃掉细胞中培养基,每孔加入250μL的PBS清洗2次,用4%的多聚甲醛固定细胞,常温下孵育后,用PBS清洗3次。每孔加入250μL 0.1%的TritonX-100,37℃条件下孵育,用PBS清洗4次。1% BSA在室温条件下孵育1h,加入一抗,4℃条件下孵育过夜。用PBS清洗6次,加入二抗,在37℃条件下孵育,然后用PBS清洗。制备适量的Hoechst3342溶液,避光保存。每孔加入250μL,避光、室温条件下在脱色摇床上孵育30min,然后弃反应液,每孔加入250μL的D-PBS清洗3次,最后利用荧光显微镜拍照。结果如图2所示,由图中可以看出分离纯化出的细胞呈阳性反应,说明所培养的细胞为牛骨骼肌细胞。
实施例3牛骨骼肌细胞的培养、转染
本实施例利用实施例2中分离出的牛骨骼肌细胞,分别转染干扰RNA片段和过表达lncRNA SOX6 AU的腺病毒过表达载体,具体实施操作如下:
1、牛骨骼肌细胞的培养
(1)将常规复苏及冻存的牛原代骨骼肌细胞置于37℃,5%的CO2培养箱中培养;
(2)细胞传代:当细胞密度达80%-90%,弃去培养基,PBS洗1-2次。加胰酶消化液(0.25%Trypsin-0.53mM EDTA)进行消化,之后加少量培养基终止消化。1000rpm,离心4min,弃去上清液,加入适量完全培养基。将细胞悬液按一定比例转移到新的培养瓶中,于37℃,5%的CO2培养箱中培养。
2、细胞转染
由上海吉玛生物技术有限公司设计并合成干扰RNA(si-SOX6 AU),并由云舟生物科技(广州)股份有限公司构建腺病毒过表达载体Ad-SOX6 AU。将生长良好状态的骨骼肌细胞接种到12孔板中,待细胞融合度达60%左右时,根据Lipofectamine 3000转染试剂说明书将si-SOX6 AU转染到牛骨骼肌细胞,对照组转染si-NC;利用包装的SOX6 AU腺病毒感染牛骨骼肌细胞,对照组感染Ad-NC。
实施例4lncRNA SOX6 AU的过表达及干扰效率检测
本实施例使用Trizol试剂(Invitrogen)提取实施例3转染和感染的骨骼肌细胞的总RNA,合成cDNA后,通过qRT-PCR检测lncRNA SOX6 AU的表达量,具体实施操作如下:
利用Trizol试剂提取处理好的细胞总RNA,并根据Monad反转录试剂盒说明书合成cDNA。然后通过RT-qPCR检测lncRNA SOX6 AU的表达量,RT-qPCR实验的引物序列、反应体系及条件如表4~6所示。
表4RT-qPCR引物序列
表5 RT-qPCR反应体系
试剂(Reagent) 体积(Volume)
2×Cham Q Universal SYBR qPCR Master Mix 5.0μL
cDNA 1.0μL
上游引物F 0.2μL
下游引物R 0.2μL
RNase-free ddH2O 3.6μL
表6 RT-qPCR反应程序
使用SPSS26.0软件,利用2-ΔΔCT法分析检测结果,通过独立样本t检验分析实验数据。P<0.01表示差异极显著,P<0.05表示差异显著。结果如图3所示,lncRNA SOX6 AU在牛骨骼肌细胞中被成功的过表达与干扰。
实施例5lncRNA SOX6 AU对细胞增殖标志基因mRNA水平的影响
本实施例使用实施例4制备的过表达及干扰骨骼肌细胞的cDNA,通过RT-qPCR检测CDK4、PCNA和P21的表达量,具体实施操作如下:
以实施例4制备的cDNA为模板,通过RT-qPCR检测lncRNA SOX6 AU的表达量,RT-qPCR实验的引物序列如表7所示,反应体系及条件如实施例4中表7、表8所示。
表7 RT-qPCR特异性引物信息
RT-qPCR检测结果如图4所示,由图4可以看出,与对照组相比,牛骨骼肌细胞中过表达lncRNA SOX6 AU后,CDK4和PCNA的表达量显著提高,P21的表达量显著下降;干扰lncRNA SOX6 AU表达后结果相反。
实施例6lncRNA SOX6 AU对细胞增殖标志基因蛋白水平的影响
本实施例使用实施例3中构建的过表达与干扰lncRNA SOX6 AU后的牛骨骼肌细胞,通过蛋白免疫印迹(Western blot)检测细胞增殖标志基因蛋白的表达情况,具体实施操作如下:
用RIPA裂解缓冲液裂解过表达与干扰lncRNA SOX6 AU后的牛骨骼肌细胞,并用BCA试剂盒测定蛋白浓度,根据蛋白上样缓冲液说明书使样品变性。蛋白样品用7.5%的SDS-PAGE凝胶进行电泳,电泳结束后将凝胶转移到PVDF膜。用5%的脱脂奶粉在室温下封闭1h,4 ℃条件下过夜孵育一抗。次日,与二抗(山羊抗兔IgG)在室温下孵育1h。在PVDF膜上滴加超敏ECL化学发光液在化学发光成像系统上进行显影。WB实验中所用的一抗见表8。
表8WB实验中所用的一抗
WB检测见过见图5所示,由图中可以看出,过表达lncRNA SOX6 AU后增殖相关基因PCNA和CDK4蛋白表达量显著上调;干扰lncRNA SOX6 AU表达后的结果相反。这表明过表达lncRNA SOX6 AU可以促进牛骨骼肌细胞增殖。
实施例7流式细胞术检测lncRNA SOX6 AU对细胞生长周期的影响
本实施例利用荧光染料碘化丙啶(PI)和细胞内DNA特异性结合的特性,通过流式细胞仪来检测DNA含量的变化,进而检测lncRNA SOX6 AU对细胞生长周期的影响,具体实施操作如下:
首先用胰酶将细胞(实施例3获得的过表达或干扰lncRNA SOX6 AU的骨骼肌细胞)消化使其悬浮后,用预冷的PBS洗2遍。1000rpm离心5min,加入500μL 70%预冷的乙醇,4℃固定过夜。次日,1500rpm离心5min,弃上清,PBS清洗后1500rpm离心5min,加入配好的PI染液,避光染色25min,最后用流式细胞仪检测细胞周期,并分析细胞周期各阶段细胞百分比变化。
检测结果如图6所示,由图中可以看出,过表达lncRNA SOX6 AU后S期细胞的数量显著增加(P<0.01),G1期细胞数量显著减少(P<0.01);干扰lncRNA SOX6 AU表达后结果相反。这表明SOX6AU可加速细胞从G1期进入S期,促进细胞的增殖。
实施例8 CCK-8及EdU检测lncRNA SOX6 AU对细胞增殖的影响
本实施例利用CCK-8及EdU检测lncRNA SOX6 AU对骨骼肌细胞增殖的影响,具体实施操作如下:
1、CCK-8检测细胞增殖状态
CCK-8试验设置对照、空白、空载及试验组共4组。将牛骨骼肌细胞接种在96孔板中,待细胞密度达到40~50%时,分别进行lncRNA SOX6 AU过表达和干扰处理(具体操作见实施例3),转染处理0h、12h、24h与36h加入10μL CCK-8试剂,然后放置培养箱培养2h。利用酶标仪检测450nm处的吸光度值,根据吸光度值的改变进而判断不同时间点细胞增殖能力。
2、EdU检测细胞增殖阶段S期的阳性细胞数
利用EdU试剂盒分别将干扰与腺病毒感染36h后的牛骨骼肌细胞进行EdU检测。用细胞完全培养基按比例稀释EdU溶液,加入细胞,于培养箱中培养2h,弃培养基。PBS洗2次,每次5min。用4%多聚甲醛将细胞固定30min,弃固定液,加入2mg/mL甘氨酸溶液,在脱色摇床上孵育5min,弃甘氨酸溶液,PBS洗2次,每次5min。加入含0.5% TritonX-100的渗透剂,在脱色摇床上孵育10min,PBS洗5min。加入提前配制好的Hoechst染色反应液,在脱色摇床孵育30min,弃染色反应液,用PBS洗2次。染色完成后,在荧光显微镜下进行观测。
CCK8检测及EdU检测的结果见图7所示。由图7A和7B中可以看出(EdU检测),过表达lncRNA SOX6 AU后,EdU阳性细胞百分比显著上升(P<0.05),DNA复制活性显著增强,干扰lncRNA SOX6 AU的表达后结果相反。由图7C和7D中可以看出(CCK-8检测),与对照组相比,转染Ad-SOX6 AU后12h内无显著差异,12h后细胞增殖能力显著上升(P<0.05),干扰lncRNASOX6 AU的表达后出现相反结果。CCK-8与EdU的结果表明,过表达lncRNA SOX6 AU可以促进牛骨骼肌细胞增殖。
最后说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用,其特征在于:所述长链非编码RNA SOX6 AU的核苷酸序列如SEQ ID NO.1所示。
2.根据权利要求1所述的长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用,其特征在于:所述调控为过表达或抑制长链非编码RNA SOX6 AU的表达,促进或抑制牛骨骼肌细胞的增殖。
3.根据权利要求2所述的长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用,其特征在于:所述促进牛骨骼肌细胞的增殖包括加速细胞从G1期进入S期,提高CDK4和PCNA的表达,降低P21的表达。
4.根据权利要求2所述的长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用,其特征在于:所述过表达为构建长链非编码RNA SOX6 AU的腺病毒过表达载体,感染牛骨骼肌细胞。
5.根据权利要求2所述的长链非编码RNA SOX6 AU在调控牛骨骼肌细胞增殖中的应用,其特征在于:所述抑制为合成干扰RNA片段,转染牛骨骼肌细胞。
6.长链非编码RNA SOX6 AU在调控细胞周期中的应用,其特征在于:所述长链非编码RNA SOX6 AU的核苷酸序列如SEQ ID NO.1所示。
7.根据权利要求6所述的长链非编码RNA SOX6 AU在调控细胞周期中的应用,其特征在于:所述调控为过表达或抑制长链非编码RNA SOX6 AU的表达,促进或抑制细胞从G1期进入S期。
8.根据权利要求6或7所述的长链非编码RNA SOX6 AU在调控细胞周期中的应用,其特征在于:所述细胞为牛骨骼肌细胞。
CN202311174077.6A 2023-09-12 2023-09-12 长链非编码rna sox6 au在调控牛骨骼肌细胞增殖和细胞周期中的应用 Pending CN117143824A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311174077.6A CN117143824A (zh) 2023-09-12 2023-09-12 长链非编码rna sox6 au在调控牛骨骼肌细胞增殖和细胞周期中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311174077.6A CN117143824A (zh) 2023-09-12 2023-09-12 长链非编码rna sox6 au在调控牛骨骼肌细胞增殖和细胞周期中的应用

Publications (1)

Publication Number Publication Date
CN117143824A true CN117143824A (zh) 2023-12-01

Family

ID=88898617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311174077.6A Pending CN117143824A (zh) 2023-09-12 2023-09-12 长链非编码rna sox6 au在调控牛骨骼肌细胞增殖和细胞周期中的应用

Country Status (1)

Country Link
CN (1) CN117143824A (zh)

Similar Documents

Publication Publication Date Title
Pan et al. Identification of human GATA-2 gene distal IS exon and its expression in hematopoietic stem cell fractions
CN111154763B (zh) 长链非编码RNA lncMGPF在调控猪肌肉发育功能中的应用
CN109182562B (zh) 与蛋鸭卵泡发育相关的miRNA apla-mir-25-42及其检测引物、抑制物和应用
CN112831473B (zh) 一种过表达smad3诱导体细胞重编程为乳腺上皮细胞的方法
CN111454953A (zh) 一种骨髓间充质干细胞成脂转化促进剂
CN109402118B (zh) 与蛋鸭卵泡发育相关的miRNA apla-mir-145-4及其检测引物、抑制物和应用
CN110885823B (zh) 一种长链非编码RNA猪Lnc-000649及其应用
CN112899238B (zh) 基于RNA-m6A修饰水平的化合物筛选细胞模型及其构建与应用
CN111676222A (zh) 抑制Mettl3基因表达的shRNA及其重组腺相关病毒与应用
CN114807136B (zh) 长链非编码RNA Gm10561在调控成肌细胞增殖分化中的应用
CN117143824A (zh) 长链非编码rna sox6 au在调控牛骨骼肌细胞增殖和细胞周期中的应用
CN116042633A (zh) Slc9a1作为靶点在抑制禽白血病病毒中的应用
CN109055429B (zh) 一种靶向RunX2基因的小鼠成骨样细胞慢病毒载体及其构建方法
CN117187249B (zh) 一种牦牛Lnc-MEG8基因及其应用
CN110777166B (zh) 一种牛klf3基因真核过表达载体的构建与应用
CN111228292B (zh) 人tpt1/tctp基因在制备抗肿瘤药物中的应用
CN111454944B (zh) 一种分离的rna及其dna模板的合成方法
CN112266932B (zh) 一种人rnf20基因过表达质粒载体的构建及其抑制癌细胞的作用
CN114957439B (zh) 绵羊pdgfd、编码pdgfd核酸及其重组慢病毒、宿主细胞与应用
CN117487009B (zh) 抗鸡pml单克隆抗体及其应用
CN111118154B (zh) Linc01272在制备肿瘤检测试剂和/或治疗药物中的应用
CN110317809B (zh) 一种调控蛋鸭卵泡发育的长链RNA Lnc-30215及其应用
CN117683815A (zh) Ndufa4l2基因在调控猪肌纤维类型转化上的应用
CN116676339A (zh) 长链非编码rna neat1在调控肌纤维类型转化上的应用
CN116814622A (zh) 鸡环状RNA circSLC2A13在促进鸡肌肉形成中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination