CN117069495B - 一种四元max相陶瓷及其制备方法和应用 - Google Patents

一种四元max相陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN117069495B
CN117069495B CN202311052987.7A CN202311052987A CN117069495B CN 117069495 B CN117069495 B CN 117069495B CN 202311052987 A CN202311052987 A CN 202311052987A CN 117069495 B CN117069495 B CN 117069495B
Authority
CN
China
Prior art keywords
powder
ball milling
phase ceramic
max phase
quaternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311052987.7A
Other languages
English (en)
Other versions
CN117069495A (zh
Inventor
魏世丞
李林蔚
王玉江
王博
章浩
郭蕾
陈茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Armored Forces of PLA
Original Assignee
Academy of Armored Forces of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Armored Forces of PLA filed Critical Academy of Armored Forces of PLA
Priority to CN202311052987.7A priority Critical patent/CN117069495B/zh
Publication of CN117069495A publication Critical patent/CN117069495A/zh
Application granted granted Critical
Publication of CN117069495B publication Critical patent/CN117069495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种四元MAX相陶瓷及其制备方法与应用,涉及吸波陶瓷材料技术领域。所述的四元MAX相陶瓷,M位点为钛元素,A位点为能够形成固溶体的铝元素和硅元素,X位点为碳元素,所述的四元MAX相陶瓷化学通式为Ti3(AlxSi1‑x)C2,其中,x=0.4~0.8。本发明的四元MAX相陶瓷吸波损耗最低值为‑68.2dB,具有吸波性能强、抗高温氧化性能。此外,本发明的四元MAX相陶瓷的制备技术路线简单、易实现、推广性强。

Description

一种四元MAX相陶瓷及其制备方法和应用
技术领域
本发明涉及吸波陶瓷材料技术领域,尤其涉及一种四元MAX相陶瓷及其制备方法和应用。
背景技术
现代社会中,各类电子、电气设备的投入使用极大方便了人们的日常生活,但也使得各种频率多种能量的电磁波广泛存在于地球乃至宇宙空间,引起不同程度的电磁干扰和电磁辐射污染问题,因此研发电磁波吸收材料具有重要意义。
过渡金属三元层状化合物MAX相陶瓷兼具金属和陶瓷的优良理化性能,如:良好的高温稳定性、导电性以及低密度,有望成为一种高温吸波材料。MAX相家族成员庞大,迄今已发现80余种,其中的典型代表Ti3SiC2和Ti3AlC2长期以来备受国内外学者关注。在吸波领域,西北工业大学在文章“Dielectric and microwave absorption properties ofTi3SiC2powders”和“Preparation and Microwave Absorption Properties ofTi3AlC2Synthesized by Pressureless Sintering TiC/Ti/Al”中曾分别报道了Ti3SiC2和Ti3AlC2在X波段的吸波性能,其中Ti3SiC2的最小反射损耗为-33.83dB,Ti3AlC2的最小反射损耗为-31dB,吸波层匹配厚度均在2mm以上。西安电子科技大学在文章“Improving the microwavedielectric properties of Ti3SiC2 powders byAl doping”中提出通过在原料中加入Al可以提高产物纯度进而改善Ti3SiC2的吸波性能,并报道,当Al添加量为20%时,产物在吸波层匹配厚度为2.1mm时,有效吸收带宽约为2GHz,并在11.7GHz处实现最小反射损耗,约为-21.8dB;此外,还在文章“Dielectric properties ofAl-dopedTi3SiC2 as a novelmicrowave absorbing material”中进一步指出Al添加可以改善产物粒度分布,并优化了合成温度,发现1350℃条件下的合成产物最小反射损耗约-17dB,在吸波层匹配厚度为2.6mm时,有效吸收带宽可覆盖X波段。从现有相关公开报道情况来看,Ti3SiC2和Ti3AlC2的反射损耗不强,吸波层匹配厚度较大,尚需进一步改进,否则实际应用受限,但在原料中添加一定量Al以期提升Ti3SiC2纯度、调节产物粒度分布等改性手段效果甚微,反射损耗强度甚至下降,因此Ti3SiC2和Ti3AlC2的改性研究需要更新思路。
先进的空天地一体化雷达反隐身技术要求吸波材料要具备“薄、轻、宽、强”的特点,还要具有良好的高温环境适应性,以满足极端环境下的服役需求。传统的铁磁吸波材料往往质量大,且在高温环境中转变为顺磁态而导致吸波性能严重下降;近些年研究火热的碳基复合吸波材料虽然在一定程度上展现了优异的吸波性能,但大都需要精细的微观结构设计,且结构高温稳定性差,材料制备工艺流程复杂、产量低,很难实际应用。
发明内容
针对现有技术的缺点和不足,本发明的一个目的是提供一种具有吸波性能强、抗高温氧化性能的四元MAX相陶瓷,M位点为钛元素,A位点为铝元素和硅元素,X位点为碳元素,所述的四元MAX相陶瓷化学通式为Ti3(AlxSi1-x)C2,(x=0.4~0.8)。
进一步地,所述的四元MAX相陶瓷的最小吸波损耗为-68.2dB。
进一步地,所述的四元MAX相陶瓷匹配厚度为1.36mm时,有效吸收带宽达3.52GHz。
本发明的另一目的在于,提供一种提升312型MAX相陶瓷电磁波吸收性能的固溶改性技术,所述312型MAX相陶瓷是指Ti3AlC2和Ti3SiC2,固溶改性发生于A位点,将Ti3AlC2和Ti3SiC2的A位点作元素掺杂改性,改性制得的四元MAX相陶瓷为Ti3(AlxSi1-x)C2,(x=0.4~0.8)。本发明的目的是通过以下技术方案实现的,一种四元MAX相陶瓷的制备方法,包括以下步骤:
a、按摩尔配比称量钛粉、铝粉、硅粉、石墨粉并进行球磨混粉,得到混合原料粉。优选的,所述的钛粉、铝粉、硅粉、石墨粉的摩尔配比为3:(0.4~1.2):(1.2~0.4):2。
优选的,在一些实施中,将纯度不低于99.5%的钛粉、铝粉、硅粉和石墨粉按照一定量的摩尔配比称量,其中,钛粉、(铝粉和硅粉)、石墨粉的摩尔配比为3mol:1.6mol:2mol,钛粉、铝粉、硅粉的粒度不大于200目,石墨粉的粒径不大于2μm。
更优选的,各原料的摩尔配比为:钛粉3mol、铝粉0.8mol、硅粉:0.8mol、石墨粉:2mol。
优选的,步骤a中所述的球磨混粉采用湿磨工艺,球磨转速为250rpm~300rpm,球磨时间为10h~20h,球料比为15:1~20:1。
更优选的,在一些实施中,利用球磨设备,将称量好的粉料用无水乙醇湿磨,球磨转速为280rpm,每隔20min停止10min,重复24次,球磨时间为12h。球磨罐为玛瑙球磨罐或聚四氟乙烯内衬不锈钢球磨罐,磨球为玛瑙或氧化锆磨球,球料比为15:1,球磨后得到的浆料进行干燥处理,获得混合原料粉。
b、将混合原料粉进行冷等静压压制成生坯。优选的,所述的冷等静压压力为250MPa~300MPa,保压时间为15min~30min,生坯直径为10mm~20mm。
更优选的,在一些实施中,采用冷等静压机,将混合原料粉放置于直径为10mm的橡胶模具中,将放满混合原料粉的橡胶模具放入冷等静压机腔体中压制成型,冷等静压压力为250MPa,保压时间为30min,获得较为致密的生坯。
c、将生坯进行烧结处理,冷却后得到熟坯,将熟坯研磨过筛,获得Ti3(AlxSi1-x)C2粉末。优选的,所述的烧结处理的升温速率为10℃/min~20℃/min、保温温度为1250℃~1550℃、保温时间为1h~4h、降温速率为3℃/min~8℃/min。其中,所述的烧结处理方式为惰性气体保护烧结或真空烧结;当烧结处理方式为惰性气体保护烧结时,气体流量为20ml/min~30ml/min;当烧结处理方式为真空烧结时,真空度为10-3Pa~10-2Pa。其中,惰性气体包括但不限于高纯氩(≥99.999%)。
更优选的,在一些实施中,将获得的生坯放入高温真空气氛炉中,采用无压固液反应烧结工艺,惰性保护烧结或真空烧结,升温速率为10℃/min,保温温度为1400℃,保温时间为2h,降温速率为5℃/min。采用惰性保护烧结时气体流量为20ml/min,真空烧结时真空度为10-3Pa。烧结冷却后获得熟坯,将熟坯研磨过筛,获得Ti3(AlxSi1-x)C2粉末。
本发明的又一目的在于,提供一种四元MAX相陶瓷在高温吸波涂层的应用。此外,本发明的四元MAX相陶瓷还可应用于电磁兼容与防护、军事隐身等场景。
本发明的四元MAX相陶瓷的纯度高、具有吸波能力强、抗高温氧化性能,且最小吸波损耗为-68.2dB;当吸波层匹配厚度为1.36mm时,有效吸收带宽可达3.52GHz。
本发明的四元MAX相陶瓷采用固溶改性来调控MAX相电学性能的思路,基于粉末冶金方法,控制原料粉末中各原料的摩尔配比,经球磨混粉、生坯压制和液固反应烧结,最终实现A位点的固溶改性。本发明的四元MAX相陶瓷的制备技术路线简单、易实现、推广性强,应用前景良好。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末、实施例2制备的Ti3(AlxSi1-x)C2(x≈0.4)粉末、实施例3制备的Ti3(AlxSi1-x)C2(x≈0.8)粉末与对比例1制备的Ti3AlC2粉末、对比例2制备的Ti3SiC2粉末、对比例3制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末的XRD图谱;
图2为实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末扫描电镜图(SEM image)和透射电镜图(TEM image);
图3为实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末的反射损耗计算结果图(Reflection loss);
图4为实施例2制备的Ti3(AlxSi1-x)C2(x≈0.4)粉末的反射损耗计算结果图(Reflection loss);
图5为实施例3制备的Ti3(AlxSi1-x)C2(x≈0.8)粉末的反射损耗计算结果图(Reflection loss);
图6为对比例1制备的Ti3AlC2粉末的反射损耗计算结果图(Reflection loss);
图7为对比例2制备的Ti3SiC2粉末的反射损耗计算结果图(Reflection loss);
图8为实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末与对比例1制备的Ti3AlC2粉末、对比例2制备的Ti3SiC2粉末的高温氧化增重与氧化增重速率对比结果图(TG&DTG)。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本发明实施例和对比例所需要的主要原料来源如下:
钛粉:上海允复纳米科技有限公司,纯度99.5%,200目;
铝粉:上海允复纳米科技有限公司,纯度99.90%,300目;
硅粉:上海允复纳米科技有限公司,纯度99.99%,200目;
石墨粉:上海允复纳米科技有限公司,纯度99.5%,1μm。
实施例1
a、将钛粉、铝粉、硅粉、石墨粉按照3:0.8:0.8:2的摩尔配比称重,其中钛粉、铝粉、硅粉的粒度不大于200目,石墨粉的粒径不大于2μm;在玛瑙球磨罐中进行混粉,磨球为玛瑙磨球,球料比为15:1,球磨转速为250rpm,以无水乙醇为混粉介质,球磨20min后停止10min,重复24次,球磨时间为12小时,将得到的浆料进行过滤干燥处理,获得混合原料粉;
b、将粉料倒入直径为10mm的橡胶模具中,将装满粉料的橡胶模具放入冷等静压机腔体中进行压制成型,压力为250MPa,保压时间为30min,获得生坯;
c、将生坯放入带盖刚玉坩埚内,置于高温真空气氛炉中,采用无压固液反应烧结工艺,以10℃/min升温至1400℃,保温2h,降温速率为5℃/min,真空条件为10-3Pa,获得熟坯;将熟坯研磨成粉,过325目多孔筛,获得Ti3(AlxSi1-x)C2(x≈0.6)粉末,粉末纯度为99%。
实施例2
a、将钛粉、铝粉、硅粉、石墨粉按照3:0.4:1.2:2的摩尔配比称重,其中钛粉、铝粉、硅粉的粒度不大于200目,石墨粉的粒径不大于2μm;在玛瑙球磨罐中进行混粉,磨球为玛瑙磨球,球料比为20:1,球磨转速为300rpm,以无水乙醇为混粉介质,球磨20min后停止10min,重复20次,球磨时间为10小时,将得到的浆料进行过滤干燥处理,获得混合原料粉;
b、将粉料倒入直径为20mm的橡胶模具中,将装满粉料的橡胶模具放入冷等静压机腔体中进行压制成型,压力为300MPa,保压时间为15min,获得生坯;
c、将生坯放入带盖刚玉坩埚内,置于高温真空气氛炉中,采用无压固液反应烧结工艺,以15℃/min升温至1250℃,保温1h,降温速率为5℃/min,高纯氩惰性保护气流量为20ml/min,获得熟坯;将熟坯研磨成粉,过325目多孔筛,获得改性Ti3(AlxSi1-x)C2(x≈0.4)粉末,粉末纯度为99%。
实施例3
a、将钛粉、铝粉、硅粉、石墨粉按照3:1.2:0.4:2的摩尔配比称重,其中钛粉、铝粉、硅粉的粒度不大于200目,石墨粉的粒径不大于2μm;在玛瑙球磨罐中进行混粉,磨球为玛瑙磨球,球料比为18:1,球磨转速为250rpm,以无水乙醇为混粉介质,球磨30min后停止20min,重复24次,球磨时间为20小时,将得到的浆料进行过滤干燥处理,获得混合原料粉;
b、将粉料倒入直径为15mm的橡胶模具中,将装满粉料的橡胶模具放入冷等静压机腔体中进行压制成型,压力为280MPa,保压时间为20min,获得生坯;
c、将生坯放入带盖刚玉坩埚内,置于高温真空气氛炉中,采用无压固液反应烧结工艺,以15℃/min升温至1550℃,保温3h,降温速率为5℃/min,真空条件为10-2Pa,获得熟坯;将熟坯研磨成粉,过325目多孔筛,获得Ti3(AlxSi1-x)C2(x≈0.8)粉末,粉末纯度为99%。
对比例1
a、将钛粉、铝粉、硅粉、石墨粉按照3:1.4:0:2的摩尔配比称重,其中钛粉、铝粉、硅粉的粒度不大于200目,石墨粉的粒径不大于2μm;在玛瑙球磨罐中进行混粉,磨球为玛瑙磨球,球料比为10:1,球磨转速为200rpm,以无水乙醇为混粉介质,球磨30min后停止10min,重复36次,球磨时间为24小时,将得到的浆料进行过滤干燥处理,获得混合原料粉;
b、将粉料倒入直径为15mm的橡胶模具中,将装满粉料的橡胶模具放入冷等静压机腔体中进行压制成型,压力为250MPa,保压时间为10min,获得生坯;
c、将生坯放入带盖刚玉坩埚内,置于高温真空气氛炉中,采用无压固液反应烧结工艺,以10℃/min升温至1600℃,保温2h,降温速率为10℃/min,真空条件为10-3Pa,获得熟坯;将熟坯研磨成粉,过325目多孔筛,获得Ti3(AlxSi1-x)C2(x≈1)粉末,粉末纯度为99%。
对比例2
a、将钛粉、铝粉、硅粉、石墨粉按照3:0:1.4:2的摩尔配比称重,其中钛粉、铝粉、硅粉的粒度不大于200目,石墨粉的粒径不大于2μm;在玛瑙球磨罐中进行混粉,磨球为玛瑙磨球,球料比为15:1,球磨转速为250rpm,以无水乙醇为混粉介质,球磨20min后停止10min,重复24次,球磨时间为12小时,将得到的浆料进行过滤干燥处理,获得混合原料粉;
b、将粉料倒入直径为10mm的橡胶模具中,将装满粉料的橡胶模具放入冷等静压机腔体中进行压制成型,压力为250MPa,保压时间为30min,获得生坯;
c、将生坯放入带盖刚玉坩埚内,置于高温真空气氛炉中,采用无压固液反应烧结工艺,以10℃/min升温至1400℃,保温2h,降温速率为5℃/min,真空条件为10-3Pa,获得熟坯;将熟坯研磨成粉,过325目多孔筛,获得Ti3(AlxSi1-x)C2(x≈0)粉末,粉末纯度为98%。
对比例3
a、将钛粉、铝粉、硅粉、石墨粉按照3:0.6:0.6:2的摩尔配比称重,其中钛粉、铝粉、硅粉的粒度不大于200目,石墨粉的粒径不大于2μm;在玛瑙球磨罐中进行混粉,磨球为玛瑙磨球,球料比为15:1,球磨转速为200rpm,以无水乙醇为混粉介质,球磨20min后停止10min,重复10次,球磨时间为5小时,将得到的浆料进行过滤干燥处理,获得混合原料粉;
b、将粉料倒入直径为10mm的橡胶模具中,将装满粉料的橡胶模具放入冷等静压机腔体中进行压制成型,压力为200MPa,保压时间为15min,获得生坯;
c、将生坯放入带盖刚玉坩埚内,置于高温真空气氛炉中,采用无压固液反应烧结工艺,以10℃/min升温至1300℃,保温4h,降温速率为5℃/min,高纯氩惰性保护气体流量为20ml/min,获得熟坯;将熟坯研磨成粉,过325目多孔筛,获得Ti3(AlxSi1-x)C2(x≈0.6)粉末,粉末纯度为68%。
结果分析
取实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末、实施例2制备的Ti3(AlxSi1-x)C2(x≈0.4)粉末、实施例3制备的Ti3(AlxSi1-x)C2(x≈0.8)粉末与对比例1制备的Ti3AlC2粉末、对比例2制备的Ti3SiC2粉末、对比例3制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末在相同条件下做物相分析。
如图1中XRD图谱所示,对比例3制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末纯度较低,含有较多杂质;观察其他五种MAX相材料的主峰,即(104)晶面对应的衍射峰,与Ti3AlC2粉末和Ti3SiC2粉末相比,可以发现实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末、实施例2制备的Ti3(AlxSi1-x)C2(x≈0.4)粉末、实施例3制备的Ti3(AlxSi1-x)C2(x≈0.8)粉末的(104)衍射峰均发生偏移,且位于Ti3AlC2粉末和Ti3SiC2粉末的(104)衍射峰之间,这是处于A位点的Al原子和Si原子固溶导致的。
如图2所示,为实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末的扫描电镜和透射电镜图像,可以看出粉末颗粒呈现出MAX相典型的多层结构。
如图3至图7所示,经安捷伦E5071C矢量网络分析仪测试,依次为实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末、实施例2制备的Ti3(AlxSi1-x)C2(x≈0.4)粉末、实施例3制备的Ti3(AlxSi1-x)C2(x≈0.8)粉末与对比例1制备的Ti3AlC2粉末、对比例2制备的Ti3SiC2粉末的反射损耗图,可以发现,与非固溶的Ti3AlC2粉末和Ti3SiC2粉末相比,实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末、实施例2制备的Ti3(AlxSi1-x)C2(x≈0.4)粉末、实施例3制备的Ti3(AlxSi1-x)C2(x≈0.8)粉末的吸波能力明显增强。其中,实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末反射损耗最低为-68.2dB;吸波层匹配厚度为1.36mm时,有效吸收带宽达3.52GHz,位于Ku波段。
如图8所示,对实施例1制备的Ti3(AlxSi1-x)C2(x≈0.6)粉末、对比例1的Ti3AlC2粉末和对比例2制备的Ti3SiC2粉末分别进行了高温空气氧化热重分析。氧化增重(TG)与氧化增重速率(DTG)结果,TG显示三个样品经室温升至1000℃且保温1h后,样品粉末基本完全氧化,与最终氧化增重结果(Ti3AlC2>Ti3(AlxSi1-x)C2(x≈0.6)>Ti3SiC2)相符,这是由不同元素吸氧量差异导致的,但从DTG曲线可以看出,Ti3AlC2粉末和Ti3SiC2粉末较Ti3(AlxSi1-x)C2(x≈0.6)粉末提前发生氧化,表现为在升温过程中氧化增重速率较大且较快达到极值,可以定性认为Ti3(AlxSi1-x)C2(x≈0.6)粉末的抗高温氧化能力提升,固溶改性Ti3(AlxSi1-x)C2(x≈0.6)材料具有更稳定的高温结构和相稳定性。
最后需要说明的是:以上实施例不以任何形式限制本发明。对本领域技术人员来说,在本发明基础上,可以对其作一些修改和改进。因此,凡在不偏离本发明精神的基础上所做的任何修改或改进,均属于本发明要求保护的范围之内。

Claims (3)

1.一种四元MAX相陶瓷制备方法,其特征在于,包括以下步骤:
a、将钛粉、铝粉、硅粉、石墨粉按照3:0.8:0.8:2的摩尔配比称重,其中钛粉、铝粉、硅粉的粒度不大于200目,石墨粉的粒径不大于2μm;在玛瑙球磨罐中进行混粉,磨球为玛瑙磨球,球料比为15:1,球磨转速为250rpm,以无水乙醇为混粉介质,球磨20min后停止10min,重复24次,球磨时间为12小时,将得到的浆料进行过滤干燥处理,获得混合原料粉;
b、将粉料倒入直径为10mm的橡胶模具中,将装满粉料的橡胶模具放入冷等静压机腔体中进行压制成型,压力为250MPa,保压时间为30min,获得生坯;
c、将生坯放入带盖刚玉坩埚内,置于高温真空气氛炉中,采用无压固液反应烧结工艺,以10℃/min升温至1400℃,保温2h,降温速率为5℃/min,真空条件为10-3Pa,获得熟坯;将熟坯研磨成粉,过325目多孔筛,获得Ti3(AlxSi1-x)C2,x≈0.6的粉末,粉末纯度为99%。
2.如权利要求1所述制备方法制备的四元MAX相陶瓷,其特征在于,最小吸波损耗为-68.2dB;匹配厚度为1.36mm时,有效吸收带宽达3.52GHz。
3.如权利要求2所述的四元MAX相陶瓷在高温吸波涂层的应用。
CN202311052987.7A 2023-08-21 2023-08-21 一种四元max相陶瓷及其制备方法和应用 Active CN117069495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311052987.7A CN117069495B (zh) 2023-08-21 2023-08-21 一种四元max相陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311052987.7A CN117069495B (zh) 2023-08-21 2023-08-21 一种四元max相陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN117069495A CN117069495A (zh) 2023-11-17
CN117069495B true CN117069495B (zh) 2024-04-12

Family

ID=88707581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311052987.7A Active CN117069495B (zh) 2023-08-21 2023-08-21 一种四元max相陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117069495B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033141A (zh) * 2007-02-09 2007-09-12 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN104387067A (zh) * 2014-10-23 2015-03-04 西安电子科技大学 高介电损耗钛硅碳粉体微波吸收剂的制备方法
CN109836157A (zh) * 2019-03-28 2019-06-04 北京交通大学 一种具有高强度和优异耐磨性的钛铝硅碳固溶体块体材料制备方法
CN115341113A (zh) * 2022-08-19 2022-11-15 盐城工学院 一种原位合成max相金属陶瓷材料的方法
CN116178029A (zh) * 2022-10-26 2023-05-30 中国科学院上海硅酸盐研究所 一种多元复合多孔陶瓷吸波材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053206B (zh) * 2018-08-31 2021-07-23 中国科学院金属研究所 一种短纤维增强取向max相陶瓷基复合材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033141A (zh) * 2007-02-09 2007-09-12 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN104387067A (zh) * 2014-10-23 2015-03-04 西安电子科技大学 高介电损耗钛硅碳粉体微波吸收剂的制备方法
CN109836157A (zh) * 2019-03-28 2019-06-04 北京交通大学 一种具有高强度和优异耐磨性的钛铝硅碳固溶体块体材料制备方法
CN115341113A (zh) * 2022-08-19 2022-11-15 盐城工学院 一种原位合成max相金属陶瓷材料的方法
CN116178029A (zh) * 2022-10-26 2023-05-30 中国科学院上海硅酸盐研究所 一种多元复合多孔陶瓷吸波材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1 −xSixC2 solid solutions;Y.C. Zhou等;《Acta Materialia》;第54卷(第5期);第1317-1322页 *
Y.C. Zhou等.Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1 −xSixC2 solid solutions.《Acta Materialia》.2006,第54卷(第5期),第1317-1322页. *

Also Published As

Publication number Publication date
CN117069495A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
CN110012656B (zh) 一种纳米复合吸波材料的制备方法
CN109097657B (zh) 一种Mo纳米颗粒增强CoCrNi中熵合金复合材料及其制备方法
CN103073332B (zh) 具有纳米孔结构的过渡金属碳化物陶瓷及其制备方法
CN112341199A (zh) 一种高熵吸波碳化物陶瓷粉体材料、制备方法及其应用
CN109054740B (zh) 一种碳包覆FeSiCr磁性纳米吸波材料及其制备方法
CN111484331A (zh) 一种细晶粒富硼碳化硼基复合陶瓷材料及其制备方法
CN1888104A (zh) 高性能超细晶WC-10wt.%Co硬质合金的制备方法
CN113788703A (zh) 通过碳源改性和反应熔渗制备硅化石墨的方法及硅化石墨
CN116239376A (zh) 一种高熵尖晶石吸波陶瓷材料及其制备方法
CN117069495B (zh) 一种四元max相陶瓷及其制备方法和应用
CN108178636B (zh) 一种Si3N4/SiC复合吸波陶瓷及其制备方法
Li et al. Effects of cerium doping on the microstructure, mechanical properties, thermal conductivity, and dielectric properties of ZrP2O7 ceramics
CN113683417A (zh) 一种纳米晶粒单相铌酸镍陶瓷块体制备方法
CN111848151B (zh) 一种磷酸钛镁铝锂lamtp单相陶瓷吸波材料及其制备方法与应用
CN113045304A (zh) 一种混合尖晶石结构的铁氧体吸波材料与制备方法
Liu et al. Enhanced electromagnetic wave absorption performance of Co 0.5 Zn 0.5 ZIF-derived binary Co/ZnO and RGO composites
CN116178019B (zh) 一种无压包裹煅烧制备多孔max相陶瓷材料的方法
CN110862257A (zh) 一种石墨陶瓷合闸电阻及其制备方法
CN113708085B (zh) 一种纳米多孔碳包覆磁性纳米粒子复合物的制备方法
CN113415796B (zh) 一种Cu/C复合材料作为电磁波吸收材料的应用
CN112573925B (zh) 高性能电磁屏蔽NdB6/SiO2复相陶瓷材料及其制备方法
CN114349516A (zh) 一种低温合成高致密SiC陶瓷的方法
CN112441830A (zh) 一种高品质因数钇掺杂氧化锆微波介质陶瓷材料及其制备方法
CN114890422B (zh) 一种片状高熵max相材料及其制备方法
CN116178042B (zh) 一种电磁屏蔽用复相陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant