CN117038732A - 一种宽禁带半导体沟槽mosfet器件及其制作方法 - Google Patents

一种宽禁带半导体沟槽mosfet器件及其制作方法 Download PDF

Info

Publication number
CN117038732A
CN117038732A CN202310867512.7A CN202310867512A CN117038732A CN 117038732 A CN117038732 A CN 117038732A CN 202310867512 A CN202310867512 A CN 202310867512A CN 117038732 A CN117038732 A CN 117038732A
Authority
CN
China
Prior art keywords
layer
ion implantation
mosfet device
epitaxial layer
bandgap semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310867512.7A
Other languages
English (en)
Inventor
袁俊
郭飞
王宽
徐少东
彭若诗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Jiufengshan Laboratory
Original Assignee
Hubei Jiufengshan Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Jiufengshan Laboratory filed Critical Hubei Jiufengshan Laboratory
Priority to CN202310867512.7A priority Critical patent/CN117038732A/zh
Publication of CN117038732A publication Critical patent/CN117038732A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种宽禁带半导体沟槽MOSFET器件及其制作方法,包括由下至上的漏极、N+衬底、N‑外延层、P阱区、N+源区、源极,所述N‑外延层中具有平行设置的栅极沟槽和P+源区,所述栅极沟槽下方的N‑外延层内具有P+掩蔽层和垂直穿透所述P+掩蔽层的P+接地层,所述P+掩蔽层下方具有N+导流层。本发明的器件结构能够更好地保护槽角,降低槽角的电场强度,提高器件的可靠性。

Description

一种宽禁带半导体沟槽MOSFET器件及其制作方法
技术领域
本发明属于半导体器件技术领域,具体涉及一种宽禁带半导体沟槽MOSFET器件结构及其制作方法。
背景技术
SiC和GaN是第三代宽禁带半导体材料,在禁带宽度、击穿场强、电子饱和漂移速度等物理特性上较Si更有优势,制备的功率器件如二极管、晶体管和功率模块具有更优异的电气特性,能够克服硅基无法满足高功率、高压、高频、高温等应用要求的缺陷,也是能够超越摩尔定律的突破路径之一,因此被广泛应用于新能源领域(如光伏、储能、充电桩、电动车等)。近年来,禁带宽度大于SiC和GaN的超宽带隙半导体材料如氧化镓(Ga2O3)、金刚石(C)、氮化铝(AlN)等,以其优越的光学与电学性能,已被认为是一个令人兴奋且充满挑战的新研究领域。较大的禁带宽度使得器件可以应用在很多极端恶劣的环境下:在地热能源生产和油气开采的背景下可以实现更高的钻井速度和更低的故障率,在高温情况下使得电子传感器控制的铝厂、钢厂以及燃煤和燃气电厂的工作温度更高,从而提高这些工业过程的能源效率。在功率开关的应用中,巴利伽优值BFOM(Baliga’s figure-of-merit)是用来表示半导体材料电力电子方面的适用程度的指标,其表示为:BFOM=εμE3,其中ε是介电常数,μ是迁移率,E是半导体的击穿场强,BFOM值大致上与禁带宽度Eg的六次方成正相关。因此较大的禁带宽度意味着宽带隙半导体在功率器件的应用中具有更低的功率损耗和更高的转换效率,从而实现更加优秀和理想的电力电子应用。在宽禁带半导体材料中,Ga2O3具有4.8eV的禁带宽度、8MV/cm的理想击穿电场强度和高达3400的BFOM值,大约是GaN的4倍,SiC的10倍。因此在如今具有更高功率密度以及更低功耗需求的电力电子应用中,Ga2O3材料具有更为重大的研究意义以及更为广阔的市场应用前景。
碳化硅器件可以通过离子注入或者外延生长实现P型掺杂,但是氮化镓、氧化镓、金刚石、氮化铝等禁带宽度比碳化硅大的材料,通过离子注入实现P型掺杂比较困难,可以通过生长外延或者氧化物等特殊工艺实现P型。宽禁带半导体材料的沟槽MOSFET在实际工艺制作和应用中仍然存在几个问题:1) 材料漂移区的高电场导致栅介质层上的电场很高,这个问题在槽角处加剧,从而在高漏极电压下造成栅介质层迅速击穿;对于恶劣环境的静电效应以及电路中的高压尖峰耐受能力差。2)由于宽禁带半导体功率MOSFET主要应用在高压高频大电流领域,电路中的寄生参数会使得在高频开关过程中产生overshoot等尖峰毛刺,造成器件电流通路上的瞬时过压同时增加了开关过程的损耗;或由于功率负载等变化形成大的浪涌电压,因此MOSFET抗浪涌电压能力和过压保护也非常重要。因为现有MOSFET器件本身并不具备抗浪涌电压自抑制能力和过压保护能力,往往需要在实际应用中设计复杂的缓冲电路,浪涌电压抑制电路和过压保护电路。而这种外部匹配的抑制和过压保护电路往往有时间上的延迟,实际开关过程中的高频尖峰电压浪涌仍然由器件本身承受,有时会导致器件沟道区的击穿失效,以及栅结构和电极欧姆接触区域的逐渐失效,引起器件可靠性问题。3)离子注入深度有限,导致很多针对性的沟槽栅极保护结构和抗浪涌设计从工艺上难以实现。
发明内容
针对现有技术的不足,本发明的目的在于提供一种宽禁带半导体沟槽MOSFET器件结构及其制作方法,以能够保护沟槽角落的栅介质层在高漏极电压下免被击穿。
为实现上述目的,本发明采用的如下技术方案:
本发明提供的一种宽禁带半导体沟槽MOSFET器件,包括由下至上的漏极、N+衬底、N-外延层、P阱区、N+源区、源极,所述N-外延层中具有平行设置的栅极沟槽和P+源区,所述栅极沟槽下方的N-外延层内具有P+掩蔽层和垂直穿透所述P+掩蔽层的P+接地层,所述P+掩蔽层下方具有N+导流层。
优选的,所述P+接地层在局部包裹或半包裹所述栅极沟槽。
优选的,所述P+接地层在所述栅极沟槽下方分段设置。
优选的,所述N+导流层在所述栅极沟槽下方分段设置。
优选的,所述P+接地层垂直穿透所述N+导流层。
优选的,在所述栅极沟槽下方的所述P+掩蔽层的宽度大于所述P+接地层的宽度,所述P+掩蔽层的厚度小于所述P+接地层的厚度。
本发明提供的上述宽禁带半导体沟槽MOSFET器件的制作方法,包括以下步骤:
S1. 在宽禁带半导体材料衬底上生长N-外延层;
S2. 在N-外延层上依次形成P阱区和N+源区;
S3. 通过离子注入在N-外延层中形成P+源区;
S4. 在晶圆表面涂覆刻蚀掩模,通过干法刻蚀在N-外延层中形成栅极沟槽;
S5. 在栅极沟槽刻蚀掩膜的基础上沉积介质,然后进行整面刻蚀,在沟槽的侧壁上形成侧墙;
S6. 通过离子注入在栅极沟槽下方的N-外延层内形成P+掩蔽层、N+导流层;
S7. 去除刻蚀掩膜和侧墙,在晶圆表面和栅极沟槽内依次沉积氧化硅/多晶硅/氧化硅,形成“三明治”结构的离子注入掩膜;
S8. 刻蚀离子注入掩膜,形成P+接地层离子注入窗口;
S9. 通过离子注入形成P+接地层,去除离子注入掩膜;
S10. 在栅极沟槽内沉积栅极介质、多晶硅,形成栅极;沉积层间介质隔离栅极与源极,沉积欧姆接触金属并退火;
S11. 在晶圆表面沉积源极金属,形成源极;在衬底背面沉积漏极金属,形成漏极。
优选的,步骤S2中,P阱区的形成方式为离子注入、二次外延、生长P型氧化物中的一种,N+源区的形成方式为离子注入。
优选的,所述N+导流层在步骤S1中制备,步骤S1为:在宽禁带半导体材料衬底上生长N-外延层,通过离子注入形成N+导流层,二次外延生长N-外延层。
优选的,所述N+导流层在步骤S1中制备,步骤S1为:在宽禁带半导体材料衬底上生长N-外延层,从N-外延层表面进行深注入形成N+导流层。
与现有技术相比,本发明的有益效果在于:
本发明在栅极沟槽下方构造P+掩蔽层和P+接地层,P+掩蔽层的宽度大于P+接地层,厚度小于P+接地层,P+接地层穿过P+掩蔽层向下延伸,能够更好地保护槽角,降低槽角的电场强度,提高器件的可靠性;同时P+接地层比P+掩蔽层窄,能够让电流在P+掩蔽层下方的通道更宽,降低JFET效应。本发明在P+掩蔽层下方构造N+导流层,N+导流层的电阻很小而且可以进行灵活的调节,电流通过N+导流层时遇到的阻力减小,可以让电流更好的扩散出去,进一步降低器件的导通电阻。
附图说明
图1为本发明一个实施例的沟槽MOSFET器件结构示意图;
图2示出了形成N-外延层;
图3示出了形成P阱区和N+源区;
图4示出了形成P+源区;
图5示出了形成栅极沟槽;
图6示出了形成侧墙;
图7示出了形成P+掩蔽层和N+导流层;
图8示出了形成离子注入掩膜;
图9示出了形成P+接地层离子注入窗口;
图10示出了形成P+接地层;
图11示出了形成栅极;
图12为本发明另一个实施例的沟槽MOSFET器件结构示意图;
图13为本发明另一个实施例的沟槽MOSFET器件结构示意图;
图14为本发明另一个实施例的沟槽MOSFET器件结构示意图;
图15为本发明另一个实施例的沟槽MOSFET器件结构示意图;
图16为本发明一些实施例的沟槽MOSFET器件版图布局示意图;
图17为本发明另一个实施例的沟槽MOSFET器件结构示意图;
图18为本发明另一个实施例的沟槽MOSFET器件结构示意图。
附图标记:1-漏极,2-N+衬底,3- N-外延层,4- P阱区,5- N+源区,6-源极,7-栅极,8-P+源区,9-P+掩蔽层,10- P+接地层,11-N+导流层,12-栅极介质,13-层间介质,14-欧姆接触金属,15-刻蚀掩模,16-侧墙,17-离子注入掩膜。
具体实施方式
以下结合具体实施例对本发明作进一步的详细说明,以使本领域的技术人员更加清楚地理解本发明。所举实例只用于解释本发明,并非用于限定本发明的范围。在本发明实施例中,若无特殊说明,所有原料组分均为本领域技术人员熟知的市售产品;若未具体指明,所用的技术手段均为本领域技术人员所熟知的常规手段。
本发明实施例采用的宽禁带半导体材料选自SiC、GaN、Ga2O3、金刚石、AlN等。
本发明一些实施方法提供的一种宽禁带半导体沟槽MOSFET器件结构如图1所示,包括由下至上的漏极1、N+衬底2、N-外延层3、P阱区4、N+源区5、源极6,N-外延层3中具有平行设置的栅极沟槽和P+源区8,栅极沟槽下方的N-外延层3内具有P+掩蔽层9和垂直穿透P+掩蔽层9的P+接地层10,P+掩蔽层9的宽度大于P+接地层10,厚度小于P+接地层10,P+接地层10下方具有N+导流层11。
本发明一些实施方法提供的上述宽禁带半导体沟槽MOSFET器件的制作方法包括以下步骤:
1)在宽禁带半导体材料N+衬底2上生长N-外延层3,如图2所示;
2)在N-外延层3上通过离子注入、二次外延、生长P型氧化物等方式中的一种形成P阱区4,通过离子注入形成N+源区5,如图3所示;
3)通过离子注入在N-外延层3中形成P+源区8,如图4所示;
4)在晶圆表面涂覆刻蚀掩模15,通过干法刻蚀在N-外延层3中形成栅极沟槽,如图5所示;
5)在栅极沟槽刻蚀掩膜15的基础上沉积介质,然后进行整面刻蚀,在沟槽的侧壁上形成侧墙16,如图6所示;
6)通过离子注入在栅极沟槽下方的N-外延层3内形成P+掩蔽层9、N+导流层11,如图7所示;
7)去除刻蚀掩膜15和侧墙16,在晶圆表面和栅极沟槽内依次沉积氧化硅/多晶硅/氧化硅,形成“三明治”结构的离子注入掩膜17,如图8所示;
8)刻蚀离子注入掩膜17,形成P+接地层离子注入窗口,如图9所示;
9)通过离子注入形成P+接地层10,去除离子注入掩膜17,如图10所示;
10)在栅极沟槽内沉积栅极介质12、栅极多晶硅,形成栅极7;沉积层间介质13隔离栅极7与源极6,沉积欧姆接触金属14并退火,如图11所示;
11)在晶圆表面沉积源极金属,形成源极6;在N+衬底2背面沉积漏极金属,形成漏极1;得到如图1所示的宽禁带半导体沟槽MOSFET器件结构。
在一些较佳的实施方式中,P+接地层10在局部包裹栅极沟槽,如图12所示。
在另一些较佳的实施方式中,P+接地层10在局部半包裹栅极沟槽。一些实施方式中,P+接地层10在局部单侧半包裹栅极沟槽,如图13所示。一些实施方式中,P+接地层10两侧交替在局部半包裹栅极沟槽,如图14所示。
在一些较佳的实施方式中,P+接地层10在栅极沟槽下方分段设置,如图15所示。
在一些较佳的实施方式中,N+导流层11在所述栅极沟槽下方分段设置,如图16所示,图16(a)~(f)为几种可能的器件版图布局。
在一些较佳的实施方式中,P+接地层10垂直穿透N+导流层11,如图17所示。
在一些较佳的实施方式中,N+导流层11不通过栅槽往下进行离子注入形成,而是通过在宽禁带半导体材料衬底2上生长N-外延层3,离子注入形成N+导流层11,二次外延生长N-外延层3的方式形成,或是通过在宽禁带半导体材料衬底2上生长N-外延层3后,从N-外延层3表面进行深注入形成N+导流层11。这样得到的N+导流层11宽度可以比栅极沟槽宽度大,如图18所示,可以更好的优化导通路径,降低导通电阻。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种宽禁带半导体沟槽MOSFET器件,其特征在于,包括由下至上的漏极、N+衬底、N-外延层、P阱区、N+源区、源极,所述N-外延层中具有平行设置的栅极沟槽和P+源区,所述栅极沟槽下方的N-外延层内具有P+掩蔽层和垂直穿透所述P+掩蔽层的P+接地层,所述P+掩蔽层下方具有N+导流层。
2.根据权利要求1所述的宽禁带半导体沟槽MOSFET器件,其特征在于,所述P+接地层在局部包裹或半包裹所述栅极沟槽。
3.根据权利要求1所述的宽禁带半导体沟槽MOSFET器件,其特征在于,所述P+接地层在所述栅极沟槽下方分段设置。
4.根据权利要求1所述的宽禁带半导体沟槽MOSFET器件,其特征在于,所述N+导流层在所述栅极沟槽下方分段设置。
5.根据权利要求1所述的宽禁带半导体沟槽MOSFET器件,其特征在于,所述P+接地层垂直穿透所述N+导流层。
6.根据权利要求1所述的宽禁带半导体沟槽MOSFET器件,其特征在于,在所述栅极沟槽下方的所述P+掩蔽层的宽度大于所述P+接地层的宽度,所述P+掩蔽层的厚度小于所述P+接地层的厚度。
7.权利要求1~6任一项所述的宽禁带半导体沟槽MOSFET器件的制作方法,其特征在于,包括以下步骤:
S1. 在宽禁带半导体材料衬底上生长N-外延层;
S2. 在N-外延层上依次形成P阱区和N+源区;
S3. 通过离子注入在N-外延层中形成P+源区;
S4. 在晶圆表面涂覆刻蚀掩模,通过干法刻蚀在N-外延层中形成栅极沟槽;
S5. 在栅极沟槽刻蚀掩膜的基础上沉积介质,然后进行整面刻蚀,在沟槽的侧壁上形成侧墙;
S6. 通过离子注入在栅极沟槽下方的N-外延层内形成P+掩蔽层、N+导流层;
S7. 去除刻蚀掩膜和侧墙,在晶圆表面和栅极沟槽内依次沉积氧化硅/多晶硅/氧化硅,形成“三明治”结构的离子注入掩膜;
S8. 刻蚀离子注入掩膜,形成P+接地层离子注入窗口;
S9. 通过离子注入形成P+接地层,去除离子注入掩膜;
S10. 在栅极沟槽内沉积栅极介质、多晶硅,形成栅极;沉积层间介质隔离栅极与源极,沉积欧姆接触金属并退火;
S11. 在晶圆表面沉积源极金属,形成源极;在衬底背面沉积漏极金属,形成漏极。
8.根据权利要求7所述的宽禁带半导体沟槽MOSFET器件的制作方法,其特征在于,步骤S2中,P阱区的形成方式为离子注入、二次外延、生长P型氧化物中的一种,N+源区的形成方式为离子注入。
9.根据权利要求7所述的宽禁带半导体沟槽MOSFET器件的制作方法,其特征在于,所述N+导流层在步骤S1中制备,步骤S1为:在宽禁带半导体材料衬底上生长N-外延层,通过离子注入形成N+导流层,二次外延生长N-外延层。
10.根据权利要求7所述的宽禁带半导体沟槽MOSFET器件的制作方法,其特征在于,所述N+导流层在步骤S1中制备,步骤S1为:在宽禁带半导体材料衬底上生长N-外延层,从N-外延层表面进行深注入形成N+导流层。
CN202310867512.7A 2023-07-15 2023-07-15 一种宽禁带半导体沟槽mosfet器件及其制作方法 Pending CN117038732A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310867512.7A CN117038732A (zh) 2023-07-15 2023-07-15 一种宽禁带半导体沟槽mosfet器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310867512.7A CN117038732A (zh) 2023-07-15 2023-07-15 一种宽禁带半导体沟槽mosfet器件及其制作方法

Publications (1)

Publication Number Publication Date
CN117038732A true CN117038732A (zh) 2023-11-10

Family

ID=88636341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310867512.7A Pending CN117038732A (zh) 2023-07-15 2023-07-15 一种宽禁带半导体沟槽mosfet器件及其制作方法

Country Status (1)

Country Link
CN (1) CN117038732A (zh)

Similar Documents

Publication Publication Date Title
Harada et al. 3.3-kV-class 4H-SiC MeV-implanted UMOSFET with reduced gate oxide field
US10475896B2 (en) Silicon carbide MOSFET device and method for manufacturing the same
CN102364688B (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
US11342433B2 (en) Silicon carbide devices, semiconductor devices and methods for forming silicon carbide devices and semiconductor devices
CN105428412A (zh) AlGaN/GaN异质结场效应晶体管及其制备方法
CN114038908B (zh) 集成二极管的沟槽栅碳化硅mosfet器件及制造方法
US20220157607A1 (en) Method for Annealing a Gate Insulation Layer on a Wide Band Gap Semiconductor Substrate
CN109065621A (zh) 一种绝缘栅双极晶体管及其制备方法
CN109920839B (zh) P+屏蔽层电位可调碳化硅mosfet器件及制备方法
CN108198857A (zh) 一种集成凸块状肖特基二极管的碳化硅mosfet器件元胞结构
CN107275406A (zh) 一种碳化硅TrenchMOS器件及其制作方法
CN116110796B (zh) 集成sbd的碳化硅sgt-mosfet及其制备方法
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
JP4049095B2 (ja) 半導体装置及びその製造方法
CN116799036A (zh) 宽禁带半导体沟槽mosfet器件结构及其制作方法
CN116995099B (zh) 一种电压钳位型碳化硅槽栅mosfet器件及其制造方法
KR20120124101A (ko) 고효율 질화계 이종접합 전계효과 트랜지스터
CN116053297A (zh) 一种多级沟槽增强型功率器件及其制备方法
CN114843332A (zh) 低功耗高可靠性半包沟槽栅mosfet器件及制备方法
CN117038732A (zh) 一种宽禁带半导体沟槽mosfet器件及其制作方法
CN113078204B (zh) 一种氮化镓3d-resurf场效应晶体管及其制造方法
CN113066866B (zh) 碳化硅mosfet器件及其工艺方法
CN108735823A (zh) 一种二极管及其制作方法
CN113488540A (zh) 一种具有垂直场板保护的SiC基槽栅MOSFET结构
CN220106544U (zh) 宽禁带半导体包角沟槽mosfet器件结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination