CN116970677B - 一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用 - Google Patents

一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用 Download PDF

Info

Publication number
CN116970677B
CN116970677B CN202310972222.9A CN202310972222A CN116970677B CN 116970677 B CN116970677 B CN 116970677B CN 202310972222 A CN202310972222 A CN 202310972222A CN 116970677 B CN116970677 B CN 116970677B
Authority
CN
China
Prior art keywords
copper cluster
pathogenic bacteria
dns
nucleic acid
cuncs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310972222.9A
Other languages
English (en)
Other versions
CN116970677A (zh
Inventor
欧阳湘元
薛玉苗
步怀宇
薛姜珊
徐佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORTHWEST UNIVERSITY
Original Assignee
NORTHWEST UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORTHWEST UNIVERSITY filed Critical NORTHWEST UNIVERSITY
Priority to CN202310972222.9A priority Critical patent/CN116970677B/zh
Publication of CN116970677A publication Critical patent/CN116970677A/zh
Application granted granted Critical
Publication of CN116970677B publication Critical patent/CN116970677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/14Streptococcus; Staphylococcus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/305Assays involving biological materials from specific organisms or of a specific nature from bacteria from Micrococcaceae (F)
    • G01N2333/31Assays involving biological materials from specific organisms or of a specific nature from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于纳米材料技术领域,具体为一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,所述铜簇纳米材料利用类过氧化物酶活性,通过进行催化显色反应检测致病菌,所述的铜簇纳米材料在低浓度样品的检测中能表现出更好的性能,即有较高的灵敏度。

Description

一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中 的应用
技术领域
本发明涉及纳米材料技术领域,具体涉及一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用。
背景技术
致病菌是指可以引起人体、动物或植物感染并导致疾病的微生物。它们可以通过多种途径(如空气、水、土壤、食品、接触等)传播引起相应的感染疾病。环境、食品中致病性病原体时刻威胁着公众的生命健康,财产安全,乃至社会稳定。因此,早期诊断受污染食品和感染者中的病原微生物对于确保食品安全和适当治疗至关重要。为了预防控制,减少其危害,准确、快速、可靠地检测成为了防控此类致病菌最主要、最有效的手段之一。
目前,致病菌的鉴定和检测方法主要有以下三种:(1)传统的微生物培养法:该法操作步骤复杂,耗时较长(3-5d),无法满足快速检测及批量样品初筛的需要;(2)分子生物学检测技术:应用最广泛的就是聚合酶链式反应(polymerase chain reaction,PCR),PCR方法灵敏度高,但是也易出现非特异性扩增进而导致假阳性结果,通常还需要细菌富集或样品制备过程,以去除可能抑制放大反应的样品背景基质;(3)免疫学分析技术:免疫学检测泛指基于抗原-抗体特异性结合原理的检测方法,该技术是目前最为常用的快速检测技术,具有检测快速、操作简便等优势,但其识别分子为抗体,抗体的制备需要免疫动物,存在周期长、成本高、抗体易受环境影响等不足。另外,这三种常见的传统检测方法,均对操作人员和实验环境提出了较为苛刻的要求,这对基层单位的推广使用造成了巨大的障碍。
纸基传感器由于其能够快速、简便地检测出食品样品中目标生物成分的存在,已成为即时检验中应用最广泛的诊断技术之一。目前,用于细菌检测的纸基传感器主要分为以下两种:(1)基于核酸的LFSA细菌检测(NALFSA),该方法的原理是用着色的NPs标记能够探测到目标核酸存在的寡核苷酸,以此用作特异性检测探针,通过杂交捕获目标核酸,来达到检测的目的。但是,整个过程涉及多个步骤,操作复杂,不满足即时检测的条件。(2)全细胞LFSA(WLFSA),能够通过直接可视化标记的目标细菌集中在膜的测试区来进行诊断。与NALFSA生物传感器相比,WCLFSA可以检测目标细菌,而无需任何预处理步骤,大大缩短了操作时间。但是,检测的灵敏度并不是很高,考虑到对于致病菌的检测应该开始于感染早期,因此低的检测限的必须的。
综上,迫切需要进一步的努力来开发出易于操作,同时提高灵敏度的检测方法。
发明内容
为了提高检测细菌时的灵敏度,本发明提供了一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用。
一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,所述铜簇纳米材料利用类过氧化物酶活性,通过进行催化显色反应检测致病菌。
优选的,所述铜纳米簇材料用于制备检测金黄色葡萄球菌的产品。
优选的,所述铜簇纳米材料按照如下方法制备:以DNA纳米片(DNA Nanosheets,DNS)作为模板,通过特定的DNA序列设计精确控制铜成核位点,反应性前体Cu2+离子被抗坏血酸钠(SA)还原成铜纳米簇,得到所述铜簇纳米材料。
优选的,进行催化显色反应时,所述铜簇纳米材料与显色底物的质量浓度比为1:5~1000。
优选的,所述显色底物为3,3,5,5-四甲基联苯胺、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐、多巴胺中的任一种。
优选的,所述铜簇纳米材料与过氧化氢反应,检测致病菌。
优选的,所述铜簇纳米材料与过氧化氢的质量浓度比为1:5-5000。
优选的,所述铜簇纳米材料用于制备检测致病菌的传感器。
优选的,所述传感器为DNS-Apts-SA31/CuNCs,DNS-Apts-SA31/CuNCs按照如下方法制备:将金黄色葡萄球菌的特异性适配体SA31与铜簇纳米材料杂交,得到DNS-Apts-SA31,再与抗坏血酸钠反应得到DNS-Apts-SA31/CuNCs。
与现有技术相比,本发明的有益效果在于:
1、在低浓度样品的检测中能表现出更好的性能,即有较高的灵敏度。
2、操作简单,便于携带,易于保存和运输,可以成为实现即时检验的有效工具。
3、本发明使用的材料,即DNS/CuNCs,经证明其具有类过氧化物酶活性,这不仅可以催化显色反应,以快速响应和简单操作的方式对致病菌进行目视检测,还能够在与低浓度的H2O2反应时,催化H2O2生成更多的·OH,具有抗菌活性,能够实现在检测致病菌的同时起到杀菌效果。
附图说明
图1为DNS/CuNCs纳米酶的催化活性示意图;
图2为由DNS/CuNCs介导的a:TMB-H2O2、b:ABTS-H2O2、c:DA-H2O2系统的UV/Vis吸收光谱,d:DNS/CuNCs类过氧化物酶活性的普适性;用于TMB、ABTS和DA的浓度均为0.4mM,DNS/CuNCs和H2O2是2μM和75mM;
图3为DNS/CuNCs的pH依赖性活性;
图4为催化动力学参数的计算;a:DNS/CuNCs催化氧化不同浓度的TMB吸光度随时间的变化;b:DNS/CuNCs(2μM)催化氧化TMB的Michaelis–Menten曲线的非线性拟合结果;所有实验均在4mM HAC-NaAC缓冲液中进行,pH=4.0,吸光度为650nm;
图5为羟基自由基的定性研究;在TMB、H2O2和DNS/CuNCs体系中加上IPA的a:光谱扫描图;b:吸光度值对比(插图为对应颜色变化);
图6为有无材料DNS/CuNCs在DMPO/H2O2溶液中的EPR光谱;
图7为DNS/CuNCs的a:典型HAADF-STEM图像;b:对应放大图像,显示了分布的单个Cu原子(圆圈);
图8为SA31-DNS/CuNCs检测金黄色葡萄球菌的机制示意图;
图9为金黄色葡萄球菌与传感器体系吸光度值的a:线性关系图;b:柱状图;
图10为不同菌种的吸光值结果;
图11为金黄色葡萄球菌检测结果。
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明各实施例中所述实验方法,如无特殊说明,均为常规方法。
缩略语:
PCR:polymerase chain reaction,聚合酶链式反应
LFSA:lateral flow strip assay横向流动试纸试验
NALFSA:Nucleic acid-based LFSA基于核酸的LFSA
WLFSA:Whole cell-based LFSA全细胞LFSA
DNS/CuNCs:DNAnanosheets/Coppernanoclusters DNA纳米片/铜纳米簇
H2O2:过氧化氢
·OH:羟基自由基
TMB:3,3',5,5'-四甲基联苯胺
EDC/NHS:1-(3-二甲基氨基丙基)-3-乙基碳二亚胺/N-羟基丁二酰亚胺
SA:抗坏血酸钠
IPA:异丙醇
EPR:电子顺磁共振光谱
DA:多巴胺
ABTS:2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐
所用铜簇纳米材料为DNS/CuNCs,DNS/CuNCs的制备方法参照DOI号为10.1021/jacs.2c12009的文章。
实施例1
1、合成DNS/CuNCs后用紫外可见光分光光度计检测过氧化物酶底物TMB的氧化产物在650nm波长下的吸光度变化来证明其具有类过氧化物酶活性。
(1)为了证实所制备的DNS/CuNCs纳米材料的类过氧化物酶活性,0.4mM显色底物3,3,5,5-四甲基联苯胺(TMB)、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)和多巴胺(DA)与含有DNS/CuNCs(2μM)和H2O2(75mM)的乙酸缓冲液分别混合;随后,分别在上述溶液中反应后观察到蓝色、绿色和棕红色。
图1为DNS/CuNCs纳米酶的催化活性示意图,如图所示,DNS/CuNCs在过氧化氢的存在下能使TMB、ABTS和DA快速出现显色反应,说明其具有良好的类过氧化物酶活性。
(2)将0.4mM显色底物3,3,5,5-四甲基联苯胺(TMB)、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)和多巴胺(DA)与含有DNS/CuNCs(2μM)和H2O2(75mM)的乙酸缓冲液或H2O2(75mM)分别混合,分别测吸光度,结果如图2所示。
如图2a所示,DNS/CuNCs催化的反应溶液在652nm处表现出氧化TMB(TMB*+)的强特征吸光度,而在没有DNS/CuNCs的情况下可以观察到可忽略不计的吸光度。其他两种过氧化物酶底物(ABTS和DA)也观察到类似的结果(图2b,c),综上,总结了图2d表示DNS/CuNCs纳米酶作为类过氧化物酶的普适性。
综合上述结果,DNS/CuNCs具有优异的过氧化物酶样活性和底物通用性,与天然过氧化物酶相似,并且说明DNS/CuNCs催化增强的活性不依赖于底物。
2、在TMB体系中通过DNS/CuNCs催化的一系列对照实验验证了DNS/CuNCs作为过氧化物酶的可行性(图3和图4),说明可用于后续致病菌检测的传感器构建,具体操作如下:
以0.4mM TMB为过氧化物酶底物,与含有DNS/CuNCs(2μM)和H2O2(75mM)的乙酸缓冲液混合,pH(1-13)是通过在乙酸缓冲液中加入NaOH来进行调节的,然后利用紫外-可见分光光度计进行测试,结果如图3所示。
取20μL TMB,最终浓度为0.01mM、0.05mM、0.1mM、0.3mM、0.36mM、0.5mM、1.0mM和2.0mM,10μLDNS/CuNCs(2μM)和终浓度为75mM的30μL H2O2加入175μL 4mM HAC-NaAC缓冲液(pH=4.0)中。所有实验均在UV-Vis分光光度计上进行,并测量氧化态3,3,5,5-四甲基联苯胺在650nm(ε=35800M-1cm-1)随时间变化的吸光度,结果如图4所示。
如图3所示,DNS/CuNCs在较宽的pH(pH=2-8)的范围内均表现出较高的催化活性,也表明DNS/CuNCs在pH 4下的类过氧化物酶活性最强。
如图4所示,为了获得进一步的见解,酶动力学被用于研究DNS/CuNCs对TMB的氧化反应的催化活性。基于不同底物浓度下的不同氧化速率,可以通过非线性Hill函数模拟获得接近理想的双曲线关系,并符合经典的Michiaelis–Menten方程(图4a)。根据这些图,可以估计一些重要的动力学参数,包括表观米氏常数(Km)、最大初始速度(Vmax)和催化常数(Kcat)(图4b)。经过计算,Km是1.6mM,Vmax是21.3*10-8M s-1,Kcat是2.54s-1,所有上述现象都表明DNS/CuNCs表现出优异的辣根过氧化物酶样催化活性。这种催化反应的快速归因于高表面积和完整的DNS的光滑铜层。
3、羟基自由基(·OH)被认为是一种活性中间体,可以被额外的异丙醇(IPA)清除。当在包含DNS/CuNCs、H2O2和TMB溶液体系中加入异丙醇(IPA)时,ox-TMB的吸光度值明显降低,说明生成的·OH是活性中间体(图5)。证实了·OH在TMB氧化中的重要作用。这一信息为DNA纳米材料的催化性能提供了重要的见解。
DNS/CuNCs对TMB的氧化能力可能与自由基的产生有关,因此,进行电子顺磁共振(EPR)验证实验(图6),利用EPR光谱直接检测生成的羟基自由基(·OH)。在DNS/CuNCs中观察到最高的EPR信号,表明这种DNA纳米材料产生了更多的羟基自由基,这进一步支持了DNS/CuNCs优越的催化活性,正是由于DNS/CuNCs能够催化H2O2生成更多的·OH,因而具有抗菌活性,或许能够实现在检测致病菌的同时起到杀菌的效果。
进一步进行了高角度环形暗场STEM(HAADF-STEM),在高空间分辨率和原子尺度上研究了DNS/CuNCs的结构(图7)。孤立的亮点被确定为单原子Cu,用圆圈圈出(图7b),这表明,在DNS/CuNCs上有大量孤立的单原子Cu位点,这表明DNS/CuNCs是一种单原子催化剂,原子利用率高,这也是其能成为高效催化剂的原因之一,并且有望用于生物传感。
4、在证明了DNS/CuNCs具有较好的过氧化物酶活性,可以催化显色反应后,构建了一种三明治夹心结构的传感器用于金黄色葡萄球菌的快速检测。如图8所示,通过EDC/NHS酰胺化反应将万古霉素固定在连接有BSA的96孔板上,随后将含有金黄色葡萄球菌的样品加入到含万古霉素的96孔板中,通过万古霉素和细菌之间的特异性相互作用捕获细菌。接下来,将金黄色葡萄球菌的特异性适配体SA31与DNS纳米片杂交后识别捕获细菌,所述SA31的序列为AAGCGTGGGACGTCTATGACAAAAGTGCACGCTACTTTGCTAATTTTTTTTTCAGTCAGGCAGTCAGTCA,记为SEQ ID NO.1。利用DNS-SA31/Cu NCs优异的类过氧化物酶活性,TMB发生反应产生可测量的颜色变化从而检测真实样品中的金黄色葡萄球菌,具体如下:
利用DNS/CuNCs的过氧化物酶活特性,使底物TMB发生颜色变化从而检测金黄色葡萄球菌。首先在96孔板中加入200μL 5wt%的BSA溶液,在4℃下孵育24h,之后用PBS冲洗以去除未结合的BSA。然后将Van(万古霉素)溶于pH=6.0的含有EDC:NHS(摩尔比=4:1)的MES缓冲溶液,室温下活化20min后加入结合了BSA的96孔板中,4℃孵育过夜,用PBS缓冲液多次洗涤除去未结合的Van,这一步是通过EDC/NHS酰胺化反应将万古霉素固定在连接有BSA的96孔板上。随后将200μL不同浓度金黄色葡萄球菌菌液(101-107CFU/mL)加入到含万古霉素的96孔板中,37℃下孵化1h,然后用PBS缓冲液除去未附着的细菌,这一步是通过万古霉素和细菌之间的特异性相互作用捕获细菌。由于万古霉素是针对革兰氏阳性菌的广谱抗生素,所以接下来将金黄色葡萄球菌的特异性适配体SA31与DNS/CuNCs杂交加入96孔板中,得到DNS-Apts-SA31,目的是能够特异性识别并捕获金黄色葡萄球菌。
将2μM 20μL DNS-Apts-SA31加入96板中,在4℃下孵育45min,室温下,加入50μM的CuSO4溶液反应10min后再加入新鲜配置0.5mM的SA继续反应10min即可合成稳定的DNS-Apts-SA31/CuNCs,用PBS冲洗以去除未结合的材料。最后将含有0.4mM TMB、75mM H2O2,及NaAc-HAc缓冲溶液加入96孔板中,利用DNS-SA31/CuNCs优异的类过氧化物酶活性,使TMB发生反应产生可测量的颜色变化从而检测真实样品中的金黄色葡萄球菌,15min之后用酶标仪测定652nm波长处的吸光度值,建立起细菌浓度和吸光度之间的线性关系。
通过加入不同浓度的金黄色葡萄球菌(101-107CFU/mL)来评估DNS-Apts-SA31/CuNCs传感器的检测效果。从图9可以看出,随着金黄色葡萄球菌的浓度增加,该体系的变色强度也相应增加,通过652nm处的的吸光值建立了检测S.aureus的定量线性回归曲线,其检测线性范围为101-107CFU/mL,线性回归方程为y=0.007528+0.007706x,线性相关系数为0.9728。可计算出其的检测限低至3.95CFU/mL(信号平均功率S与噪声平均功率N的比值S/N=3,S/N为信噪比)。
如图10所示,目标细菌金黄色葡萄球菌S.aureus与其他三种非目标细菌相比,其在652nm处的的吸光值具有较高的变化。此结果表明DNS-Apts-SA31/CuNCs传感器对金黄色葡萄球菌具有较好的选择性和特异性,对其他非目标无选择性,抗干扰能力较强。
在超市购买了饮用水娃哈哈,果汁和牛奶经实验室灭菌处理后,加入不同浓度的金黄色葡萄球菌来评估此传感器检测的可靠性和未来应用潜力。实验结果如图11所示,实验结果可证明此传感器可在实际样本中定量检测金黄色葡萄球菌,此方法具有较高的准确度。
需要说明的是,本发明权利要求书中涉及数值范围时,应理解为每个数值范围的两个端点以及两个端点之间任何一个数值均可选用,为了防止赘述,本发明描述了优选的实施例。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

1.一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,其特征在于,所述铜簇纳米材料利用类过氧化物酶活性,通过进行催化显色反应检测致病菌;
所述铜簇纳米材料按照如下方法制备:以DNA纳米片作为模板,通过特定的DNA序列设计精确控制铜成核位点,反应性前体Cu2+离子被抗坏血酸钠还原成铜纳米簇,得到所述铜簇纳米材料;
所述特定的DNA序列为5'-GATGGCGAGAGCCTATCGTGATGAACGTACACTGTGAGAATTGACAT-3'、5'-CAGACGCTGGTTGATCGCAATATACTACAGGCCAGTTGGGAATGCGG-3'、5'-GTAGCGCCGCATTCGGCTCTC-3'、5'-TGTAGTATATTCAGTGTACGTTCATCACGATACCAACTGGCC-3'、5'-GACTGCATGTCAATTCTCAGCGATCAACCAG-3'、5'-CGCTACCGTGAACCATAGACTAACTCATACGCTCGACGGACAGCAGC-3'、5'-GCAGTCGCGGGACCTGACTTTGTGCATCGAAATCCTCCTGCAACGACT-3'、5'-CGTCTGGCTGCTGTGGTCCCGC-3'、5'-TGCACAAAGTCACCGTCGAGCGTATGAGTTAGTGGATTTCGA-3'和5'-GCCATCAGTCGTTGCAGGACTATGGTTCACG-3'。
2.根据权利要求1所述的一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,其特征在于,进行催化显色反应时,所述铜簇纳米材料与显色底物的质量浓度比为1:5~1000。
3.根据权利要求2所述的一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,其特征在于,所述显色底物为3,3,5,5-四甲基联苯胺、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐、多巴胺中的任一种。
4.根据权利要求1所述的一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,其特征在于,所述铜簇纳米材料与过氧化氢反应,检测致病菌。
5.根据权利要求4所述的一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,其特征在于,所述铜簇纳米材料与过氧化氢的质量比为1:5-5000。
6.根据权利要求1所述的一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,其特征在于,所述检测致病菌产品为传感器。
7.根据权利要求6所述的一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用,其特征在于,所述传感器为DNS-Apts-SA31/CuNCs,所述DNS-Apts-SA31/CuNCs按照如下方法制备:将金黄色葡萄球菌的特异性适配体SA31与所述铜簇纳米材料杂交,得到DNS-Apts-SA31,再与抗坏血酸钠反应得到DNS-Apts-SA31/CuNCs。
CN202310972222.9A 2023-08-03 2023-08-03 一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用 Active CN116970677B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310972222.9A CN116970677B (zh) 2023-08-03 2023-08-03 一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310972222.9A CN116970677B (zh) 2023-08-03 2023-08-03 一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用

Publications (2)

Publication Number Publication Date
CN116970677A CN116970677A (zh) 2023-10-31
CN116970677B true CN116970677B (zh) 2024-04-30

Family

ID=88479397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310972222.9A Active CN116970677B (zh) 2023-08-03 2023-08-03 一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用

Country Status (1)

Country Link
CN (1) CN116970677B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665821A (zh) * 2008-09-01 2010-03-10 中国人民解放军军事医学科学院基础医学研究所 一组特异识别金黄色葡萄球菌的寡核苷酸适配子及其应用
CN108801998A (zh) * 2018-06-13 2018-11-13 青岛大学 一种基于铜纳米簇复合物的比率荧光探针检测胆碱的方法
CN109126902A (zh) * 2018-09-18 2019-01-04 吉林大学 一种金属纳米簇模拟酶的固定化方法
CN109332721A (zh) * 2018-11-20 2019-02-15 南华大学 一种多功能性铜纳米簇的制备方法及应用
CN110640158A (zh) * 2019-09-24 2020-01-03 西北大学 应用dna纳米带模板法合成的铜纳米簇、合成方法及其应用
CN112161979A (zh) * 2020-09-30 2021-01-01 贵州大学 一种过氧化物酶活性Imm-Fe3+-IL纳米酶的应用
CN113899731A (zh) * 2021-08-17 2022-01-07 广东省科学院测试分析研究所(中国广州分析测试中心) 一种基于核酸适配体对靶标菌和金纳米簇亲和力差异的副溶血性弧菌一步检测方法
CN116511516A (zh) * 2023-06-26 2023-08-01 中国农业大学 一种新型铜基纳米材料及其在抗氧化和抑菌方面的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767234B2 (en) * 2017-03-31 2020-09-08 Regents Of The University Of Minnesota Methods for microbial screening and identification of targets of interest
JP7216031B2 (ja) * 2017-07-11 2023-01-31 アソシアシオン セントロ デ インベスティガシオン コオペラティバ エン ビオマテリアレス-セイセ ビオマグネ 金属ナノクラスター足場

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665821A (zh) * 2008-09-01 2010-03-10 中国人民解放军军事医学科学院基础医学研究所 一组特异识别金黄色葡萄球菌的寡核苷酸适配子及其应用
CN108801998A (zh) * 2018-06-13 2018-11-13 青岛大学 一种基于铜纳米簇复合物的比率荧光探针检测胆碱的方法
CN109126902A (zh) * 2018-09-18 2019-01-04 吉林大学 一种金属纳米簇模拟酶的固定化方法
CN109332721A (zh) * 2018-11-20 2019-02-15 南华大学 一种多功能性铜纳米簇的制备方法及应用
CN110640158A (zh) * 2019-09-24 2020-01-03 西北大学 应用dna纳米带模板法合成的铜纳米簇、合成方法及其应用
CN112161979A (zh) * 2020-09-30 2021-01-01 贵州大学 一种过氧化物酶活性Imm-Fe3+-IL纳米酶的应用
CN113899731A (zh) * 2021-08-17 2022-01-07 广东省科学院测试分析研究所(中国广州分析测试中心) 一种基于核酸适配体对靶标菌和金纳米簇亲和力差异的副溶血性弧菌一步检测方法
CN116511516A (zh) * 2023-06-26 2023-08-01 中国农业大学 一种新型铜基纳米材料及其在抗氧化和抑菌方面的应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Au纳米簇-WS_2纳米片复合材料的合成及类过氧化物酶活性研究;王文俊;吴燕虹;林秀玲;陈伟;刘爱林;彭花萍;;分析化学;20181012(第10期);全文 *
Micron-Scale Fabrication of Ultrathin Amorphous Copper Nanosheets Templated by DNA Scaffolds;Xiangyuan Ouyang等;J. Am. Chem. Soc.;第145卷(第8期);全文 *
Self-assembly Induced Enhanced Electrochemiluminescence of Copper Nanoclusters Using DNA Nanoribbon Templates;Xiangyuan Ouyang等;Angew Chem Int Ed Engl.;第62卷(第21期);摘要 *
Ultrasmall copper nanoclusters with multi-enzyme activities;Yangbin Peng等;RSC Adv.;第11卷(第24期);第14517-14526页 *
基于DNA模板的铜簇荧光传感器的构建及应用;刘璐瑶;中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑(第2022/03期);第9、62-65页 *
基于过渡金属催化活性的食品外源危害物比色检测方法研究;曾洪;中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑(第2023/02期);全文 *
纳米材料模拟酶性质及其应用;梁敏敏;阎锡蕴;;东南大学学报(医学版);20110225(第01期);全文 *

Also Published As

Publication number Publication date
CN116970677A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
Rani et al. Trends in point-of-care diagnosis for Escherichia coli O157: H7 in food and water
Abdelhamid et al. Selective biosensing of Staphylococcus aureus using chitosan quantum dots
Vizzini et al. Highly sensitive detection of Campylobacter spp. In chicken meat using a silica nanoparticle enhanced dot blot DNA biosensor
Ali et al. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture
Salam et al. Detection of Salmonella typhimurium using an electrochemical immunosensor
Baeumner et al. Detection of Viable Oocysts of Cryptosporidium p arvum Following Nucleic Acid Sequence Based Amplification
Zhang et al. Sensitive chemiluminescence immunoassay for E. coli O157: H7 detection with signal dual-amplification using glucose oxidase and laccase
Bhardwaj et al. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae)
Kim et al. Adenosine triphosphate bioluminescence-based bacteria detection using targeted photothermal lysis by gold nanorods
Xie et al. UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout
Liu et al. SERS based artificial peroxidase enzyme regulated multiple signal amplified system for quantitative detection of foodborne pathogens
Kumar et al. Biosensors as novel platforms for detection of food pathogens and allergens
Wang et al. A sensitive Salmonella biosensor using platinum nanoparticle loaded manganese dioxide nanoflowers and thin-film pressure detector
Aguilar et al. Immobilized enzyme-linked DNA-hybridization assay with electrochemical detection for Cryptosporidium p arvum hsp70 mRNA
Wang et al. Culture-free detection of methicillin-resistant Staphylococcus aureus by using self-driving diffusometric DNA nanosensors
Ahmed et al. Food biosensors
Sun et al. Real-time detection of foodborne bacterial viability using a colorimetric bienzyme system in food and drinking water
Hiremath et al. A redox-coupled carbon dots-MnO2 nanosheets based sensory platform for label-free and sensitive detection of E. coli
Alhadrami et al. Development of a simple, fast, and cost-effective nanobased immunoassay method for detecting Norovirus in food samples
Jiang et al. Amperometric genosensor for culture independent bacterial count
Yu et al. Rapid and sensitive detection of Salmonella in milk based on hybridization chain reaction and graphene oxide fluorescence platform
Li et al. Electrochemical aptasensor for rapid and sensitive determination of Salmonella based on target-induced strand displacement and gold nanoparticle amplification
Kumaragurubaran et al. Nanocatalyst coupled with a latent-ratiometric electrochemical switch for label-free zero-tolerance rapid detection of live Salmonella in whole blood samples
CN116970677B (zh) 一种基于框架核酸的铜簇纳米材料在制备检测致病菌产品中的应用
Daramola et al. Functionalized inorganic nanoparticles for the detection of food and waterborne bacterial pathogens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant