CN116959396B - 一种穿孔合金吸声反射多层合金板及其制备工艺 - Google Patents

一种穿孔合金吸声反射多层合金板及其制备工艺 Download PDF

Info

Publication number
CN116959396B
CN116959396B CN202311212818.5A CN202311212818A CN116959396B CN 116959396 B CN116959396 B CN 116959396B CN 202311212818 A CN202311212818 A CN 202311212818A CN 116959396 B CN116959396 B CN 116959396B
Authority
CN
China
Prior art keywords
plate
perforated
alloy
solution
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311212818.5A
Other languages
English (en)
Other versions
CN116959396A (zh
Inventor
于颖
周敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Build Sound Development Of Video Equipment Co ltd
Original Assignee
Jiangsu Build Sound Development Of Video Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Build Sound Development Of Video Equipment Co ltd filed Critical Jiangsu Build Sound Development Of Video Equipment Co ltd
Priority to CN202311212818.5A priority Critical patent/CN116959396B/zh
Publication of CN116959396A publication Critical patent/CN116959396A/zh
Application granted granted Critical
Publication of CN116959396B publication Critical patent/CN116959396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • C08G18/3281Hydroxyamines containing at least three hydroxy groups containing three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6688Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/20Reflecting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • B32B2266/045Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/118Panels, e.g. active sound-absorption panels or noise barriers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3223Materials, e.g. special compositions or gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及吸声反射合金板技术领域,具体为一种穿孔合金吸声反射多层合金板及其制备工艺,包括以下结构:穿孔板、平面底板和阻尼板。所述穿孔板的下方设置有平面底板,所属桥孔底板的上表面和下表面均设置有阻尼板。本发明通过穿孔板上设置的弧形反射面,能够增加对声波的散射,改变声波传播路径,产生有益的慢反射声、增加声音丰满度。设置于平面底板上表面的阻尼板,能够明显改善中低频的吸声效果,增加吸声带宽,提高所制合金板的吸声特性;设置于平面底板下表面的阻尼板,使平面底板具有微弹性声阻尼支撑,声微共振频率使进入桥孔声消磨基础上,使部分声消减、部分声反射、达到吸声效果。

Description

一种穿孔合金吸声反射多层合金板及其制备工艺
技术领域
本发明涉及吸声合金板技术领域,具体为一种穿孔合金吸声反射多层合金板及其制备工艺。
背景技术
穿孔板是利用合金材料通过机械压力加工制得的,多采用冲孔工艺在板材的表面制备穿孔,用于影院、播音室、音乐室、剧院等公共建筑和民用建筑改善音质条件,用于车间厂房、地下室等降噪设备。而现有的一些穿孔板利用其自身及穿孔板后的空腔构成一个吸声体,减弱通过穿孔板的噪声,但要在低频取得理想的吸声性能需要较大的背腔,整个吸声结构也需占据较大的空间,然而实际的噪声控制工程中,由于空间条件的限制,微穿孔板结构的低频吸声性能不理想。因此,我们提出一种穿孔合金吸声反射多层合金板及其制备工艺。
发明内容
本发明的目的在于提供一种穿孔合金吸声反射多层合金板及其制备工艺,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:一种穿孔合金吸声反射多层合金板,包括以下结构:穿孔板、平面底板和阻尼板,所述穿孔板的下方设置有平面底板,所述平面底板的上表面和下表面均设置有阻尼板,依次命名为上阻尼板和下阻尼板,上阻尼板与穿孔板侧面利用合金板焊接形成空腔。
进一步的,所述穿孔板的上表面设置有贯通微孔。
进一步的,所述穿孔板的孔隙率为0.07~0.15。
进一步的,所述微孔直径为穿孔板厚度的0.5~1.0倍;所述穿孔板的厚度为0.8~1.2mm。
进一步的,所述平面底板与穿孔板间的距离为穿孔板厚度的37~50倍。
进一步的,所述穿孔板背离平面底板的一侧设置有多个弧形凸块,弧形凸块通过冲压机冲压得到。
进一步的,所述弧形凸块为半圆柱型、半球型或圆锥型;所述贯穿微孔设置于弧形凸块的顶部中心位置。
进一步的,所述弧形凸块的底部直径为1~3cm;圆锥型的锥角角度为30~50°。
进一步的,所述平面底板的厚度与穿孔板相同。
进一步的,穿孔板和平面底板均为合金板。
进一步的,阻尼板的厚度为0.2~0.4mm。
进一步的,阻尼板由以下工艺制得:
(1)聚氨酯泡沫的制备:
制备:将聚醚多元醇、三乙醇胺、辛酸亚锡、发泡剂、泡沫稳定剂、螺旋纤维混合,搅拌5min,加入异佛尔酮二异氰酸酯,以900~1100r/min的转速搅拌10~30s,于42~48℃反应55~65min,室温静置24h,得到聚氨酯;
预处理:置于无水乙醇溶液中,搅拌8~12min,取出,水洗;置于氢氧化钠溶液中浸泡,8~12min后取出,水洗,干燥,得到聚氨酯泡沫;
(2)阻尼板的制备:
取聚氨酯泡沫置于模具中,浇灌石膏浆料,超声处理1~5min,于40~50℃干燥24h,360~400℃温度下保温焙烧55~65min;将纯铝于680~720℃温度下熔化,浇筑于模具内,冷却,取出,置于醋酸铵溶液中浸泡3~12h,得到阻尼板。
进一步的,步骤(1)中,聚氨酯由以下质量组分制得:100份聚醚多元醇、0.08~0.12份三乙醇胺、1~2份辛酸亚锡、37~63份发泡剂环戊烷、1.5~2.5份泡沫稳定剂二甲基硅油、50~60份异佛尔酮二异氰酸酯、50~60份螺旋纤维。
氢氧化钠溶液的浓度为0.5mol/L。
进一步的,步骤(2)中,石膏浆料包括以下质量组分:100份石膏、5~10份高岭土、5~15份无水硫酸镁、33~50份水;
醋酸铵溶液的质量浓度为8%;铝液浇筑前将模具预热至550℃保温。
进一步的,所述螺旋纤维由以下工艺制得:
取聚间苯二甲酰间苯二胺、氯化锂溶于N,N-二甲基乙酰胺,得到A溶液;将聚氨酯原料溶于四氢呋喃、N,N-二甲基甲酰胺的混合溶液中,得到B溶液;
将A溶液与B溶液混合,搅拌4~5h,得到纺丝液;静电纺丝,得到螺旋纤维。
进一步的,A溶液中含有1.8wt%氯化锂和12wt%聚间苯二甲酰间苯二胺;
B溶液中含有6wt%聚氨酯原料;四氢呋喃、N,N-二甲基甲酰胺的体积比为3:1;
A溶液与B溶液的体积比为(1.0~1.5):1。
进一步的,静电纺丝工艺条件为:纺丝环境温度15~25℃,环境湿度40%~50%,喷丝嘴内径0.25mm,纺丝电压20kV,线速度14.0~14.5cm/s。
与现有技术相比,本发明的有益效果如下:
在上述技术方案中,穿孔板与平面底板之间形成空腔,穿孔板上的贯通微孔直径为微米级(小于1mm),贯通微孔形成短管,从而构成吸声体,利用赫姆霍兹共振效应来吸收声能,当达到结构的共振频率时吸声系数最高,其他频率上的吸声系数较低。
穿孔板的上表面设置有弧形凸块,其弧形反射面能够增加对声波的散射,声波沿着弧形凸块的弯曲表面发生多重散射,改变了声波传播路径,增加声波在桥孔(贯通微孔)四周平面反射面,若干桥孔面板反射中的散射传播产生有益的慢反射声,声音丰满度得到提高。
本申请将聚间苯二甲酰间苯二胺与聚氨酯混合,由于聚氨酯内部含有极性大的酯基,两种聚合物间存在氢键的形成,使得A溶液和B溶液间的相容性得到提高,进行静电纺丝,利用两种聚合物在轴向收缩的不同产生的压缩应力来制备螺旋纤维。然后将螺旋纤维与聚氨酯泡沫的制备组分中,聚氨酯原料发泡,构成空间结构,同时作为粘结剂将螺旋纤维粘结,形成阻尼板的制备模板。在经过无水乙醇、氢氧化钠洗涤后,去除所制聚氨酯泡沫的表面杂质、灰尘、油污,以确保聚氨酯泡沫表面的润滑性。而后利用石膏浆料将聚氨酯泡沫包覆,在烧结过程中去除体系中的有机物(聚氨酯泡沫),聚间苯二甲酰间苯二胺成碳,石膏浆料固化,纯铝熔融后进行浇筑,填充石膏固化形成的内腔,由于铝液与碳间无法相互扩散、形成固溶体,使得聚间苯二甲酰间苯二胺成碳结构保留,从而得到以聚氨酯泡沫为模板的泡沫铝(阻尼板),增加了螺旋连通孔隙。
设置于平面底板上表面的阻尼板,其螺旋连通孔隙的存在能够使中低频的吸声效果得到明显改善,增加吸声带宽,提高所制多层合金板的吸声特性;同时能够增加对声波的反射,声波沿着孔隙的弯曲表面发生多重散射,改变了声波传播路径,反射声因桥孔形状不能再按桥孔路线返回,进入桥孔声能即消失,提高所制多层合金板的吸声特性。
设置于平面底板下表面的阻尼板,能够在一定程度上使平面底板具有弹性支撑,在声波激励作用下,弹性支撑平面底板会产生振动,利用阻尼材料的内摩擦将声能量转换为热能耗散掉,在共振频率附近具有吸声效果,通过孔隙壁的振动蜡吸收声音的能量,并减少所制多层合金板对空间的需求。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
穿孔板、平面底板、合金板均为铝合金板,6061,来源于河南明泰铝业股份有限公司;
聚间苯二甲酰间苯二胺:芳纶1313纤维,来源于美国杜邦公司;
聚氨酯原料:2180A10,来源于巴斯夫(中国)有限公司;
聚醚多元醇:4110,来源于济宁华凯树脂有限公司;
二甲基硅油:PDMS,来源于天津市科密欧化学试剂有限公司;
纯铝:工业纯铝,纯度99.7%,来源于上海馨程铝业有限公司;
以下“份”数均为质量份数。
实施例1:一种穿孔合金吸声反射多层合金板的制备工艺,包括以下工艺:
S1、阻尼板的制备:
(1)螺旋纤维的制备:
取聚间苯二甲酰间苯二胺、氯化锂溶于N,N-二甲基乙酰胺,得到A溶液;将聚氨酯原料溶于四氢呋喃、N,N-二甲基甲酰胺的混合溶液中,得到B溶液;将A溶液与B溶液混合,搅拌4h,得到纺丝液;静电纺丝,得到螺旋纤维;
A溶液中含有1.8wt%氯化锂和12wt%聚间苯二甲酰间苯二胺;B溶液中含有6wt%聚氨酯原料;四氢呋喃、N,N-二甲基甲酰胺的体积比为3:1;A溶液与B溶液的体积比为1:1;静电纺丝工艺条件为:纺丝环境温度15℃,环境湿度40%,喷丝嘴内径0.25mm,纺丝电压20kV,线速度14.0cm/s;
(2)聚氨酯泡沫的制备:
制备:将聚醚多元醇、三乙醇胺、辛酸亚锡、发泡剂、泡沫稳定剂、螺旋纤维混合,搅拌5min,加入异佛尔酮二异氰酸酯,以900r/min的转速搅拌30s,于42℃反应65min,室温静置24h,得到聚氨酯;聚氨酯由以下质量组分制得:100份聚醚多元醇、0.08份三乙醇胺、1份辛酸亚锡、37份发泡剂环戊烷、1.5份泡沫稳定剂二甲基硅油、50份异佛尔酮二异氰酸酯、50份螺旋纤维;
预处理:置于无水乙醇溶液中,搅拌8min,取出,水洗;置于0.5mol/L的氢氧化钠溶液中浸泡,8min后取出,水洗,干燥,得到聚氨酯泡沫;
(3)阻尼板的制备:
取聚氨酯泡沫置于模具中,浇灌石膏浆料,超声处理1min,于40℃干燥24h,360℃温度下保温焙烧55min;将模具预热至550℃保温,纯铝于680℃温度下熔化,浇筑于模具内,冷却,取出,置于8wt%醋酸铵溶液中浸泡3h,得到阻尼板;阻尼板的厚度为0.2mm;石膏浆料包括以下质量组分:100份石膏、5份高岭土、5份无水硫酸镁、33份水;
S2、多层合金板的制备:
取一块穿孔板、一块平面底板和两块阻尼板,按照穿孔板、阻尼板、平面底板、阻尼板的上下结构顺序放置,阻尼板位于平面底板的上表面和下表面,利用合金板将形成结构的侧面焊接,得到多层合金板;
穿孔板的上表面设置有贯通微孔,穿孔板的孔隙率为0.07,微孔直径为穿孔板厚度的0.5倍;穿孔板的厚度为0.8mm;平面底板的厚度与穿孔板相同;平面底板与穿孔板间的距离为穿孔板厚度的37倍;
穿孔板背离平面底板的一侧设置有多个弧形凸块,数量与贯通微孔相同,贯穿微孔设置于弧形凸块的顶部中心位置;弧形凸块为半圆柱型,弧形凸块的底部直径为1.5cm。
实施例2:一种穿孔合金吸声反射多层合金板的制备工艺,包括以下工艺:
S1、阻尼板的制备:
(1)螺旋纤维的制备:
取聚间苯二甲酰间苯二胺、氯化锂溶于N,N-二甲基乙酰胺,得到A溶液;将聚氨酯原料溶于四氢呋喃、N,N-二甲基甲酰胺的混合溶液中,得到B溶液;将A溶液与B溶液混合,搅拌4.5h,得到纺丝液;静电纺丝,得到螺旋纤维;
A溶液中含有1.8wt%氯化锂和12wt%聚间苯二甲酰间苯二胺;B溶液中含有6wt%聚氨酯原料;四氢呋喃、N,N-二甲基甲酰胺的体积比为3:1;A溶液与B溶液的体积比为1.2:1;静电纺丝工艺条件为:纺丝环境温度20℃,环境湿度45%,喷丝嘴内径0.25mm,纺丝电压20kV,线速度14.2cm/s;
(2)聚氨酯泡沫的制备:
制备:将聚醚多元醇、三乙醇胺、辛酸亚锡、发泡剂、泡沫稳定剂、螺旋纤维混合,搅拌5min,加入异佛尔酮二异氰酸酯,以1000r/min的转速搅拌20s,于45℃反应60min,室温静置24h,得到聚氨酯;聚氨酯由以下质量组分制得:100份聚醚多元醇、02份三乙醇胺、1.5份辛酸亚锡、50份发泡剂环戊烷、2份泡沫稳定剂二甲基硅油、55份异佛尔酮二异氰酸酯、55份螺旋纤维;
预处理:置于无水乙醇溶液中,搅拌10min,取出,水洗;置于0.5mol/L的氢氧化钠溶液中浸泡,10min后取出,水洗,干燥,得到聚氨酯泡沫;
(3)阻尼板的制备:
取聚氨酯泡沫置于模具中,浇灌石膏浆料,超声处理3min,于45℃干燥24h,380℃温度下保温焙烧60min;将模具预热至550℃保温,纯铝于700℃温度下熔化,浇筑于模具内,冷却,取出,置于8wt%醋酸铵溶液中浸泡6h,得到阻尼板;阻尼板的厚度为0.2mm;石膏浆料包括以下质量组分:100份石膏、8份高岭土、10份无水硫酸镁、41份水;
S2、多层合金板的制备:
取一块穿孔板、一块平面底板和两块阻尼板,按照穿孔板、阻尼板、平面底板、阻尼板的上下结构顺序放置,阻尼板位于平面底板的上表面和下表面,利用合金板将形成结构的侧面焊接,得到多层合金板;
穿孔板的上表面设置有贯通微孔,穿孔板的孔隙率为0.12,微孔直径为穿孔板厚度的0.8倍;穿孔板的厚度为0.8mm;平面底板的厚度与穿孔板相同;平面底板与穿孔板间的距离为穿孔板厚度的44倍;
穿孔板背离平面底板的一侧设置有多个弧形凸块,数量与贯通微孔相同,贯穿微孔设置于弧形凸块的顶部中心位置;弧形凸块为半球型,弧形凸块的底部直径为1.5cm。
实施例3:一种穿孔合金吸声反射多层合金板的制备工艺,包括以下工艺:
S1、阻尼板的制备:
(1)螺旋纤维的制备:
取聚间苯二甲酰间苯二胺、氯化锂溶于N,N-二甲基乙酰胺,得到A溶液;将聚氨酯原料溶于四氢呋喃、N,N-二甲基甲酰胺的混合溶液中,得到B溶液;将A溶液与B溶液混合,搅拌5h,得到纺丝液;静电纺丝,得到螺旋纤维;
A溶液中含有1.8wt%氯化锂和12wt%聚间苯二甲酰间苯二胺;B溶液中含有6wt%聚氨酯原料;四氢呋喃、N,N-二甲基甲酰胺的体积比为3:1;A溶液与B溶液的体积比为1.5:1;静电纺丝工艺条件为:纺丝环境温度25℃,环境湿度50%,喷丝嘴内径0.25mm,纺丝电压20kV,线速度14.5cm/s;
(2)聚氨酯泡沫的制备:
制备:将聚醚多元醇、三乙醇胺、辛酸亚锡、发泡剂、泡沫稳定剂、螺旋纤维混合,搅拌5min,加入异佛尔酮二异氰酸酯,以1100r/min的转速搅拌10s,于48℃反应55min,室温静置24h,得到聚氨酯,聚氨酯由以下质量组分制得:100份聚醚多元醇、0.12份三乙醇胺、2份辛酸亚锡、63份发泡剂环戊烷、2.5份泡沫稳定剂二甲基硅油、60份异佛尔酮二异氰酸酯、60份螺旋纤维;
预处理:置于无水乙醇溶液中,搅拌12min,取出,水洗;置于0.5mol/L的氢氧化钠溶液中浸泡,12min后取出,水洗,干燥,得到聚氨酯泡沫;
(3)阻尼板的制备:
取聚氨酯泡沫置于模具中,浇灌石膏浆料,超声处理5min,于50℃干燥24h,400℃温度下保温焙烧55min;将模具预热至550℃保温,纯铝于720℃温度下熔化,浇筑于模具内,冷却,取出,置于8wt%醋酸铵溶液中浸泡9h,得到阻尼板;阻尼板的厚度为0.2mm;石膏浆料包括以下质量组分:100份石膏、10份高岭土、15份无水硫酸镁、50份水;
S2、多层合金板的制备:
取一块穿孔板、一块平面底板和两块阻尼板,按照穿孔板、阻尼板、平面底板、阻尼板的上下结构顺序放置,阻尼板位于平面底板的上表面和下表面,利用合金板将形成结构的侧面焊接,得到多层合金板;
穿孔板的上表面设置有贯通微孔,穿孔板的孔隙率为0.15,微孔直径为穿孔板厚度相同;穿孔板的厚度为0.8mm;平面底板的厚度与穿孔板相同;平面底板与穿孔板间的距离为穿孔板厚度的50倍;
穿孔板背离平面底板的一侧设置有多个弧形凸块,数量与贯通微孔相同,贯穿微孔设置于弧形凸块的顶部中心位置;弧形凸块为圆锥型,弧形凸块的底部直径为1.5cm,锥角角度为50°。
对比例1:一种穿孔合金吸声反射多层合金板的制备工艺,包括以下工艺:
步骤S1与实施例1相同;
S2、多层合金板的制备:
取一块穿孔板、一块平面底板和一块阻尼板,按照穿孔板、阻尼板、平面底板的上下结构顺序放置,阻尼板位于平面底板的上表面,利用合金板将形成结构的侧面焊接,得到多层合金板;
穿孔板的上表面设置有贯通微孔,穿孔板的孔隙率为0.07,微孔直径为穿孔板厚度的0.5倍;穿孔板的厚度为0.8mm;平面底板的厚度与穿孔板相同;平面底板与穿孔板间的距离为穿孔板厚度的37倍;
穿孔板背离平面底板的一侧设置有多个弧形凸块,数量与贯通微孔相同,贯穿微孔设置于弧形凸块的顶部中心位置;弧形凸块为半圆柱型,弧形凸块的底部直径为1.5cm。
对比例2:一种穿孔合金吸声反射多层合金板的制备工艺,包括以下工艺:
步骤S1与实施例1相同;
S2、多层合金板的制备:
取一块穿孔板、一块平面底板和一块阻尼板,按照穿孔板、平面底板、阻尼板的上下结构顺序放置,阻尼板位于平面底板的下表面,利用合金板将形成结构的侧面焊接,得到多层合金板;
穿孔板的上表面设置有贯通微孔,穿孔板的孔隙率为0.07,微孔直径为穿孔板厚度的0.5倍;穿孔板的厚度为0.8mm;平面底板的厚度与穿孔板相同;平面底板与穿孔板间的距离为穿孔板厚度的37倍;
穿孔板背离平面底板的一侧设置有多个弧形凸块,数量与贯通微孔相同,贯穿微孔设置于弧形凸块的顶部中心位置;弧形凸块为半圆柱型,弧形凸块的底部直径为1.5cm。
对比例3:一种穿孔合金吸声反射多层合金板的制备工艺,包括以下工艺:
取一块穿孔板置于一块平面底板上方,利用合金板将形成结构的侧面焊接,得到多层合金板;
穿孔板的上表面设置有贯通微孔,穿孔板的孔隙率为0.07,微孔直径为穿孔板厚度的0.5倍;穿孔板的厚度为0.8mm;平面底板的厚度与穿孔板相同;平面底板与穿孔板间的距离为穿孔板厚度的37倍;
穿孔板背离平面底板的一侧设置有多个弧形凸块,数量与贯通微孔相同,贯穿微孔设置于弧形凸块的顶部中心位置;弧形凸块为半圆柱型,弧形凸块的底部直径为1.5cm。
对比例4:一种穿孔合金吸声反射多层合金板的制备工艺,包括以下工艺:
S1、阻尼板的制备:
步骤(1)与实施例1相同,得到螺旋纤维;
步骤(2)与实施例1相同,得到聚氨酯泡沫;
(3)阻尼板的制备:
取聚氨酯泡沫置于模具中,浇灌石膏浆料,超声处理1min,于40℃干燥24h,560℃温度下保温焙烧55min;将模具预热至550℃保温,纯铝于680℃温度下熔化,浇筑于模具内,冷却,取出,置于8wt%醋酸铵溶液中浸泡3h,得到阻尼板;阻尼板的厚度为0.2mm;石膏浆料包括以下质量组分:100份石膏、5份高岭土、5份无水硫酸镁、33份水;
步骤S2与实施例1相同,得到多层合金板。
对比例5:一种穿孔合金吸声反射多层合金板的制备工艺,包括以下工艺:
S1、阻尼板的制备:
(1)聚氨酯泡沫的制备:
制备:将聚醚多元醇、三乙醇胺、辛酸亚锡、发泡剂、泡沫稳定剂混合,搅拌5min,加入异佛尔酮二异氰酸酯,以900r/min的转速搅拌30s,于42℃反应65min,室温静置24h,得到聚氨酯;聚氨酯由以下质量组分制得:100份聚醚多元醇、0.08份三乙醇胺、1份辛酸亚锡、37份发泡剂环戊烷、1.5份泡沫稳定剂二甲基硅油、50份异佛尔酮二异氰酸酯;
预处理:置于无水乙醇溶液中,搅拌8min,取出,水洗;置于0.5mol/L的氢氧化钠溶液中浸泡,8min后取出,水洗,干燥,得到聚氨酯泡沫;
(2)阻尼板的制备:
取聚氨酯泡沫置于模具中,浇灌石膏浆料,超声处理1min,于40℃干燥24h,360℃温度下保温焙烧55min;将模具预热至550℃保温,纯铝于680℃温度下熔化,浇筑于模具内,冷却,取出,置于8wt%醋酸铵溶液中浸泡3h,得到阻尼板;阻尼板的厚度为0.2mm;石膏浆料包括以下质量组分:100份石膏、5份高岭土、5份无水硫酸镁、33份水;
步骤S2与实施例1相同,得到多层合金板。
实验
取实施例1-3、对比例1-5中得到的多层合金板,制得试样,分别对其性能进行检测并记录检测结果:
以GB/T 18696.2为参考标准,采用阻抗管声学测试系统测量多层合金板试样的吸声性能;
根据上表中的数据,可以清楚得到以下结论:
实施例1-3中得到的多层合金板与对比例1-5中得到的多层合金板形成对比,检测结果可知,
与对比例相比,实施例1-3中得到的多层合金板,具有较高的平均降噪系数,且在低中高频声波均具有更高的吸声系数。这充分说明了本发明实现了对所制多层合金板吸声反射性能的提高。
与实施例1相比,对比例1-3中得到的多层合金板,其结构不同;对比例4-5中得到的多层合金板,其阻尼板的制备工艺不同。而对比例1-5中得到的多层合金板,平均降噪系数、吸声系数数据均有下降,可知,本发明对所制多层合金板结构、阻尼板制备工艺的设置,能够促进所制多层合金板吸声反射性能的改善高。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程方法物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程方法物品或者设备所固有的要素。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改等同替换改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种穿孔合金吸声反射多层合金板,其特征在于:包括以下结构:穿孔板、平面底板和阻尼板,所述穿孔板的下方设置有平面底板,所述平面底板的上表面和下表面均设置有阻尼板,位于平面底板上表面的阻尼板与穿孔板侧面焊接形成空腔;
所述阻尼板由以下工艺制得:
(1)聚氨酯泡沫的制备:
制备:将聚醚多元醇、三乙醇胺、辛酸亚锡、发泡剂、泡沫稳定剂、螺旋纤维混合,搅拌5min,加入异佛尔酮二异氰酸酯,以900~1100r/min的转速搅拌10~30s,于42~48℃反应55~65min,室温静置24h,得到聚氨酯;
预处理:置于无水乙醇溶液中,搅拌8~12min,取出,水洗;置于氢氧化钠溶液中浸泡,8~12min后取出,水洗,干燥,得到聚氨酯泡沫;
(2)阻尼板的制备:
取聚氨酯泡沫置于模具中,浇灌石膏浆料,超声处理1~5min,于40~50℃干燥24h,560~600℃温度下保温焙烧55~65min;将纯铝于680~720℃温度下熔化,浇筑于模具内,冷却,取出,置于醋酸铵溶液中浸泡3~12h,得到阻尼板。
2.根据权利要求1所述的一种穿孔合金吸声反射多层合金板,其特征在于:所述穿孔板的上表面设置有贯通微孔,所述穿孔板的孔隙率为0.07~0.15。
3.根据权利要求2所述的一种穿孔合金吸声反射多层合金板,其特征在于:所述贯通微孔直径为穿孔板厚度的0.5~1.0倍;所述穿孔板的厚度为0.8~1.2mm;所述平面底板与穿孔板间的距离为穿孔板厚度的37~50倍。
4.根据权利要求3所述的一种穿孔合金吸声反射多层合金板,其特征在于:所述穿孔板背离平面底板的一侧设置有多个弧形凸块;所述弧形凸块为半圆柱型、半球型或圆锥型;所述贯通微孔设置于弧形凸块的顶部中心位置。
5.根据权利要求1所述的一种穿孔合金吸声反射多层合金板,其特征在于:步骤(1)中,聚氨酯由以下质量组分制得:100份聚醚多元醇、0.08~0.12份三乙醇胺、1~2份辛酸亚锡、37~63份发泡剂环戊烷、1.5~2.5份泡沫稳定剂二甲基硅油、50~60份异佛尔酮二异氰酸酯、50~60份螺旋纤维。
6.根据权利要求1所述的一种穿孔合金吸声反射多层合金板,其特征在于:步骤(2)中,石膏浆料包括以下质量组分:100份石膏、5~10份高岭土、5~15份无水硫酸镁、33~50份水。
7.根据权利要求1所述的一种穿孔合金吸声反射多层合金板,其特征在于:所述螺旋纤维由以下工艺制得:
取聚间苯二甲酰间苯二胺、氯化锂溶于N,N-二甲基乙酰胺,得到A溶液;将聚氨酯原料溶于四氢呋喃、N,N-二甲基甲酰胺的混合溶液中,得到B溶液;
将A溶液与B溶液混合,搅拌4~5h,得到纺丝液;静电纺丝,得到螺旋纤维。
8.根据权利要求7所述的一种穿孔合金吸声反射多层合金板,其特征在于:所述A溶液中含有1.8wt%氯化锂和12wt%聚间苯二甲酰间苯二胺;B溶液中含有6wt%聚氨酯原料;四氢呋喃、N,N-二甲基甲酰胺的体积比为3:1;A溶液与B溶液的体积比为(1.0~1.5):1。
9.根据权利要求7所述的一种穿孔合金吸声反射多层合金板,其特征在于:所述静电纺丝工艺条件为:纺丝环境温度15~25℃,环境湿度40%~50%,喷丝嘴内径0.25mm,纺丝电压20kV,线速度14.0~14.5cm/s。
CN202311212818.5A 2023-09-20 2023-09-20 一种穿孔合金吸声反射多层合金板及其制备工艺 Active CN116959396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311212818.5A CN116959396B (zh) 2023-09-20 2023-09-20 一种穿孔合金吸声反射多层合金板及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311212818.5A CN116959396B (zh) 2023-09-20 2023-09-20 一种穿孔合金吸声反射多层合金板及其制备工艺

Publications (2)

Publication Number Publication Date
CN116959396A CN116959396A (zh) 2023-10-27
CN116959396B true CN116959396B (zh) 2023-12-15

Family

ID=88456817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311212818.5A Active CN116959396B (zh) 2023-09-20 2023-09-20 一种穿孔合金吸声反射多层合金板及其制备工艺

Country Status (1)

Country Link
CN (1) CN116959396B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075871A1 (de) * 2012-11-14 2014-05-22 Federal-Mogul Sealing Systems Gmbh Schutzschild zur thermischen und akustischen abschirmung
CN104538020A (zh) * 2014-11-19 2015-04-22 崔悦 一种超微孔陶瓷吸声板
CN104727452A (zh) * 2015-02-11 2015-06-24 瓮福达州化工有限责任公司 一种复合隔音材料及基于该材料的隔音墙体结构
CN105169972A (zh) * 2015-09-30 2015-12-23 北京新源国能科技有限公司 一种中空纤维纳滤膜以及生产中空纤维纳滤膜的制备方法
CN204926787U (zh) * 2015-07-30 2015-12-30 贵州大学 一种圆柱空腔组合型吸声覆盖层
CN112159586A (zh) * 2020-10-15 2021-01-01 尹贻成 一种高强度复合吸声材料的制备方法
JP2021018265A (ja) * 2019-07-17 2021-02-15 帝人フロンティア株式会社 吸音材および吸音製品
CN115596106A (zh) * 2022-08-29 2023-01-13 陕西工大福田科技工程有限公司(Cn) 一种阻抗复合吸隔声板及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075871A1 (de) * 2012-11-14 2014-05-22 Federal-Mogul Sealing Systems Gmbh Schutzschild zur thermischen und akustischen abschirmung
CN104538020A (zh) * 2014-11-19 2015-04-22 崔悦 一种超微孔陶瓷吸声板
CN104727452A (zh) * 2015-02-11 2015-06-24 瓮福达州化工有限责任公司 一种复合隔音材料及基于该材料的隔音墙体结构
CN204926787U (zh) * 2015-07-30 2015-12-30 贵州大学 一种圆柱空腔组合型吸声覆盖层
CN105169972A (zh) * 2015-09-30 2015-12-23 北京新源国能科技有限公司 一种中空纤维纳滤膜以及生产中空纤维纳滤膜的制备方法
JP2021018265A (ja) * 2019-07-17 2021-02-15 帝人フロンティア株式会社 吸音材および吸音製品
CN112159586A (zh) * 2020-10-15 2021-01-01 尹贻成 一种高强度复合吸声材料的制备方法
CN115596106A (zh) * 2022-08-29 2023-01-13 陕西工大福田科技工程有限公司(Cn) 一种阻抗复合吸隔声板及其制备方法

Also Published As

Publication number Publication date
CN116959396A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
Chen et al. The effects of various additive components on the sound absorption performances of polyurethane foams
Jiang et al. Phononic glass: A robust acoustic-absorption material
CN106084749A (zh) 一种聚氨酯吸声材料及其制备方法
Xu et al. Sound absorption performance of highly porous stainless steel foam with reticular structure
Wenbo et al. Sound absorption behavior of polyurethane foam composites with different ethylene propylene diene monomer particles
CN116959396B (zh) 一种穿孔合金吸声反射多层合金板及其制备工艺
Dong et al. Development of cost effective ultra-lightweight cellulose-based sound absorbing material over silica sol/natural fiber blended substrate
CN106751500A (zh) 一种汽车隔热隔音板的材料及其制备方法
Wang et al. Ultralight metamaterial for sound absorption based on Miura‐Ori tessellation structures
Wang et al. The sound absorption of sisal fiber and sisal fiber/polyethylene film sheets: Morphology and structure
Xu et al. Novel porous fiber-based composites with excellent sound-absorbing and flame-retardant properties
Tongtong et al. Sound absorption property of polyurethane foam with polyethylene fiber
CN113603924B (zh) 一种吸声多级孔分布的pi气凝胶及其制备方法
CN115806739A (zh) 一种多孔声学增容材料及其制备方法和扬声器、电子设备
Li et al. Custom‐Built Graphene Acoustic‐Absorbing Aerogel for Audio Signal Recognition
Yu et al. Sound insulation of a novel laminated polymer matrix composite containing metallic hollow spheres based on phononic crystal structure design
Rutkevičius et al. Sound absorption properties of porous composites fabricated by a hydrogel templating technique
CN111849048B (zh) 一种金属粉-橡胶颗粒复合的声子材料、制备方法及应用
CN112521652B (zh) 一种海藻酸钠-棕榈纤维复合气凝胶及其制备方法和应用
Ji et al. Preparation and acoustic properties of a tung oleic acid‐based polyurethane foam and its stratified structure
Zhang et al. Study of a sound absorbing polyurethane based on porous composite material
CN107033393B (zh) 一种具有低频吸声隔声功能的纤维材料的制备方法
CN102408718A (zh) 一种硅发泡胶组合物及其制备方法、一种硅发泡胶和一种超声波传感器
CN205736193U (zh) 微孔膜与聚氨酯泡棉复合的中低频段高吸声降噪材料
CN110783084A (zh) 一种宽频带复合共振吸隔声结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant