CN116949078A - 一种高产假尿苷的工程菌的构建方法及其应用 - Google Patents

一种高产假尿苷的工程菌的构建方法及其应用 Download PDF

Info

Publication number
CN116949078A
CN116949078A CN202310726503.6A CN202310726503A CN116949078A CN 116949078 A CN116949078 A CN 116949078A CN 202310726503 A CN202310726503 A CN 202310726503A CN 116949078 A CN116949078 A CN 116949078A
Authority
CN
China
Prior art keywords
pseudouridine
fermentation
coli
glucose
homologous recombination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310726503.6A
Other languages
English (en)
Inventor
魏国光
张弛
陈可泉
张阿磊
周宁
刘桂祯
黄炯威
劳伟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202310726503.6A priority Critical patent/CN116949078A/zh
Publication of CN116949078A publication Critical patent/CN116949078A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • C12P19/385Pyrimidine nucleosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01044Phosphogluconate dehydrogenase (decarboxylating) (1.1.1.44)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本申请公开了一种高产假尿苷的工程菌的构建方法及其应用,首先在基因工程菌E.coli中,过表达了假尿苷5‑磷酸糖苷酶和假尿苷磷酸酶构建了假尿苷合成路径,同时过表达了大肠杆菌磷酸戊糖途径中的葡萄糖6‑磷酸脱氢酶和葡萄糖酸6‑磷酸脱氢酶增强了体内的5‑磷酸核糖的供给构建了可利用葡萄糖和尿嘧啶作为底物生产假尿苷的基因工程菌。最适发酵温度为20℃,最适发酵pH为8,IPTG浓度为0.6 mM时,发酵假尿苷最高产量可达39.6 g/L。本发明所述的方法可代替方法目前化学法和酶法,避免了生产假尿苷造成的环境污染以及酶催化法做以及使用底物成本高的问题。

Description

一种高产假尿苷的工程菌的构建方法及其应用
技术领域
本发明涉及生物技术领域,具体涉及一种高产假尿苷的工程菌及其应用。
背景技术
假尿苷(Pseudouridine,ψ)是一种尿嘧啶核苷的天然异构体,假尿苷的结构式(结构式II)与尿苷(结构式I/>)不同,假尿苷的核糖不与尿嘧啶(Uridine,U)的N1连接,而是与C5相连接形成假尿苷。在自然界中,假尿苷的合成是通过假尿苷合成酶催化尿苷异构化形成。
在1951年mRNA水解研究中首次发现,之后被称为第5种核苷酸,随后在多种RNA中发现,如tRNA、rRNA等。随着科研工作者逐渐对假尿苷在RNA中的功能进行深入研究,发现mRNA中所有尿苷被假尿苷代替后,mRNA的稳定性明显增强,并且同时增强了体内的翻译效率。
在生物医药领域,假尿苷由于其特殊性越来越受到学者们的关注。首先,假尿苷被作为一种潜在的生物标志物,用于肾病和肿瘤的诊断、疗效检测等。近年来,基于假尿苷可以稳定RNA或者帮助氨基酰转移酶与tRNAs相互作用,假尿苷在基因药物合成方面同样受到关注。假尿苷衍生物N1-甲基假尿苷可被用于合成mRNA疫苗,可有效的抵抗SARS-CoV-2,同样包括了目前流行的COVID-19。因此,作为重要的mRNA疫苗原料,假尿苷的规模化生产具有重要意义。
目前报道的假尿苷合成的方法有化学合成法和生物合成法,化学合成法存在合成步骤多、收益率差,而且用到易燃易爆的有机试剂,形成一定的生产安全问题。生物法中,专利CN 112746036 A报道了一种链霉菌及其发酵产假尿苷的方法,但是该方法产量较低。专利CN 112592880 B报道了一种产假尿苷工程菌及其应用产量可达到7 g/L,但是发酵过程中需要以肌酐水解后获得的5-磷酸核糖作为前体,大大提高了生产成本。Riley报道了一种酶法和化学法结合合成假尿苷的方法,利用假尿苷-5’-磷酸糖苷酶催化尿嘧啶和由腺苷水解获得的5’-磷酸核糖合成假尿苷-5’-磷酸糖,再由碱性磷酸酶水解获得假尿苷,但是生产过程仍然需要昂贵的5-磷酸核糖作为底物,而且制备过程复杂,不适合大规模生产。
发明内容
针对现有假尿苷生产技术中产物浓度低,生产成本高的问题,本发明的目的提供了一种高产假尿苷的工程菌的构建方法及其应用,构建得到的工程菌以葡萄糖为底物合成5-磷酸核糖,再与尿嘧啶为底物催化合成假尿苷,降低了发酵生产的成本。
为了解决以上技术问题,本发明采用如下技术方案:
一种高产假尿苷的工程菌的构建方法,包括以下步骤:
步骤1,使用同源重组酶将葡萄糖6-磷酸脱氢酶编码基因G6PD连接到质粒pRSFDuet-1的酶切位点BamH I和Hind III之间,同源重组产物转化到宿主菌株中,并筛选得到正确的重组质粒pRSFDuet-G6PD;使用同源重组酶将葡萄糖酸6-磷酸脱氢酶编码基因G6PDH,连接到质粒pRSFDuet-G6PD的酶切位点Nde I和Xho I之间,同源重组产物转化至宿主菌株中,并进行筛选获得正确的重组质粒,记为pRSFDuet-G6PD-G6PDH,所述的葡萄糖6-磷酸脱氢酶和葡萄糖酸6-磷酸脱氢酶的核苷酸序列来源于E. coli MG1655;
步骤2,使用同源重组酶将假尿苷5-磷酸糖苷酶基因TG连接至pETDuet-1的酶切位点BamH I和Hind III之间,并将同源重组产物转化到大宿主菌株中进行,筛选获得正确的重组质粒pETDuet-TG,使用同源重组技术将5-磷酸假尿苷磷酸酶基因LS连接到质粒pETDuet-TG的酶切位点Nde I和Xho I之间,将重组产物转化至宿主菌株中,并筛选出正确的重组质粒,记为pETDuet-TG-LS,其中,所述假尿苷5-磷酸糖苷酶的核苷酸序列来源于E. coli MG1655,;磷酸酶的核苷酸序列序列来源于Streptomycessp ID38640;
步骤3,将重组质粒pRSFDuet-G6PD-G6PDH和重组质粒pETDuet-TG-LS转化至宿主细胞E. coliBL21(DE3)感受态中,培养筛选获得正确的重组基因工程菌,得产假尿苷的基因工程菌,命名为E.coliBL (DE3) ψ。
上述方法构建得到的假尿苷工程菌在发酵产假尿苷中的应用。
上述应用,将构建成功的假尿苷生产重组菌株E.coliBL (DE3) ψ接入平板培养基中,37℃培养15 h后,挑取单菌落接入5 mL种子培养基中,在37℃,200 rpm扩大培养12 h后,取1 mL转接至100 mL的种子培养基中,37℃度200 rpm培养6 h后,在无菌条件下,将种子液转移至发酵培养基中,同时加入100 mg/L的氨苄青霉素和50 mg/L卡那霉素,进行发酵培养,通过调整发酵温度、发酵pH,同时发酵过程中补料葡萄糖、尿嘧啶以及有机氮源,培养获得发酵液。
作为改进的是,所述发酵培养的温度为15-37℃,pH为5.0-10.0,尿嘧啶的终浓度为0.5-10.0 g/L,发酵全程控制葡萄糖终浓度维持在0.1 g/L-10 g/L,溶氧含量30%-40%。
进一步改进的是,所述发酵培养的温度为20℃,pH为8.0。
进一步改进的是,所述发酵培养中还补充氮源,所述氮源为10 g/L-50 g/L蛋白胨浓度和5.0 g/L-50 g/L酵母粉。
进一步改进的,所述发酵培养的前6 h,通过25%的氨水和50%磷酸溶液调控pH至7,培养温度为30-37℃,再用25%氨水调控pH至8,培养温度为18℃-37℃。
有益效果:
与现有技术相比,本发明一种高产假尿苷的工程菌及应用,在产假尿苷工程菌将来源于大肠杆菌的假尿苷5-磷酸糖苷酶和来源于链霉菌Streptomyces sp .ID38640 的5-磷酸假尿苷磷酸酶进行过表达,并且过表达磷酸戊糖途径的限速酶葡萄糖6-磷酸脱氢酶和葡萄糖酸6-磷酸脱氢酶强化了工程菌利用葡萄糖合成5-磷酸核糖的能力,进一步在发酵过程中通过添加尿嘧啶调节补料浓度和调节发酵过程的pH,最终改造的大肠杆菌可产假尿苷39.6 g/L,更重要的是,本发明获得的基因工程菌可利用葡萄糖积累5-磷酸核糖作为底物进行假尿苷的合成,解决了酶催化过程中的5-磷酸核糖的添加造成成本高的问题,为假尿苷产业化推广具有重要意义。
附图说明
图1为假尿苷标准品的HPLC检测图谱;
图2为实施例7的发酵液的HPLC图谱;
图3为实施例7发酵液中假尿苷标质谱图。
具体实施方式
下面的实施例可使本专业技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
使用上游引物和下游引物,通过PCR从E.coli Mg1655中克隆出5-磷酸假尿苷糖苷酶基因TG,并通过同源重组的方法将5-磷酸假尿苷糖苷酶基因TG连接在载体pETDuet-1上,载体pETDuet-1的酶切位点选择EcoR I和Hind III,成功构建质粒pETDuet-TG。
其中,上游引物列的核苷酸序列如SEQ ID NO.5所示:
5’-ccacagccaggatccaatgtctgaattaaaaatttcccctg-3’;
下游引物的核苷酸序列如SEQ ID NO.6所示:
5’-tgcggccgcaagcttacccgcgagacgctgatattctttg-3’;
5-磷酸假尿苷糖苷酶基因TG的核苷酸序列如SEQ ID NO.1所示:
Atgtctaaattaaaaatttcccctgaattattacaaatttccccggaagtgcaggaagctttaaaaaacaaaaaaccggttgtggcgctggaatcgaccattatttctcacgggatgccgttcccacaaaatgcccagaccgcaattgaagtagaagaaactattcgtaaacagggcgcagtacctgccactatcgccattattggcggcgtgatgaaagtgggtttaagtaaagaagaaattgaattactgggtcgtgaagggcataacgtgaccaaagttagtcgtcgcgatttaccttttgttgttgccgccggaaaaaatggcgcaaccactgtggcttcaacgatgattattgcggcgcttgccggaattaaagtatttgccaccgggggaattggtggtgtgcatcgcggggcggaacataccttcgatatttctgccgatttgcaagaactggcaaatactaatgtcaccgttgtttgtgccggggcgaaatctattctcgatttaggattaaccactgagtatttagaaaccttcggtgtgccgttaattggctatcagactaaagcgctgcctgcgtttttctgccgtaccagctcgtttgacgtcagcattcgtctcgacagcgccagtgaaattgcccgtgcaatggcggtgaaatggcaaagcgggctgaacggtggcctcgtggtagcgaacccgatcccggaacagtttgcgatgccggaggaatctatcaatgcagccatagatcaagccgtcgccgaagccgaagagcagggcgttattggtaaagaaagtacaccgttcctgctggcgcgcgttgctgaactgaccggcggtgacagcctgaaatccaatatccagctggtgttcaacaacgccattctggcgagtgaaattgccaaagaataccagcgtctcgcgggttaa
5-磷酸假尿苷糖苷酶的氨基酸序列如SEQ ID NO.11所示:
MSKLKISPELLQISPEVQEALKNKKPVVALESTIISHGMPFPQNAQTAIEVEETIRKQGAVPATIAIIGGVMKVGLSKEEIELLGREGHNVTKVSRRDLPFVVAAGKNGATTVASTMIIAALAGIKVFATGGIGGVHRGAEHTFDISADLQELANTNVTVVCAGAKSILDLGLTTEYLETFGVPLIGYQTKALPAFFCRTSSFDVSIRLDSASEIARAMAVKWQSGLNGGLVVANPIPEQFAMPEESINAAIDQAVAEAEEQGVIGKESTPFLLARVAELTGGDSLKSNIQLVFNNAILASEIAKEYQRLAG
再通过通用生物公司将假尿苷磷酸酶基因LS合成到质粒pETDuet-TG的酶切位点Nde I和Xho I之间,获得过表达质粒pETDuet-TG-LS。
假尿苷磷酸酶基因LS的核苷酸序如SEQ ID NO.2所示:
Atgacgggcaccgtgctcttcgacctcttcggcgtcatcgcacgccatcagtccaccgaaggcaagaaccggctcacccggacggcaggagtggcggggccggccttctgggacgcctactgggagctgcgcccgccctacgaccgtggtgaggtgaacggccccggctactggcgtcaggtggccgacgccatcggcgtccgcttcgacgaccaccggatcgccgacctcgtcgaggccgacatcgcgagctggagtgcggtcgacgacacgatggtcgccctgatagaggaactcaccgccacaggccgccacatggggctgctgtccaacatccccgaagagctggcctcgcactatgaagcgcatcatgcctggctcaagcacttcccggtacgggccttctcatgtcgcatgggccacgccaagcccgagcgcgccgcctacgagtggtgtcagcacgccctgcgtacggagccggaccgcatcctctttgtcgacgaccgcgcggacaacgtacgtgccgccgaagaactcggcatgcagggacacctcttcaccaccccggaccggctgaggcaggctctcagtcaatggacc
假尿苷磷酸酶的氨基酸序列如SEQ ID NO.12所示:
MTGTVLFDLFGVIARHQSTEGKNRLTRTAGVAGPAFWDAYWELRPPYDRGEVNGPGYWRQVADAIGVRFDDHRIADLVEADIASWSAVDDTMVALIEELTATGRHMGLLSNIPEELASHYEAHHAWLKHFPVRAFSCRMGHAKPERAAYEWCQHALRTEPDRILFVDDRADNVRAAEELGMQGHLFTTPDRLRQALSQWT
实施例2
使用上游引物和下游引物从E.coli MG1655基因组中PCR克隆出6-磷酸葡萄糖脱氢酶基因G6PD(序列如SEQ ID NO.3),并通过同源重组法将6-磷酸葡萄糖脱氢酶基因G6PD连接在pRSFDuet-1上,酶切位点选择EcoR I和Hind III,成功构建质粒pRSFDuet-G6PD。
上游引物的核苷酸序序列如SEQ ID NO.7所示:
5’-ccacagccaggatccgaattcgatggcggtaacgcaaac-3’;
下游引物的核苷酸序序列如SEQ ID NO.8所示:
5’-gcattatgcggccgcaagcttttactcaaactcattccaggaacg-3’;
6-磷酸葡萄糖脱氢酶基因G6PD的核苷酸序列如SEQ ID NO.3所示:
Atggcggtaacgcaaacagcccaggcctgtgacctggtcattttcggcgcgaaaggcgaccttgcgcgtcgtaaattgctgccttccctgtatcaactggaaaaagccggtcagctcaacccggacacccggattatcggcgtagggcgtgctgactgggataaagcggcgtataccaaagttgtccgcgaggcgctcgaaactttcatgaaagaaaccattgatgaaggtttatgggacaccctgagtgcacgtctggatttttgtaatctcgatgtcaatgacactgctgcattcaaccgtctcggcgcgatgctggatcaaaaaaatcgtatcaccattaactactttgccatgccgcccagcacttttggcgcaatttgcaaagggcttggcgaggcaaaactgaatgctaaaccggcacgcgtagtcatggagaaaccgctggggacgtcgctggcgacctcgcaggaaatcaatgatcaggttggcgaatacttcgaggagtgccaggtttaccgtatcgaccactatcttggtaaagaaacggtgctgaacctgttggcgctgcgttttgctaactccctgtttgtgaataactgggacaatcgcaccattgatcatgttgagattaccgtggcagaagaagtggggatcgaagggcgctggggctattttgataaagccggtcagatgcgcgatatgatccaaaaccacctgctgcaaattctctgcatgattgcgatgtctccgccatctgacctgagcgcagacagcatccgcgatgaaaaagtgaaagtactgaagtccctgcgccgcatcgaccgctccaacgtacgcgaaaaaaccgtacgtgggcaatatactgcgggcttcgcccagggcaaaaaagtgccgggatatctggaagaagagggcgcgaacaagagcagcaatacagaaaccttcgtggcgatccgcgtcgacattgataactggcgctgggccggtgtgccattctacctgcgtactggtaaacgtctgccgaccaaatgttctgaagtcgtggtctatttcaaaacacctgaactgaatctgtttaaagagtcgtggcaggatctgccgcagaataaactgactatccgtctgcaacctgatgaaggcgtggatatccaggtactgaataaagttcctggccttgaccacaaacataacctgcaaatcaccaagctggatctgagctattcagaaacctttaatcagacgcatctggcggatgcctatgaacgtctgctgctggaaaccatgcgtggtattcaggcactgtttgttcgtcgcgacgaagtggaagaagcctggaaatgggtagactccattactgaggcgtgggcgatggacaatgatgcgccgaaaccgtatcaggccggaacctggggacccgttgcctcggtggcgatgattacccgtgatggtcgttcctggaatgagtttgagtaa
6-磷酸葡萄糖脱氢酶的氨基酸序列如SEQ ID NO.13所示:
MAVTQTAQACDLVIFGAKGDLARRKLLPSLYQLEKAGQLNPDTRIIGVGRADWDKAAYTKVVREALETFMKETIDEGLWDTLSARLDFCNLDVNDTAAFNRLGAMLDQKNRITINYFAMPPSTFGAICKGLGEAKLNAKPARVVMEKPLGTSLATSQEINDQVGEYFEECQVYRIDHYLGKETVLNLLALRFANSLFVNNWDNRTIDHVEITVAEEVGIEGRWGYFDKAGQMRDMIQNHLLQILCMIAMSPPSDLSADSIRDEKVKVLKSLRRIDRSNVREKTVRGQYTAGFAQGKKVPGYLEEEGANKSSNTETFVAIRVDIDNWRWAGVPFYLRTGKRLPTKCSEVVVYFKTPELNLFKESWQDLPQNKLTIRLQPDEGVDIQVLNKVPGLDHKHNLQITKLDLSYSETFNQTHLADAYERLLLETMRGIQALFVRRDEVEEAWKWVDSITEAWAMDNDAPKPYQAGTWGPVASVAMITRDGRSWNEFE
使用上游引物和下游引物从E.coli MG1655基因组中PCR克隆出6-磷酸葡萄糖酸脱氢酶基因G6PDH,并通过同源重组法将6-磷酸葡萄糖酸脱氢酶基因G6PDH连接在pRSFDuet-G6PD上,酶切位点选择Nde I和Xho I,构建表达质粒pRSFDuet-G6PD-G6PDH,
上游引物的核苷酸序列如SEQ ID NO.9所示:
5’-ggagatatacatatgatgtccaagcaacagatc-3’;
下游引物的核苷酸序列如SEQ ID NO.10所示:
5’-tttaccagactcgagatccagccattcggtatg-3’;
6-磷酸葡萄糖酸脱氢酶基因G6PDH的核苷酸序列如SEQ ID NO.4所示:
Atgtcaaagcaacagatcggcgtcgtcggtatggcagtgatggggcgcaaccttgcgctcaacatcgaaagccgtggttataccgtctctattttcaaccgttcccgtgaaaagacggaagaagtgattgccgaaaatccaggcaagaaactggttccttactatacggtgaaagagtttgttgaatctctggaaacgcctcgtcgcatcctgttaatggtgaaagcaggtgcaggcacggatgctgctattgattccctcaaaccatatctcgataaaggtgacatcatcattgatggtggcaataccttcttccaggacaccattcgtcgtaaccgtgaactttctgccgaaggctttaacttcattggtaccggtgtctccggtggtgaagaaggcgcgctgaaaggtccttctattatgcctggtgggcagaaagaagcctatgaactggttgcaccaatcctgaccaaaatcgccgcagtagctgaagacggggagccatgcgttacctatattggtgccgatggcgcaggccattatgtgaagatggttcacaacggtattgaatacggcgatatgcagctgattgctgaagcctattctctgcttaaaggtggcttgaacctttccaacgaagaactggcgcagacctttaccgagtggaataacggtgaactgagcagctacctgattgacatcactaaagacatcttcactaaaaaagatgaagacggtaactacctggttgatgtgattctggatgaagcggctaacaaaggtaccggtaaatggaccagccagagcgcgctggatctcggtgaaccgctgtcgctgattaccgagtctgtgtttgcacgttatatctcttctctgaaagatcagcgtgttgccgcatctaaagttctctctggcccgcaagcgcagccagcaggcgataaagatgagttcatcgaaaaagttcgccgtgcactgtatctgggcaaaatcgtttcttacgctcagggcttctctcaactgcgtgcggcgtctgaagagtacaactgggatctggactacggcgaaatcgcgaagattttccgtgctggctgcatcatccgtgcgcagttcctgcagaaaatcaccgatgcttatgccgaaaatccgcagatcgctaacctgctgctggctccgtacttcaagcaaatcgccgatgactaccagcaggcgctgcgcgatgtcgtcgcttacgcggtacagaacggtatcccggttccgaccttcgccgctgcggttgcctattatgacagctaccgcgccgctgttctgcctgcgaacctgatccaggcacagcgtgactatttcggtgcgcatacttataagcgcattgataaagaaggtgtgttccataccgaatggctggattaa。
磷酸葡萄糖酸脱氢酶的氨基酸序列如SEQ ID NO.14所示:
MSKQQIGVVGMAVMGRNLALNIESRGYTVSIFNRSREKTEEVIAENPGKKLVPYYTVKEFVESLETPRRILLMVKAGAGTDAAIDSLKPYLDKGDIIIDGGNTFFQDTIRRNRELSAEGFNFIGTGVSGGEEGALKGPSIMPGGQKEAYELVAPILTKIAAVAEDGEPCVTYIGADGAGHYVKMVHNGIEYGDMQLIAEAYSLLKGGLNLSNEELAQTFTEWNNGELSSYLIDITKDIFTKKDEDGNYLVDVILDEAANKGTGKWTSQSALDLGEPLSLITESVFARYISSLKDQRVAASKVLSGPQAQPAGDKDEFIEKVRRALYLGKIVSYAQGFSQLRAASEEYNWDLDYGEIAKIFRAGCIIRAQFLQKITDAYAENPQIANLLLAPYFKQIADDYQQALRDVVAYAVQNGIPVPTFAAAVAYYDSYRAAVLPANLIQAQRDYFGAHTYKRIDKEGVFHTEWLD
将实施例2构建的质粒pRSFDuet-G6PD-G6PDH和实施例1中的pETDuet-TG-LS同时转化至底盘细胞E.coli BL (DE3)中获得假尿苷生产重组菌株E.coliBL (DE3) ψ。
实施例3
重组菌株E.coli BL (DE3) ψ摇瓶发酵产假尿苷
取实施例2中构建成功的假尿苷生产重组菌株 E.coli BL (DE3) ψ接入平板培养基中,37℃培养15 h后,挑取单菌落接入5 mL种子培养基中,在37℃,200 rpm扩大培养12 h后,取1 mL转接至装有100 mL LB培养基的500 mL三角瓶中,同时加入100 mg/L的氨苄青霉素和50 mg/L卡那霉素,继续在37℃下,200 rpm摇床中培养至OD600生长至0.6-0.9;接着加入15 g/L的葡萄糖、2 g/L 尿嘧啶和0.5 mM的IPTG,将摇瓶放在20℃,200 rpm摇床中培养96 h,获得发酵液。
其中,平板培养基的配方为: 酵母粉10 g/L,蛋白胨10 g/L,氯化钠 5 g/L ,琼脂粉 20 g/L。
种子培养基的配方为:酵母粉10 g/L,蛋白胨10 g/L,氯化钠 5 g/L。
将发酵液离心过滤0.22 μm的膜,对发酵液进行假尿苷的HPLC检测,假尿苷浓度为3.8 g/L。
其中,液相检测方法如下:
色谱柱为Agilent ZORBAX RX-SIL色谱柱(250 mm×4.6 mm),流动相A为水; 流动相C为乙腈,梯度洗脱(表1);流速1 mL·min-1;紫外检测器255 nm;柱温: 25℃。尿嘧啶出峰时间:5.90 min,假尿苷出峰时间:6.85 min。
表1 液相流动相梯度表
时间(min) A C
0 0 100
5 40 60
6 40 60
6.5 10 90
10 0 100
15 0 100
实施例4
E. coliBL (DE3) ψ在3 L发酵罐中发酵产假尿苷
取实施例2中构建成功的假尿苷生产重组菌株 E.coli BL (DE3) ψ接入平板培养基中,37℃培养15 h后。挑取单菌落接入5 mL种子培养基中,在37℃,200 rpm扩大培养12 h后,取1 mL转接至100 mL的种子培养基中,37℃度200 rpm培养6 h后,全部转接至3 L的发酵培养基中(其中,发酵培养基配方如下:葡萄糖 10 g/L,酵母粉5 g/L,蛋白胨10 g/L,氯化钠 5 g/L,MgSO4·7H2O 2 g/L,Fe2SO4·7H2O 0.2 g/L,MnCl230 mg/L,其他为水,在灭菌锅中,121℃条件下保持20 min,发酵培养基温度降至37℃),将种子液转移在无菌条件下转移至发酵培养基中,同时加入100 mg/L的氨苄青霉素和50 mg/L卡那霉素;接着37℃培养5h后,将温度降至20℃,加入0.3 mM/诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)、5 g/L的尿嘧啶,并流加800 g/L葡萄糖,维持发酵罐内葡萄糖浓度为5 g/L,诱导培养24 h后,获得发酵液;其中,在培养过程中使用25%的氨水和50%磷酸溶液调控反应体系的pH为7.0,溶氧控制在30%-40%。
其中,平板培养基的配方为酵母粉10 g/L,蛋白胨10 g/L,氯化钠 5 g/L ,琼脂粉20 g/L ;
种子培养基的配方为:酵母粉10 g/L,蛋白胨10 g/L,氯化钠 5 g/L。
对发酵液进行假尿苷的HPLC检测,具体的液相检测方法如实施例3,测得发酵液中的假尿苷浓度为4.22 g/L。
实施例5
E.coli BL (DE3) ψ在3 L发酵罐中发酵产假尿苷
取实施例2中构建成功的假尿苷生产重组菌株E.coliBL (DE3) ψ接入平板培养基中,37℃培养15 h后。挑取单菌落接入5 mL种子培养基中,在37℃,200 rpm扩大培养12 h后,取1 mL转接至100 mL的种子培养基中,37℃度200 rpm培养6 h后,全部转接至3 L的发酵培养基中(其中,发酵培养基配方如下:葡萄糖 10 g/L,酵母粉5 g/L,蛋白胨10 g/L,氯化钠 5 g/L,MgSO4·7H2O 2 g/L,Fe2SO4·7H2O 0.2 g/L,MnCl230 mg/L,其他为水,在灭菌锅中,121℃条件下保持20 min,发酵培养基温度降至37℃),将种子液转移在无菌条件下转移至发酵培养基中,同时加入100 mg/L的氨苄青霉素和50 mg/L卡那霉素;接着37℃培养5h后将温度降至25℃,加入0.3 mM/诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)、5 g/L的尿嘧啶,并流加800 g/L葡萄糖,维持发酵罐内葡萄糖浓度为5 g/L,诱导培养6 h后,待温度降至20℃,继续培养直至满24 h,获得发酵液,其中,在培养过程中使用25%的氨水和50%磷酸溶液调控pH为7.0,溶氧控制在30%-40%。
其中,平板培养基的配方为酵母粉10 g/L,蛋白胨10 g/L,氯化钠 5 g/L ,琼脂粉20 g/L;
种子培养基的配方为:酵母粉10 g/L,蛋白胨10 g/L,氯化钠 5 g/L。
对发酵液进行假尿苷的HPLC检测,具体的液相检测方法如实施例3,测得发酵液中的假尿苷浓度为8.5 g/L。
结合实施例4和实施例5的结果进行分析,两阶段降温中的第一阶段为25℃可以有效的促进酶的过表达,诱导6 h后,降温降低至20℃,可以提高生产效率,提高假尿苷产量。
实施例6
E.coliBL (DE3) ψ在3 L发酵罐中发酵产假尿苷
取实施例2中构建成功的假尿苷生产重组菌株E.coli BL (DE3) ψ接入平板培养基中,37℃培养15 h后。挑取单菌落接入5 mL种子培养基中,在37℃,200 rpm扩大培养12 h后,取1 mL转接至100 mL的种子培养基中,37℃度200 rpm培养6 h后,全部转接至3 L的发酵培养基中(所述的发酵培养基配方如下:葡萄糖 10 g/L,酵母粉5 g/L,蛋白胨10 g/L,氯化钠 5 g/L,MgSO4·7H2O2g/L,Fe2SO4·7H2O 0.2 g/L,MnCl230 mg/L,其他为水,在灭菌锅中,121℃条件下保持20 min,发酵培养基温度降至37℃),将种子液转移在无菌条件下转移至发酵培养基中,同时加入100 mg/L的氨苄青霉素和50 mg/L卡那霉素;接着37℃培养5 h后将温度降至25℃,加入0.3 mM/诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)、5 g/L的尿嘧啶粉末,和流加800 g/L葡萄糖,维持发酵罐内葡萄糖浓度为5 g/L,使用25%的氨水和50%磷酸溶液调控pH为7.0,诱导培养6 h后,待温度降至20℃,并使用25%氨水将发酵罐培养pH调节至8.0,继续培养直至满24 h,获得发酵液;其中,在培养过程中溶氧控制在30%-40%。
对发酵液进行假尿苷的HPLC检测,具体的液相检测方法如实施例3,测得发酵液中的假尿苷浓度为10.5 g/L。
结合实施例5和实施例6的结果进行分析,将诱导后6 h的发酵pH调节至8时,进一步提高了假尿苷的产量,在pH 8.0条件下,可以大大提高菌体发酵生产假尿苷的效率。
实施例7
E.coliBL (DE3) ψ在3 L发酵罐中发酵产假尿苷
取实施例3中构建成功的假尿苷生产重组菌株 E.coli BL (DE3) ψ接入平板培养基中,37℃培养15 h后。挑取单菌落接入5 mL种子培养基中,在37℃,200 rpm扩大培养12 h后,取1 mL转接至100 mL的种子培养基中,37℃度200 rpm培养6 h后,全部转接至3 L的发酵培养基中(发酵培养基配方如下:葡萄糖 10 g/L,酵母粉5 g/L,蛋白胨10 g/L,氯化钠 5g/L,MgSO4·7H2O2g/L,Fe2SO4·7H2O 0.2 g/L,MnCl230 mg/L,其他为水,在灭菌锅中,121℃条件下保持20 min,发酵培养基温度降至37℃),将种子液转移在无菌条件下转移至发酵培养基中,同时加入100 mg/L的氨苄青霉素和50 mg/L卡那霉素;接着37℃培养5 h后将温度降至25℃,加入0.3 mM/诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)、5 g/L的尿嘧啶粉末,并流加800 g/L葡萄糖,维持发酵罐内葡萄糖浓度为5 g/L,在培养过程中使用25%的氨水和50%磷酸溶液调控pH为7.0,诱导培养6 h后,将温度降至20℃,并且使用25%氨水将发酵罐培养pH调节至8.0,为了延长培养时间,诱导后以15.2 mL/h的流速流加氮源(30 g/L蛋白胨和15 g/L酵母粉)到发酵罐中,继续发酵至24 h后,继续添加5 g/L的尿嘧啶粉末,继续延长发酵至36 h后获得发酵液,其中,在培养过程中溶氧控制在30%-40%。
对发酵液进行假尿苷的HPLC检测,具体的液相检测方法如实施例3,测得发酵液中的假尿苷浓度为20.3 g/L。
结合实施例6和实施例7的结果进行分析,通过持续添加有机氮源保持菌体生长,延长发酵时间,可以有效的维持菌体对假尿苷的生产。
实施例8
E.coli BL (DE3) ψ在3 L发酵罐中发酵产假尿苷
取实施例3中构建成功的假尿苷生产重组菌株 E.coli BL (DE3) ψ接入平板培养基中,37℃培养15 h后。挑取单菌落接入5 mL种子培养基中,在37℃,200 rpm扩大培养12 h后,取1 mL转接至100 mL的种子培养基中,37℃度200 rpm培养6 h后,全部转接至3 L的发酵培养基中(发酵培养基配方如下:葡萄糖 10 g/L,酵母粉5 g/L,蛋白胨10 g/L,氯化钠 5g/L,MgSO4·7H2O2g/L,Fe2SO4·7H2O 0.2 g/L,MnCl230 mg/L,其他为水,在灭菌锅中,121℃条件下保持20 min,发酵培养基温度降至37℃),将种子液转移在无菌条件下转移至发酵培养基中,同时加入100 mg/L的氨苄青霉素和50 mg/L卡那霉素;接着37℃培养5 h后将温度降至25℃,加入0.3 mM/诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)、添加5 g/L的尿嘧啶,并流加800 g/L葡萄糖,维持发酵罐内葡萄糖浓度为5 g/L,在培养过程中使用25%的氨水和50%磷酸溶液调控pH为7.0,诱导培养6 h后,将温度降至20℃,以15.2 mL/h的流速流加氮源(30 g/L蛋白胨和15 g/L酵母粉)到发酵罐中,体系使用25%氨水将发酵罐培养pH调节至8.0,继续发酵至24 h后,添加5 g/L的尿嘧啶粉末,继续延长发酵,分别在36 h,48h,72 h均添加5 g/L的尿嘧啶,发酵培养至96 h,获得发酵液;其中,溶氧控制在30%-40%。
对发酵液进行假尿苷的HPLC检测,具体的液相检测方法如实施例3,测得发酵液中的假尿苷浓度为39.6 g/L。
结合实施例7和实施例8的结果进行分析,通过持续分批补料,可以逐步提高假尿苷产量。
综上所述,本发明获得的基因工程菌可利用葡萄糖积累5-磷酸核糖作为底物进行假尿苷的合成,解决了酶催化过程中的5-磷酸核糖的添加造成成本高的问题,为假尿苷产业化推广具有重要意义。

Claims (9)

1.一种高产假尿苷的工程菌的构建方法,其特征在于,
步骤1,使用同源重组酶将葡萄糖6-磷酸脱氢酶编码基因G6PD连接到质粒pRSFDuet-1的酶切位点BamH I和Hind III之间,同源重组产物转化到宿主菌株中,并筛选得到正确的重组质粒pRSFDuet-G6PD;使用同源重组酶将葡萄糖酸6-磷酸脱氢酶编码基因G6PDH,连接到质粒pRSFDuet-G6PD的酶切位点Nde I和Xho I之间,同源重组产物转化至宿主菌株中,并进行筛选获得正确的重组质粒,记为pRSFDuet-G6PD-G6PDH;
步骤2,使用同源重组酶将假尿苷5-磷酸糖苷酶基因TG连接至pETDuet-1的酶切位点BamH I和Hind III之间,并将同源重组产物转化到大宿主菌株中进行,筛选获得正确的重组质粒pETDuet-TG,使用同源重组技术将5-磷酸假尿苷磷酸酶基因LS连接到质粒pETDuet-TG的酶切位点Nde I和Xho I之间,将重组产物转化至宿主菌株中,并筛选出正确的重组质粒,记为pETDuet-TG-LS;
步骤3,将重组质粒pRSFDuet-G6PD-G6PDH和重组质粒pETDuet-TG-LS转化至感受态E.coli宿主中,培养筛选获得正确的重组基因工程菌,得产假尿苷的基因工程菌,命名为E.coli BL (DE3) ψ。
2.根据权利要求1所述的构建方法,其特征在于,步骤1中所述的葡萄糖6-磷酸脱氢酶和葡萄糖酸6-磷酸脱氢酶的核苷酸序列来源于E. coli MG1655。
3.根据权利要求1所述的构建方法,其特征在于,所述假尿苷5-磷酸糖苷酶的核苷酸序列来源于E. coli MG1655,;5-磷酸假尿苷磷酸酶的核苷酸序列来源于Streptomycessp ID38640。
4.基于权利要求1所述构建方法构建得到的假尿苷工程菌在发酵产假尿苷中的应用。
5.根据权利要求4所述的应用,其特征在于,将构建成功的假尿苷生产重组菌株E.coliBL (DE3) ψ接入平板培养基中,37℃培养15 h后,挑取单菌落接入5 mL种子培养基中,在37℃,200 rpm扩大培养12 h后,取1 mL转接至100 mL的种子培养基中,37℃度200 rpm培养6h后,在无菌条件下,将种子液转移至发酵培养基中,同时加入100 mg/L的氨苄青霉素和50mg/L卡那霉素,进行发酵培养,通过调整发酵温度、发酵pH,同时发酵过程中补料葡萄糖、尿嘧啶以及有机氮源,培养获得发酵液。
6.根据权利要求5所述的应用,其特征在于,所述发酵培养的温度为15-37℃,pH为5.0-10.0,尿嘧啶的终浓度为0.5-10.0 g/L,发酵全程控制葡萄糖终浓度维持在0.1 g/L-10 g/L,溶氧含量30%-40%。
7.根据权利要求5所述的应用,其特征在于,所述发酵培养的温度为20℃,pH为8.0。
8.根据权利要求5所述的应用,其特征在于,所述发酵培养中还补充氮源,所述氮源为10 g/L-50 g/L蛋白胨浓度和5.0 g/L-50 g/L酵母粉。
9.根据权利要求5所述的应用,其特征在于,所述发酵培养的前6 h,通过25%的氨水和50%磷酸溶液调控pH至7,培养温度为30-37℃,再用25%氨水调控pH至8,培养温度为18℃-37℃。
CN202310726503.6A 2023-06-19 2023-06-19 一种高产假尿苷的工程菌的构建方法及其应用 Pending CN116949078A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310726503.6A CN116949078A (zh) 2023-06-19 2023-06-19 一种高产假尿苷的工程菌的构建方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310726503.6A CN116949078A (zh) 2023-06-19 2023-06-19 一种高产假尿苷的工程菌的构建方法及其应用

Publications (1)

Publication Number Publication Date
CN116949078A true CN116949078A (zh) 2023-10-27

Family

ID=88450199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310726503.6A Pending CN116949078A (zh) 2023-06-19 2023-06-19 一种高产假尿苷的工程菌的构建方法及其应用

Country Status (1)

Country Link
CN (1) CN116949078A (zh)

Similar Documents

Publication Publication Date Title
CN108753669B (zh) 一种腺嘌呤生产菌株及其构建方法和应用
CN107815446B (zh) 一种重组腈水合酶大肠杆菌基因工程菌的高密度发酵方法
CN117363553B (zh) 一种生产2’-脱氧腺苷的基因工程菌及其构建方法与应用
CN113755413A (zh) 生产β-烟酰胺单核苷酸的重组微生物及其生产NMN的方法
CN114874964A (zh) 一种高产2′-岩藻糖基乳糖的重组大肠杆菌的构建方法及应用
CN115960812A (zh) 一种高产l-岩藻糖的重组大肠杆菌的构建方法及应用
WO2022217827A1 (zh) 一种用于制备β-烟酰胺单核苷酸的酶组合物及其应用
CN114990037B (zh) 一种高产乳酰-n-四糖的重组大肠杆菌的构建方法及应用
CN117844728B (zh) 一种l-缬氨酸生产菌株及其构建方法与应用
CN113528562B (zh) 生产β-烟酰胺核糖的重组微生物及其构建方法和应用
CN117866866A (zh) 一种利用富马酸生产依克多因的重组大肠杆菌及其构建方法和应用
CN116410950B (zh) 四氢嘧啶生物合成基因簇及发酵生产四氢嘧啶的方法
CN113755411A (zh) 高产β-烟酰胺单核苷酸的重组微生物及其生产β-烟酰胺单核苷酸的方法
CN116555147A (zh) 一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用
CN116949078A (zh) 一种高产假尿苷的工程菌的构建方法及其应用
CN114806991A (zh) 一种提高岩藻糖基乳糖产量的工程大肠杆菌及生产方法
CN116333953A (zh) 一种高产胞嘧啶核苷的基因工程菌及其应用
CN113528495A (zh) 一种稳定表达几丁二糖脱乙酰酶的枯草芽孢杆菌及其构建方法与应用
CN113755415A (zh) 一种新的具有nmn合成路径的重组微生物及生产方法
CN118325755B (zh) 一种生产s-羟丙基四氢吡喃三醇的工程菌及其构建方法
CN116004489B (zh) 一种生产nmn的重组大肠杆菌及其应用
CN118272285B (zh) 一种尿嘧啶核苷酸生产菌株及其定向改造方法与应用
CN115261350B (zh) 一种淀粉蔗糖酶的突变体及其在生产α-熊果苷中的应用
CN118028202A (zh) 一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用
CN118813573A (zh) 用于合成LNFP Ⅰ的α-1,2-岩藻糖基转移酶、重组工程菌株及其构建方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination