CN116949057B - 人参PgJAZ12基因及其应用 - Google Patents

人参PgJAZ12基因及其应用 Download PDF

Info

Publication number
CN116949057B
CN116949057B CN202310794490.6A CN202310794490A CN116949057B CN 116949057 B CN116949057 B CN 116949057B CN 202310794490 A CN202310794490 A CN 202310794490A CN 116949057 B CN116949057 B CN 116949057B
Authority
CN
China
Prior art keywords
gene
ginsenoside
ginseng
pgjaz12
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310794490.6A
Other languages
English (en)
Other versions
CN116949057A (zh
Inventor
赵明珠
王�义
张美萍
王康宇
刘明明
姜杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Agricultural University
Original Assignee
Jilin Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Agricultural University filed Critical Jilin Agricultural University
Priority to CN202310794490.6A priority Critical patent/CN116949057B/zh
Publication of CN116949057A publication Critical patent/CN116949057A/zh
Application granted granted Critical
Publication of CN116949057B publication Critical patent/CN116949057B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种来自人参的基因PgJAZ12,及其在提高人参皂苷含量中的应用,所述人参PgJAZ12基因的基因序列如SEQ ID NO.1所示。超量表达该基因可有效提高人参根部人参皂苷的含量,特别是二醇型人参皂苷,本发明共检测到六种单体皂苷,共有4个转基因阳性单根系的Rb2含量与转化空载的阴性对照相比显著上升,3个单根系的Rd含量显著上升,以上结果说明PgJAZ12基因参与调控人参皂苷的合成,特别是对人参皂苷Rb2的合成具有显著促进作用。本发明超量表达PgJAZ12基因可显著提高人参皂苷在科研上上有着重要的研究价值,为开发高含量人参皂苷的人参种质资源提供有力的技术手段。

Description

人参PgJAZ12基因及其应用
技术领域
本发明属于生物技术领域,具体涉及一种人参PgJAZ12基因及其在提高人参单体皂苷含量方面的应用。
背景技术
人参(学名:Panax ginseng C.A.Meyer)是五加科、人参属多年生草本植物,是传统的名贵中草药。有关人参的报道始载于我国第一部本草专著《神农本草经》。
众所周知,人参皂苷为人参的主要活性物质。按照苷元类型可将其分为达玛烷型(原人参二醇型人参皂苷、原人参三醇型人参皂苷)和齐墩果酸型人参皂苷。人参皂苷在神经系统有神经退行性疾病的治疗、改善记忆功能、保护脑组织等作用,在心血管系统有抗心律失常、抗心肌肥厚、抗心肌缺血、抗心肌细胞凋亡等作用,在抗肿瘤方面具有诱导细胞凋亡、抑制肿瘤细胞增殖、调控信号通路、调节免疫功能等作用,具有较好的临床应用价值,已应用于多种疾病的治疗和预防。人参皂苷的生物合成受到多基因调控。
诱导子是一种能引起植物过敏反应的物质,能快速、高度专一和选择性的诱导植物特定基因的表达,进而活化特定次生代谢途径,从而提高植物次生代谢产物的产量。茉莉酸(JA)是植物次生代谢的保守激发子。JA信号能够触发广泛的转录重新编程,导致整个代谢途径的协同激活。许多转录因子(TF)被发现,它们通常由JA激活,在JA调控的新陈代谢过程中发挥作用。JA可以诱导萜类,生物碱类,苯丙类等次生代谢产物的合成。此外,JA还可以调节特定的初级代谢途径,为相连的次级代谢产物途径提供必要的底物。研究表明,在人参不定根悬浮培养的过程中,外源施加茉莉酸能够特异性地促进原人参二醇人参皂苷(Rb)的积累,而原人参三醇人参皂苷(Rg)的积累不显著。但其调控机制尚不清晰。
JAZ蛋白存在于所有陆生植物中,从低等的苔藓植物到高等的双子叶植物。JAZ蛋白是JA信号通路中的关键组分,能够对JA信号做出响应。JAZ蛋白含有2个保守结构域,分别位于为N端的ZIM(又称TIFY)结构域及位于C末端的Jas(又称CCT_2)结构域。ZIM结构域参与二聚体的构成及与NINJA等抑制子的结合。Jas结构域以SCFCOI1依赖的方式控制JAZ蛋白应答JA信号的稳定性,并且是JA-Ile与COI1相互作用的关键。植物中的茉莉酸衍生物茉莉酸异亮氨酸的内源性水平在应激条件下被激活,当植物体内的茉莉酸异亮氨酸含量升高时会被SCFCOI1复合体感知,随后SCFCOI1复合体在26S蛋白酶体的作用下与JAZ结合进行泛素化降解,导致下游转录因子的释放,进而激活茉莉酸反应。
由于人参发状根具有遗传背景清晰、培养周期短、培养不受季节限制、品质均一、可产人参皂苷等优点。因此,以人参发状根为材料,结合分子生物学的手段,能够快速验证目的基因是否调控人参皂苷的生物合成。
发明内容
为了更清楚的了解人参皂苷的调控机制,本发明提供了一种人参PgJAZ12基因及其在提高人参单体皂苷含量方面的应用,为开发高含量人参皂苷的人参种质资源提供有力的技术手段。
为了达到上述目标,本发明提供的技术方案如下:
本发明提供了一种人参PgJAZ12基因,所述人参PgJAZ12基因的基因序列如SEQ IDNO.1所示。
本发明还提供了含有上述人参PgJAZ12基因的载体。
本发明进一步提供了上述人参PgJAZ12基因在提高人参单体皂苷含量中的应用。
本发明具有如下有益效果:
JAZ基因可以调节多种生物学功能,包括衰老、植物防御、抑制茉莉酸盐生物合成、促进细胞生长和生殖适应性等,在功能调节上具有多样性和冗余性,即一个基因调控多种功能或多个基因共同作用于一个调控途径。同时其家族成员数量从地茅的1个到小麦的50个不等,但大多数品种含有10-20个。
本发明公开了一种来自人参的基因,PgJAZ12,及其在提高人参皂苷上的应用。超量表达该基因可有效提高人参根部人参皂苷的含量,特别是二醇型人参皂苷,本发明共检测到六种单体皂苷,共有4个转基因阳性单根系的Rb2含量与转化空载的阴性对照相比显著上升,3个单根系的Rd含量显著上升,以上结果说明PgJAZ12基因参与调控人参皂苷的合成,特别是对人参皂苷Rb2的合成具有显著促进作用。本发明超量表达PgJAZ12基因可显著提高人参皂苷有着重要的价值,为开发高含量人参皂苷的人参种质资源提供有力的技术手段。
附图说明
图1:人参总RNA电泳图
图2:PgJAZ12基因PCR扩增电泳图(M:DL2,000;泳道1-2:PCR产物)
图3:超量表达重组质粒pBI121-PgJAZ12的酶切验证(M:maker,1:阳性质粒PCR,2-6:阳性植株PCR)。
图4:超量表达PgJAZ12基因人参发状根的诱导(A:不定根预培养;B:与发根农杆菌共培养;C:发状根培养;D:阳性发状根的培养;E:固体扩繁的阳性发状根单根系;F:液体扩繁的阳性发状根单根系)。
图5:dPCR技术扩增阳性发状根植株中PgJAZ12基因(S01-S05:5株不同的阳性发状根)
图6:超量表达PgJAZ12基因人参发状根中人参皂苷含量检测
具体实施方式
材料来源
人参不定根材料来源于吉林农业大学理工楼人参资源利用与研发实验室提供。
主要内容
利用生物信息学的方法,在吉林人参转录组数据库中对JAZ蛋白家族进行鉴定,系统发育分析,GO功能注释,表达模式分析,及与人参皂苷生物合成的相关性分析。
1、人参总RNA的提取与cDNA的合成
采用Trizol法提取人参不定根组织中的总RNA(图1)。经反转录试剂盒反转录为cDNA。
2、PgJAZ12基因的克隆
目的基因全长1552bp,ORF:329bp-1342bp,337aa,基因序列如SEQ ID NO.1所示。
根据上述序列,利用Primer Premier 5设计关于目的基因的PCR扩增引物。引物序列如下:JAZ12-F:碱基序列如SEQ ID NO.2所示,JAZ12-R:碱基序列如SEQ ID NO.3所示。根据上述引物,以cDNA为模板对目的基因进行扩增,扩增条件:预变性94℃,5min;变性94℃,30s、退火53℃,15s、延伸72℃,61s,35个循环;延伸72℃,10min;4℃保存。经琼脂糖凝胶电泳对目的条带大小进行验证,结果如图2所示,目的条带大小正确。对以上电泳结果进行琼脂糖凝胶回收。对pBI121载体进行线性化双酶切,限制性内切酶分别为Sma I和Sac I。利用琼脂糖凝胶对线性化载体进行凝胶回收。随后设计pBI121载体的同源臂引物:T-JAZ12-F:碱基序列如SEQ ID NO.4所示,T-JAZ12-R:碱基序列如SEQ ID NO.5所示。根据同源臂引物,以琼脂糖回收的目的片段为模板,对目的基因进行扩增,扩增条件:预变性94℃,5min;变性94℃,30s、退火53℃,15s、延伸72℃,61s,35个循环;延伸72℃,10min;4℃保存,对PCR产物进行琼脂糖凝胶回收。
3、PgJAZ12基因植物超量表达载体的构建
将回收片段通过无缝克隆的方式与pBI121线性化载体片段进行连接。通过热击法转入大肠杆菌DH5α感受态细胞中,利用含有50μg/mL卡那霉素的抗性平板进行筛选,对其中的抗性克隆进行PCR验证(图3),将阳性克隆送至测序公司测序。
4、超量表达PgJAZ12基因遗传转化工程菌的构建
利用热击法将重组的PgJAZ12基因植物超量表达载体转入农杆菌C58C1感受态细胞中,利用含有50μg/mL卡那霉素与25mg/mL利福平的抗性平板进行筛选,对抗性克隆进行PCR验证,结果显示条带大小符合目的基因长度,因此超量表达PgJAZ12基因遗传转化工程菌的构建成功,保存备用。
5、农杆菌介导法转化PgJAZ12基因
(1)预培养
选取长势粗壮的不定根用刀斜切成小段至于MS固体培养基中,在温度为22℃,光处理16h,暗处理8h的培养室中,对材料进行预培养(2天)。
(2)工程菌活化
挑取阳性单菌落在加入卡那霉素,利福平,链霉素的三抗YEP培养基中进行扩大培养(培养条件为28℃,170rpm),至OD600=0.6。将活化好的菌液转移至50ml离心管进行离心收集菌体。用20μM乙酰丁香酮(AS)和液体1/2MS培养基重悬菌体,28℃,放置1h备用。
(3)侵染与共培养
将预培养的不定根材料,切成小段,置于备用的菌液中侵染15min。随后,到处菌液,将侵染的后的不定根取出,用滤纸吸干表面的水分,至于含有20μMAS的固体1/2MS培养基中,在黑暗条件下共培养48h。
(4)除菌
将共培养后的材料取出,吸干表面菌液,转移至加入头孢霉素的固体1/2MS培养基中,15-30天后,诱导长出发状根。将得到的阳性根系,在250ml摇瓶中进行扩大培养(图4)。
6、阳性植株dPCR检测
本研究采用765个分子和12个通道的微流体芯片,按照实验步骤对5株阳性发状根的转基因拷贝数进行测定,5株阳性发状根样品的通道中均扩增PgJAZ12基因,而转空载体的对照的通道没有荧光信号,测定结果如图5所示。对阳性发状根基因的拷贝数进行分析,首先计算出样品的拷贝数浓度,计算公式如下:Ccopies=d×M/V=d/N×Vp×log(1-H/N)/log(1-1/N)(Ccopies-基因的拷贝数浓度copies/μL,d-样品稀释因子,M-分配到每个通道的DNA模板分子数,N-每个通道的总分子数,H-每个通道得到有效扩增而检测的阳性分子数,Vp-每个分子的体积)。最后再根据公式:基因拷贝数=基因拷贝数浓度/内标准基因拷贝数浓度,本研究中内标基因拷贝数浓度为4536.65copies/μL,最终计算出PgJAZ12基因的平均拷贝数为2.41。具体结果见表1。
表1dPCR PgJAZ12基因拷贝数分析结果
样品 浓度/(copies·μL-1) 拷贝数
1 9969 2.20
2 11015 2.43
3 10831 2.39
4 11015 2.43
5 11723 2.58
平均值 2.41
7、超量表达PgJAZ12基因阳性发状根中皂苷含量的检测
利用索氏提取法对人参发状根进行了人参皂苷提取,利用高效液相色谱法检测其中的人参单体皂苷组成和含量。
将扩大培养的阳性发状根置于37℃的烘箱进行烘干,称取1.0g人参粉末用滤纸包裹,置于100ml三角瓶中,50ml无水甲醇浸泡12h。将三角瓶放入超声清洗器中,60℃超声30min。
将浸泡人参粉末的滤纸包与液体全部倒入索氏提取器中,加入无水甲醇至总体积为100ml。温度设置为90℃,回流时间设置为36h。
将提取后的甲醇倒入圆底烧瓶中,利用旋转蒸发仪,进行减压旋蒸至干燥,加入20mL纯净水回溶样品,用等体积的乙酸乙酯萃取三次除杂,留下水相,将水相继续用等体积水饱和正丁醇萃取三次,留下正丁醇相;
将正丁醇相倒入圆底烧瓶,减压旋干,用5mL色谱甲醇回溶,并用0.22μm有机系滤膜过滤,除去大颗粒杂质,得到人参皂苷样品。
8、高效液相色谱法检测人参皂苷
采用的色谱柱为Waters C18柱(4.6×250mm,5μm),流动相为水和有机相乙腈,采用梯度洗脱的方法(梯度洗脱条件如表2所示),流速为1.0ml/min,柱温设为35℃,进样体积为30μL,样品检测波长为203nm。
表2梯度洗脱条件
时间(min) 乙腈(%) 水(%)
0 18 82
40 21 79
42 26 74
46 32 68
66 33.5 66.5
71 38 62
86 65 35
91 65 35
96 85 15
103 85 15
120 18 82
125 18 82
待样品出峰后,计算各个单体皂苷的含量,计算公式:标准品浓度/标准品峰面积=样品浓度/样品峰面积。
结果共检测到六种单体皂苷。不同阳性发根的单体皂苷含量结果如图6所示,共有4个转基因阳性单根系的Rb2含量与转化空载的阴性对照相比显著上升,3个单根系的Rd含量显著上升,以上结果说明PgJAZ12基因参与调控人参皂苷的合成,特别是对人参皂苷Rb2的合成具有显著促进作用。

Claims (3)

1.一种人参PgJAZ12基因,其特征在于:所述人参PgJAZ12基因的基因序列如SEQ IDNO.1所示。
2.含如权利要求1所述人参PgJAZ12基因的载体。
3.如权利要求1所述的人参PgJAZ12基因在提高人参单体皂苷含量中的应用。
CN202310794490.6A 2023-06-30 2023-06-30 人参PgJAZ12基因及其应用 Active CN116949057B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310794490.6A CN116949057B (zh) 2023-06-30 2023-06-30 人参PgJAZ12基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310794490.6A CN116949057B (zh) 2023-06-30 2023-06-30 人参PgJAZ12基因及其应用

Publications (2)

Publication Number Publication Date
CN116949057A CN116949057A (zh) 2023-10-27
CN116949057B true CN116949057B (zh) 2024-03-05

Family

ID=88459540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310794490.6A Active CN116949057B (zh) 2023-06-30 2023-06-30 人参PgJAZ12基因及其应用

Country Status (1)

Country Link
CN (1) CN116949057B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463363A (zh) * 2008-12-02 2009-06-24 吉林大学 一种提高人参种质皂苷含量的方法
KR20130134930A (ko) * 2012-05-31 2013-12-10 한국과학기술원 신규한 진세노사이드 글리코시다제를 이용한 진세노사이드 f2의 제조방법
CN113549630A (zh) * 2021-06-25 2021-10-26 湖南工程学院 一种人参PgJAZ1基因及基于该基因提高原人参三醇型皂苷的方法及应用
CN114507676A (zh) * 2022-02-11 2022-05-17 湖南工程学院 一种人参皂苷合成调节的PgJAR1基因及其编码蛋白与应用
CN114736910A (zh) * 2022-03-08 2022-07-12 吉林农业大学 人参PgRb1-057-001基因及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463363A (zh) * 2008-12-02 2009-06-24 吉林大学 一种提高人参种质皂苷含量的方法
KR20130134930A (ko) * 2012-05-31 2013-12-10 한국과학기술원 신규한 진세노사이드 글리코시다제를 이용한 진세노사이드 f2의 제조방법
CN113549630A (zh) * 2021-06-25 2021-10-26 湖南工程学院 一种人参PgJAZ1基因及基于该基因提高原人参三醇型皂苷的方法及应用
CN114507676A (zh) * 2022-02-11 2022-05-17 湖南工程学院 一种人参皂苷合成调节的PgJAR1基因及其编码蛋白与应用
CN114736910A (zh) * 2022-03-08 2022-07-12 吉林农业大学 人参PgRb1-057-001基因及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Biosynthesis and biotechnological production of ginsenosides";Yu-Jin Kim et al.;《Biotechnology Advances》;第33卷;第715-725页 *
"Cloning, bioinformatics analysis of PgRg2BBE gene in ginsenoside Rg2 biosynthesis pathway in Panax Ginseng C.A.Mayer";李傲等;《吉林农业大学学报》;第1-11页 *

Also Published As

Publication number Publication date
CN116949057A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
CN116891855B (zh) 一种人参PgMYC24基因及其应用
Kim et al. Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate
Duan et al. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana
Han et al. Effects of overexpression of AaWRKY1 on artemisinin biosynthesis in transgenic Artemisia annua plants
CN103103194B (zh) 茉莉酸甲酯应答的人参PgPDR3基因启动子及其应用
CN105441461B (zh) 一种三七转录因子基因PnWRKY1的应用
CN106497939B (zh) 一种三七转录因子基因PnMYB1及其应用
Grover et al. Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera
CN103088027B (zh) 一种调控人参皂苷积累的pdr转运蛋白基因启动子及其应用
CN105087601A (zh) 一种珠子参转录因子基因PjWRKY1的应用
Majumdar et al. Use of the cryptogein gene to stimulate the accumulation of bacopa saponins in transgenic Bacopa monnieri plants
Zhou et al. Soybean transcription factor Gm MYBZ2 represses catharanthine biosynthesis in hairy roots of Catharanthus roseus
CN114634939B (zh) 一种调节人参中茉莉酸甲酯合成的PgJMT1基因及其应用
CN110819636A (zh) 一条SmbZIP1基因及其在提高丹参中丹酚酸含量中的应用
CN105441462B (zh) 一种三七转录因子基因PnERF1及其应用
CN105087599A (zh) 一种珠子参转录因子基因PjERF1的应用
CN105441463B (zh) 一种三七转录因子基因PnbHLH1及其应用
CN114645061B (zh) SmMYB76基因及其在提高丹参中丹酚酸含量中的应用
CN102586288A (zh) 一种提高丹参中丹参酮含量的方法
CN116949057B (zh) 人参PgJAZ12基因及其应用
CN117535316A (zh) 一种人参PgJOX4基因及其在调节人参皂苷生物合成中的应用
CN117025623A (zh) SmMYCL1基因及其在提高丹参中丹酚酸含量中的应用
CN101654678A (zh) 一种丹参异戊烯焦磷酸异构酶(SmIPPI)基因的分析及应用
CN105154420B (zh) 赤芝萜类合酶GL22395编码基因cDNA序列及其应用
Huang et al. The PcbZIP44 transcription factor inhibits patchoulol synthase gene expression and negatively regulates patchoulol biosynthesis in Pogostemon cablin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant