CN116904492A - 一种高产异戊二烯的沼泽红假单胞菌及其构建方法和应用 - Google Patents

一种高产异戊二烯的沼泽红假单胞菌及其构建方法和应用 Download PDF

Info

Publication number
CN116904492A
CN116904492A CN202310730869.0A CN202310730869A CN116904492A CN 116904492 A CN116904492 A CN 116904492A CN 202310730869 A CN202310730869 A CN 202310730869A CN 116904492 A CN116904492 A CN 116904492A
Authority
CN
China
Prior art keywords
idisc
isoprene
rhodopseudomonas palustris
ispsib
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310730869.0A
Other languages
English (en)
Other versions
CN116904492B (zh
Inventor
李美洁
杨建明
杨如梦
夏青青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Agricultural University
Original Assignee
Qingdao Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Agricultural University filed Critical Qingdao Agricultural University
Priority to CN202310730869.0A priority Critical patent/CN116904492B/zh
Publication of CN116904492A publication Critical patent/CN116904492A/zh
Application granted granted Critical
Publication of CN116904492B publication Critical patent/CN116904492B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03027Isoprene synthase (4.2.3.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种高产异戊二烯的沼泽红假单胞菌及其构建方法和应用。本发明通过质粒过表达异戊二烯合酶IspS和限速酶异戊烯焦磷酸异构酶IDI,获得工程菌株RPISO8,在此工程菌株的基础上,本发明选择强启动子pckA进行外源基因的表达,构建了高产异戊二烯的沼泽红假单胞菌工程菌株RPISO22,其产异戊二烯的产量可以达到610.58μg/L,比野生型菌株的产量提高了6倍,因此,本发明所构建的沼泽红假单胞菌工程菌,具有显著的提高异戊二烯产量的效果,进而具有很好的应用前景。

Description

一种高产异戊二烯的沼泽红假单胞菌及其构建方法和应用
技术领域
本发明属于分子生物学和基因工程领域,具体涉及一种高产异戊二烯的沼泽红假单胞菌及其构建方法和应用。
背景技术
异戊二烯是一种萜烯类化合物,属于半萜化合物。异戊二烯含有共轭双键,化学性质活泼,易形成新的化学物质,因此是一种重要的化工平台化合物。异戊二烯广泛应用于橡胶、农药、医药、香料及粘结剂等领域。此外,异戊二烯还被应用于合成甲基庚烯酮及其衍生物,以及通过异戊烯醇合成拟除虫菊酯中间体。
随着石化资源的日益枯竭,生产异戊二烯的原料石油的来源成为重要瓶颈问题。通过脱氢法、化学合成法(包括异丁烯-甲醛法、乙炔-丙酮法、丙烯二聚法)和裂解C5馏分萃取蒸馏法获得异戊二烯已经不能满足各方面生产需求。然而,以可再生的生物质为原料,以微生物合成异戊二烯具有可再生和环境友好等优势,已成为国际上的研究热点。自然界中,主要存在两种天然的代谢途径进行异戊二烯的生物合成,即甲羟戊酸(MVA)途径和甲基赤藓糖-4-磷酸(MEP)途径。这两类代谢途径的最终产物都是形成异戊二烯的前体物质二甲基烯丙基焦磷酸(dimethylallyl diphosphate,DMAPP),之后经过异戊二烯合成酶催化DMAPP至异戊二烯。
沼泽红假单胞菌(Rhodopseudomonas palustris)是一种典型的紫色非硫细菌(PNSB),属于变形菌门、红螺菌科、红假单胞菌属,其广泛分布在沼泽、土壤、湖泊和大海等光照充足的厌氧环境。因沼泽红假单胞菌具有富含多种营养物质可以作为饲料添加剂;还可以提高水体含氧量,稳定pH,净化水质;降解动植物和工业中的废弃物等优点,目前研究的热点主要是在废水处理和水产养殖领域的应用。但是,R.palustris在合成萜烯化合物领域具有较大的潜能:1)R.palustris存在多种代谢方式:光合自养、光合异养、化能自养和化能异养,可以利用太阳能和大气中的二氧化碳进行生长,以产生所需的产物,来提供自身所需的能量;2)通过R.palustris的全基因组测序结果,找到了合成萜烯化合物前体的MEP途径基因和下游合成类胡萝卜素的基因,适合于合成萜烯化合物的研究;3)R.palustris的发酵过程和发酵条件进行的优化已被研究多年,加上其细胞结构简单,提取相对容易。因此,以R.palustris作为宿主生产合成萜烯化合物是具有潜力的。
发明内容
本发明的目的在于提供一种高产异戊二烯的沼泽红假单胞菌及其构建方法和应用。本发明首先过表达异戊二烯合酶IspS和限速酶异戊烯焦磷酸异构酶IDI,然后选择强启动子pckA进行外源基因的表达,从而获得了高产异戊二烯的沼泽红假单胞菌工程菌RPISO22。
为实现上述发明目的,本发明采用以下技术方案予以实现:
本发明提供了一种高产异戊二烯的沼泽红假单胞菌工程菌的构建方法,其具体包括以下步骤:
(1)合成IspSib基因至pBBRMCS-5质粒上,获得质粒pBBR-IspSib;
(2)合成IDIsc基因至pGH质粒上,获得质粒pGH-IDIsc;
(3)以所述质粒pGH-IDIsc为模板,扩增IDIsc基因,将扩增产物与所述重组质粒pBBR-IspSib进行无缝连接,转化至感受态细胞,得到重组质粒pBBR-IspSib-IDIsc;
(3)扩增启动子pckA,将扩增产物与所述重组质粒pBBR-IspSib-IDIsc进行无缝连接,转化至感受态细胞,得到重组质粒pBBR-PpckA-IspSib-IDIsc;
(4)将所述重组质粒pBBR-PpckA-IspSib-IDIsc转化至沼泽红假单胞菌中,经抗性筛选、测序验证后,得到所述的高产异戊二烯的沼泽红假单胞菌工程菌。
进一步的,所述IspSib基因来自于甘薯,其核苷酸序列如SEQ ID NO.1所示。
进一步的,所述IDIsc基因来自于酿酒酵母,其核苷酸序列如SEQ ID NO.3所示。
进一步的,所述启动子pckA来自于沼泽红假单胞菌,其核苷酸序列如SEQ ID NO.5所示。
进一步的,所述步骤(4)中抗性筛选的步骤为:将转化后的菌株30℃培养,长出的单菌落划线在含有庆大霉素的抗性平板上继续培养,若可以长出单菌落菌落,则菌株通过抗性筛选。
本发明还提供了所述的构建方法构建得到的沼泽红假单胞菌工程菌。
本发明还提供了所述的沼泽红假单胞菌工程菌在生产异戊二烯和/或提高异戊二烯含量中的应用。
进一步的,所述沼泽红假单胞菌工程菌的使用方法为:
(1)活化所述沼泽红假单胞菌工程菌,培养得到种子液;
(2)将所述种子液按1%-5%的接种量转接至发酵培养基中,发酵培养4天-7天;
(3)从顶空抽取气体利用GC法检测异戊二烯气体的浓度。
进一步的,所述发酵培养基为含20mM醋酸钠的PM液体培养基。
进一步的,所述沼泽红假单胞菌工程菌生产异戊二烯的浓度不低于500μg/L。
进一步的,所述GC检测异戊二烯产量的条件为:气相色谱为GC7900,色谱柱型号为HP-INNOWAX(30m x 0.320m x 0.25μm),进样口温度为200℃,柱温箱温度50℃,检测器温度200℃,上样量为500μL。
本发明与现有技术相比,具有以下优点和有益效果:
本发明首先通过质粒过表达异戊二烯合酶IspS和限速酶异戊烯焦磷酸异构酶IDI,获得工程菌株RPISO8,该工程菌株的异戊二烯的产量由最初的109.27μg/L提高至259.63μg/L。在此工程菌株的基础上,本发明选择强启动子pckA进行外源基因的表达,构建了高产异戊二烯的沼泽红假单胞菌工程菌株RPISO22,其产量可以达到610.58μg/L,比野生型菌株的异戊二烯产量提高了约6倍,并且该菌株可以利用乙酸盐、苹果酸盐、丙酸盐等各种工业废弃物中存在的物质作为碳源,也可以利用CO2作为唯一碳源,相比于大肠杆菌和酿酒酵母等异样型微生物,在能源利用上具有优势。本发明所构建的沼泽红假单胞菌工程菌,具有显著的异戊二烯产量提高的效果,因此,本发明构建的沼泽红假单胞菌工程菌具有很好的应用前景。
附图说明:
图1为构建的载体pBBR-IspSib-IDIsc的质粒图谱。
图2为构建的载体pBBR-PpckA-IspSib-IDIsc的质粒图谱。
图3为构建工程菌株的异戊二烯产量。
具体实施方式
结合以下具体实例对本发明的技术方案作进一步详细的说明。
下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所用材料、试剂等均可从生物或化学试剂公司购买。
实施例1:沼泽红假单胞菌培养基的配制
1、按照以下方法配制Metal 44溶液:
80mL蒸馏水溶解EDTA,搅拌,用10M NaOH调pH至5.0(pH剂伸入溶液,磁力搅拌器搅拌,反应过程较慢),按顺序添加其他金属盐(一个溶解彻底后在加另一个),定容至100ml,配制好的Metal 44溶液的pH为2.4,为澄清石灰绿的溶液。过滤灭菌后保存在玻璃瓶中,铝箔包裹,4℃保存。
2、按照以下方法配制浓缩液:
60mL水溶解NTA,加入14.6g KOH中和,按表中顺序依次加入药品,调pH至6.8后定容至100mL。用KOH调节pH时会形成沉淀,但最终可通过搅拌再次溶解。当pH接近6.8时,溶液染色会从深黄色变成稻草色。过滤灭菌后保存在玻璃瓶中,铝箔包裹,4℃保存。
3、按照以下方法配制各种碳源和抗生素:
1M琥珀酸钠:称取27.015g琥珀酸钠粉末定容于100mL超纯水中,在超净工作台中用灭菌的水系滤膜过滤两次,放于低温备用。
2M醋酸钠:称取27.216g醋酸钠粉末定容于100mL超纯水中,超净工作台中用灭菌的水系滤膜过滤两次,放于低温备用。
1M碳酸氢钠:8.41g碳酸氢钠定容于100mL ddH20中,超净工作台中用灭菌的滤膜过滤两次。
0.1M硫代硫酸钠:1.24g硫代硫酸钠定容于50mL ddH20中,超净工作台中用灭菌的滤膜过滤两次。
50%蔗糖:称取250g蔗糖定容于500mL ddH20中,用一次性抽滤器过滤除菌,放在4℃冰箱备用。
庆大霉素储存液(100mg/mL):称取1g庆大霉素溶于10mL超纯水中,水系滤膜过滤,-20℃保存备用。
卡纳霉素储存液(34mg/mL):称取340mg卡纳霉素溶于10mL超纯水中,水系滤膜过滤,-20℃保存备用。
4、按照以下方法配制PM液体培养基:
将基倒入蓝盖瓶,氮气鼓气30min,橡皮塞塞紧,将培养基和16mL的试管(包括橡皮塞及夹子)置于厌氧箱中;取10mL培养基分装于试管中;用橡皮塞塞紧;将试管取出厌氧箱,高压蒸汽121℃灭菌20min。
5、PM固体培养基(2x PM)的配制:
每100mL 2XPM和加入了3.5g琼脂粉的100mL ddH2O分别121℃高压蒸汽灭菌20分钟;
倒CA板时混合均匀,不烫手时加入2M醋酸钠2mL,终浓度20mM即可;
倒PMS+Gm板时混合均匀,不烫手时加入1M琥珀酸钠2mL,终浓度10mM和100mg/mLGm 200μL,终浓度100μg/mL即可。
实施例2:质粒的构建
(1)pBBR-IspSib-IDIsc质粒
将来自于甘薯(Ipomoea batatas)IspSib基因进行密码子优化,获得序列如SEQID NO.1所示,其氨基酸序列如SEQ ID NO.2所示,合成至pBBR1MCS-5质粒(参考文献M.E.Kovach,P.H.Elzer,D.Steven Hill,G.T.Robertson,M.A.Farris,R.M.Roop andK.M.Peterson,Gene,1995,166,175-176.)的Kpn I和EcoR I位点,在ATG前面加入RBS序列(GTTTGCCCAGGGAAGTAGTTAAGAAAGGAGGTCTTTTT),获得pBBR-IspSib质粒。将来自于酿酒酵母(Saccharomyces cerevisiae)的IDIsc进行密码子优化,获得序列如SEQ ID NO.3所示,其氨基酸序列如SEQ ID NO.4所示,合成至通用质粒pGH上,获得pGH-IDIsc质粒。
以pGH-IDIsc为模板,IDIsc-F和IDIsc-R为引物,PCR扩增获得IDIsc基因。PCR反应体系如下:
PCR扩增程序:95℃预变性3min;95℃变性15s;65℃退火15s,72℃延伸1min;32循环,72℃延伸5min。
IDIsc-F:
AAAGAATTCGAACATAAGAAGGAGGTTAAATATGACGGCGGACAACAAC(SEQ ID NO.6);
IDIsc-R:
TTTGGATCCTTACAGGTCCTCCTCCGAGATCAGCTTCTGCTCCAGCATGCGGTGGATCT(SEQ IDNO.7)。
用EcoR I和BamH I(Takara)将质粒pBBR-IspSib进行双酶切,酶切体系如下所示:
将酶切反应体系置于37℃水浴2-3h。然后PCR反应体系和酶切反应体系使用E.Z.N.A.TM Gel&PCR Clean Up Kit(Omega)试剂盒进行胶回收纯化,并测其浓度。
使用In-Fusion HD Cloning kit(Takara)将PCR获得的IDIsc片段克隆至双酶切的质粒上。体系如下所示:
将连接体系置于50℃水浴1h,然后转化至E.coli S17-1感受态细胞,并将转化后的菌液涂布于LB+Gm(100ug/mL)板上,于37℃恒温培养箱过夜培养。PCR筛选阳性克隆,从阳性克隆中提取重组质粒,再通过测序进行鉴定,获得pBBR-IspSib-IDIsc质粒(图1)。
(2)pBBR-PpckA-IspSib-IDIsc质粒的构建
根据基因组提取试剂盒Ezup Column Fungi genomic DNAPurification Kit(生工,货号B518259-0050)提取R.palustris CGA009的基因组。以R.palustris CGA009基因组为模板,引物为PpckA-F和PpckA-F,PCR扩增获得PpckA启动子基因,其序列如如SEQ IDNO.5所示。扩增体系及程序如下:
PCR扩增程序:95℃预变性3min;95℃变性15s;55℃退火20s,72℃延伸30s;30个循环;72℃延伸5min。
其引物序列如下所示:
PpckA-F:GCTGTTTCCTGTGTGAAAGAATAGATCCTCCTCGAATCCGCG(SEQ ID NO.8);
PpckA-R:GCAGCTGGCACGACAGGGATCTGACCGGCGCAGAGG(SEQ ID NO.9)。
以质粒pBBR-IspSib-IDIsc为模板,引物为P-IspSib-IDIsc-PCR-F和P-IspSib-IDIsc-PCR-R扩增获得线性载体pBBR-IspSib-IDIsc,扩增体系及程序如下:
PCR扩增程序:94℃预变性1min;94℃变性30s;60℃退火30s,72℃延伸7min;32个循环;72℃延伸5min。
其引物序列如下所示:
P-IspSib-IDIsc-PCR-F:CCTGTCGTGCCAGCTGCATTAATG(SEQ ID NO.10);
P-IspSib-IDIsc-PCR-R:TTTCACACAGGAAACAGCTATGACCATG(SEQ ID NO.11)。
将PCR产物利用胶回收纯化试剂盒(碧云天,货号D0056)进行胶回收纯化。
利用DNA连接酶进行连接,连接体系如下所示:
将连接体系置于50℃水浴30min后,将连接产物转化至感受态E.coli S17-1中,并将转化后的菌液涂布于LB+Gm(100ug/mL)板上,于37℃恒温培养箱过夜培养。PCR筛选阳性克隆,从阳性克隆中提取重组质粒,再通过测序进行鉴定,获得pBBR-PpckA-IspSib-IDIsc(图2)。
实施例3:工程菌株的构建
将质粒pBBR-IspSib-IDIsc和pBBR-PpckA-IspSib-IDIsc通过结合转移的方式转入R.palustris CGA009中,以获得菌株RPISO8和RPISO22。具体操作如下:连接前2-3天,活化R.pal至OD6600.2~0.7;过夜培养转化在S17-1的pBBR-IspSib-IDIsc和pBBR-PpckA-IspSib-IDIsc质粒;按照1:100比例稀释,使菌液生长至OD660=0.2~0.5;分别取0.5mLS17-1和1mL R.pal,15000rpm,30s离心;用400ul PM洗涤S17-1,离心;空离心一次,各自悬浮在200μL的PM中;混合100μL S17-1和50μL R.pal;混合液涂在CA板(不加抗生素)上,30℃培养过夜。24h后,翻板培养24-36h;挑单菌落在PMS+Gm平板上,30℃培养4天。PCR筛选阳性克隆,从阳性克隆中提取重组菌株,再通过测序进行鉴定,获得RPISO8和RPISO22。
实施例4:工程菌的发酵和异戊二烯的检测
(1)通过GC法检测异戊二烯
检测异戊二烯的条件是:气相色谱为GC7900,色谱柱型号为HP-INNOWAX(30m x0.320m x 0.25μm),进样口温度为200℃,柱温箱温度50℃,检测器温度200℃,上样量为500μL。
异戊二烯-无水乙醇标准液的配制:量取0.222μL异戊二烯液体溶解在5mL无水乙醇中,使异戊二烯标准液的终浓度变成0.03μg/μL(室温下异戊二烯ρ=0.6861g/mL),用移液器分别取0μL、10μL、20μL、30μL、40μL、50μL和60μL注入到带橡胶塞的装有10mL PM培养基的厌氧管中(每个体积三管,为了避免损失,将移液器头一并打入),然后将厌氧管放置在55℃烘箱里静置30min,等异戊二烯和无水乙醇完全气化后,密封管中异戊二烯的终浓度分别成为0、0.3、0.6、0.9、1.2、1.5、1.6μg/L。最后根据峰面积和异戊二烯的浓度绘制出标准曲线。
(2)异戊二烯菌株的发酵培养
待发酵菌株活化:CA平板/PMS+Gm平板划线活化菌株RPISO0、RPISO8和RPISO22;
种子液培养:挑取活化的单菌落至PM+20mM的醋酸钠培养液中,生长至OD=0.8。
发酵培养:按照3%接种量(约300μL)将准备好的种子液全部转接至PM+20mM的醋酸钠培养基中,生长至OD=0.8,每个菌株按照3%接种量(约300μL)将准备好的种子液全部转接至PM+20mM的醋酸钠培养基中,接5个平行,在光照培养箱中进行培养5天,发酵结束,使用紫外可见分光光度计测定OD660值。
发酵产量计算:首先记录峰面积,根据获得的标准曲线计算培养基顶空中异戊二烯气体浓度(μg/L),根据培养基顶空中的气体体积计算异戊二烯产量的质量(μg),最后根据培养基中的发酵液体积计算异戊二烯产量(μg/L)。结果如图3显示,原始沼泽红假单胞菌RPISO0的异戊二烯产量为109.27μg/L,获得工程菌RPISO8和RPISO22的异戊二烯产量分别为259.63μg/L和610.58μg/L。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

1.一种高产异戊二烯的沼泽红假单胞菌工程菌的构建方法,其特征在于:具体包括以下步骤:
(1)合成IspSib基因至pBBRMCS-5质粒上,获得质粒pBBR-IspSib;
(2)合成IDIsc基因至pGH质粒上,获得质粒pGH-IDIsc;
(3)以所述质粒pGH-IDIsc为模板,扩增IDIsc基因,将扩增产物与所述重组质粒pBBR-IspSib进行无缝连接,转化至感受态细胞,得到重组质粒pBBR-IspSib-IDIsc;
(3)扩增启动子pckA,将扩增产物与所述重组质粒pBBR-IspSib-IDIsc进行无缝连接,转化至感受态细胞,得到重组质粒pBBR-PpckA-IspSib-IDIsc;
(4)将所述重组质粒pBBR-PpckA-IspSib-IDIsc转化至沼泽红假单胞菌中,经抗性筛选、测序验证后,得到所述的高产异戊二烯的沼泽红假单胞菌工程菌。
2.根据权利要求1所述的构建方法,其特征在于:所述IspSib基因来自于甘薯,其核苷酸序列如SEQ ID NO.1所示。
3.根据权利要求1所述的构建方法,其特征在于:所述IDIsc基因来自于酿酒酵母,其核苷酸序列如SEQ ID NO.3所示。
4.根据权利要求1所述的构建方法,其特征在于:所述启动子pckA来自于沼泽红假单胞菌,其核苷酸序列如SEQ ID NO.5所示。
5.根据权利要求1所述的构建方法,其特征在于:所述步骤(4)中抗性筛选的步骤为:将转化后的菌株30℃培养,长出的单菌落划线在含有庆大霉素的抗性平板上继续培养,若可以长出单菌落菌落,则菌株通过抗性筛选。
6.权利要求1-5任一项所述的构建方法构建得到的沼泽红假单胞菌工程菌。
7.权利要求6所述的沼泽红假单胞菌工程菌在生产异戊二烯和/或提高异戊二烯含量中的应用。
8.根据权利要求7所述的应用,其特征在于:所述沼泽红假单胞菌工程菌的使用方法为:
(1)活化所述沼泽红假单胞菌工程菌,培养得到种子液;
(2)将所述种子液按1%-5%的接种量转接至发酵培养基中,发酵培养4天-7天;
(3)从顶空抽取气体利用GC法检测异戊二烯气体的浓度。
9.根据权利要求8所述的应用,其特征在于:所述发酵培养基为含20mM醋酸钠的PM液体培养基。
10.根据权利要求7所述的应用,其特征在于:所述沼泽红假单胞菌工程菌生产异戊二烯的浓度不低于500μg/L。
CN202310730869.0A 2023-06-20 2023-06-20 一种产异戊二烯的沼泽红假单胞菌及其构建方法和应用 Active CN116904492B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310730869.0A CN116904492B (zh) 2023-06-20 2023-06-20 一种产异戊二烯的沼泽红假单胞菌及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310730869.0A CN116904492B (zh) 2023-06-20 2023-06-20 一种产异戊二烯的沼泽红假单胞菌及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN116904492A true CN116904492A (zh) 2023-10-20
CN116904492B CN116904492B (zh) 2024-06-07

Family

ID=88353940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310730869.0A Active CN116904492B (zh) 2023-06-20 2023-06-20 一种产异戊二烯的沼泽红假单胞菌及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN116904492B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202579A1 (en) * 2004-08-19 2007-08-30 Dsm Ip Assets B.V. Production Of Isoprenoids
AU2012202630A1 (en) * 2006-05-26 2012-05-31 Amyris, Inc. Production of isoprenoids
CN106350476A (zh) * 2016-08-31 2017-01-25 中国科学院青岛生物能源与过程研究所 联产异戊二烯和1,3‑丙二醇的基因工程菌及构建方法和应用
CN109097378A (zh) * 2018-08-13 2018-12-28 中国科学院青岛生物能源与过程研究所 一种异戊二烯合酶和其编码基因、表达载体、工程菌以及生产异戊二烯的方法及应用
CN113736720A (zh) * 2021-08-10 2021-12-03 青岛农业大学 一种高产番茄红素的沼泽红假单胞菌及其构建方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202579A1 (en) * 2004-08-19 2007-08-30 Dsm Ip Assets B.V. Production Of Isoprenoids
AU2012202630A1 (en) * 2006-05-26 2012-05-31 Amyris, Inc. Production of isoprenoids
CN106350476A (zh) * 2016-08-31 2017-01-25 中国科学院青岛生物能源与过程研究所 联产异戊二烯和1,3‑丙二醇的基因工程菌及构建方法和应用
CN109097378A (zh) * 2018-08-13 2018-12-28 中国科学院青岛生物能源与过程研究所 一种异戊二烯合酶和其编码基因、表达载体、工程菌以及生产异戊二烯的方法及应用
CN113736720A (zh) * 2021-08-10 2021-12-03 青岛农业大学 一种高产番茄红素的沼泽红假单胞菌及其构建方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MILLER ANTHONY R: "Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris", MBIO, vol. 9, no. 2, 10 April 2018 (2018-04-10) *
曹小贺;张海波;包文智;刘丽娟;夏海锋;: "提高酿酒酵母异戊二烯产量的代谢途径的挖掘", 食品与发酵工业, no. 12 *

Also Published As

Publication number Publication date
CN116904492B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
CN104372017B (zh) 一种提高基因工程菌异戊二烯及其衍生物产量的方法及应用
CN108060114B (zh) 一种发酵生产l-丙氨酸的大肠杆菌及其应用
CN110373370B (zh) 一种耦合atp再生系统的催化体系及其在生产谷胱甘肽过程中的应用
CN110387379B (zh) 一种用于生产谷胱甘肽的重组大肠杆菌的混合培养工艺及其应用
CN114107152B (zh) 一种高产3-岩藻糖基乳糖微生物的构建方法及应用
CN114807206B (zh) 合成聚(3-羟基丁酸酯-co-4-羟基丁酸酯)的菌株及其构建方法和应用
CN104371966A (zh) 一种以乙酸为原料合成间苯三酚的基因工程菌及其构建方法与应用
CN113736720B (zh) 一种高产番茄红素的沼泽红假单胞菌及其构建方法和应用
CN104046586B (zh) 一株基因工程菌及其在生产(2r,3r)-2,3-丁二醇中的应用
CN107354118A (zh) 一种具有γ‑松油烯合成能力的基因工程菌及其构建方法与应用
CN104630100A (zh) 改造的克雷伯氏肺炎杆菌及其生产r-乙偶姻的应用
CN108359626A (zh) 一种工程菌及其在制备(r)-3-羟基-5-己烯酸酯中的应用
CN103820506B (zh) 一种基因重组菌发酵生产辅酶q10的方法
CN116904492B (zh) 一种产异戊二烯的沼泽红假单胞菌及其构建方法和应用
CN115820702A (zh) 一种重组大肠杆菌静息细胞催化异戊烯醇高效制备冷杉醇的方法
CN109486871A (zh) 一种利用地衣芽孢杆菌工程菌株发酵生产乙偶姻的方法
CN116574623A (zh) 一种利用双菌共培养体系生产羟基酪醇的方法
CN111304138B (zh) 一种生产β-胡萝卜素的重组大肠杆菌及构建方法与应用
CN110951794B (zh) 一种提高酿酒酵母工程菌生产葡萄糖二酸的发酵方法
CN111117906B (zh) 一种改善的微生物培养方法
CN111826372A (zh) 利用木糖生产丁醇的工程菌株及其构建方法和应用
CN116286513B (zh) 一株希氏乳杆菌FR-1012及其工业化生产γ-氨基丁酸的方法
CN103571785A (zh) 一种高效利用脂肪酸生产甲羟戊酸的方法及构建得到的基因工程菌
CN110484466B (zh) 一种提高嗜热厌氧杆菌发酵性能的方法
CN115851511B (zh) 一种产琥珀酸的大肠杆菌及其构建方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant