CN116574623A - 一种利用双菌共培养体系生产羟基酪醇的方法 - Google Patents

一种利用双菌共培养体系生产羟基酪醇的方法 Download PDF

Info

Publication number
CN116574623A
CN116574623A CN202210798069.8A CN202210798069A CN116574623A CN 116574623 A CN116574623 A CN 116574623A CN 202210798069 A CN202210798069 A CN 202210798069A CN 116574623 A CN116574623 A CN 116574623A
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
hydroxytyrosol
double
bacteria
recombinant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210798069.8A
Other languages
English (en)
Inventor
吕小妹
刘英杰
杨瑞金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210798069.8A priority Critical patent/CN116574623A/zh
Publication of CN116574623A publication Critical patent/CN116574623A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0028Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • C12Y114/140094-Hydroxyphenylacetate 3-monooxygenase (1.14.14.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010543-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01025Tyrosine decarboxylase (4.1.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/02Aldehyde-lyases (4.1.2)
    • C12Y401/02009Phosphoketolase (4.1.2.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)
    • C12Y504/99005Chorismate mutase (5.4.99.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种利用双菌共培养体系生产羟基酪醇的方法,属于微生物基因工程技术领域。本发明构建酿酒酵母工程菌株与大肠杆菌工程菌株的双菌共培养体系,优化并利用双菌共培养体系从头合成羟基酪醇。所述酿酒酵母工程菌株通过在宿主菌株中消除酪氨酸反馈抑制,引入外源提高产物代谢通量的路径及整合改造的GAL调控系统得到;所述大肠杆菌工程菌株通过在宿主菌株中过表达4‑羟基苯乙酸‑3‑羟化酶和核黄素氧化还原酶得到,由此实现羟基酪醇的制备和高效合成;采用所述酿酒酵母工程菌株和大肠杆菌工程菌双菌共培养体系的羟基酪醇从头合成产量达到435.32mg/L,解决了单一野生菌株不能从头合成羟基酪醇的问题,为微生物高效发酵生产羟基酪醇提供了新思路。

Description

一种利用双菌共培养体系生产羟基酪醇的方法
技术领域
本发明涉及一种利用双菌共培养体系生产羟基酪醇的方法,属于微生物基因工程技术领域。
背景技术
羟基酪醇(3,4-二羟基苯乙醇)作为橄榄油中的主要活性物质,其营养价值和经济价值已经被广泛认可,其被证明具有多种药理作用,例如抗氧化,抗血栓,抑制肿瘤生长及防止骨质疏松等疗效。羟基酪醇天然提取方式得率较低,纯化复杂;化学合成方法对环境污染较大;而酶法催化则合成成本较高,相对而言利用微生物细胞工厂合成羟基酪醇具有高效、绿色、成本低等优势,引起了国内外学者的广泛关注。综合众多学者对羟基酪醇的合成探究发现,酪醇是合成羟基酪醇的重要前体物质,可以由酿酒酵母中的埃利希途径路径从头合成,且酪醇在酿酒酵母中的研究已经相对成熟,但是酿酒酵母中缺乏合适的羟化酶将酪醇氧化形成羟基酪醇,因此难以实现高效的从头转化。另一方面,大量研究表明大肠杆菌中的羟化酶组合(4-羟基苯乙酸-3-羟化酶HpaB和核黄素氧化还原酶HpaC)具有优异的酪醇羟基化能力,然而该菌株却缺乏从头合成酪醇的能力。
因此,如何利用微生物发酵法实现葡萄糖到羟基酪醇的高效转化成为羟基酪醇绿色合成的关键点。
发明内容
羟基酪醇天然提取方式得率较低,纯化复杂;化学合成会对环境造成污染;酶法催化合成的成本较高;微生物合成具有高效、绿色、成本低等优势,但单一野生菌株无法实现羟基酪醇的从头合成。
本发明提供一种利用双菌共培养体系生产羟基酪醇的方法,即构建酿酒酵母工程菌株与大肠杆菌工程菌株的双菌共培养体系,优化并利用双菌共培养体系从头合成羟基酪醇。本发明构建的双菌共培养体系对环境友好,成本低廉并有效解决了单一野生菌株不能从头合成羟基酪醇的问题,为微生物高效发酵生产羟基酪醇提供了新思路,新方法,对于促进羟基酪醇的绿色、高效合成具有重要意义。
本发明的第一个目的是提供一种重组酿酒酵母,其特征在于,所述重组酿酒酵母过表达了来源于酿酒酵母的3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸合成酶突变体aro4K229L、来源于酿酒酵母的分支酸变位酶突变体aro7G141S、来源于欧芹的酪氨酸脱羧酶pcaasopt及来源于短双歧杆菌的磷酸转酮酶Bbxfpkopt,同时敲除酿酒酵母基因组上的GAL80基因和HO基因。
在本发明的一种实施方式中,所述3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸合成酶突变体aro4K229L的核苷酸序列如SEQ ID NO.1所示。
在本发明的一种实施方式中,所述分支酸变位酶突变体aro7G141S的核苷酸序列如SEQ ID NO.2所示。
在本发明的一种实施方式中,所述酪氨酸脱羧酶pcaasopt的核苷酸序列如SEQ IDNO.3所示。
在本发明的一种实施方式中,所述磷酸转酮酶Bbxfpkopt的核苷酸序列如SEQ IDNO.4所示。
在本发明的一种实施方式中,所述重组酿酒酵母是以BY4741为出发菌株。
在本发明的一种实施方式中,所述重组酿酒酵母是将aro4K229L、aro7G141S、pcaasopt、Bbxfpkopt依次整合至出发菌株BY4741的基因组上的GAL80、GAL80、HO、HO位点,同时敲除酿酒酵母基因组上的GAL80基因和HO基因,所述GAL80和HO位点在NCBI上的登录号分别为:854954和851371。
本发明的第二个目的是提供了一种重组大肠杆菌,所述大肠杆菌工程菌株以野生型大肠杆菌BL21(DE3)菌为宿主,过表达了来源于大肠杆菌BL21(DE3)的4-羟基苯乙酸-3-羟化酶HpaB(GenBank登录号:ARI00017.1)和核黄素氧化还原酶HpaC(GenBank登录号:ARI00016.1)。
在本发明的一种实施方式中,所述重组大肠杆菌采用PET30a质粒表达4-羟基苯乙酸-3-羟化酶HpaB,采用PET22b质粒表达核黄素氧化还原酶HpaC。
本发明的第三个目的是提供一种可以提高大肠杆菌酪醇转化率的方法,所述方法为,在大肠杆菌中过表达来源于大肠杆菌BL21(DE3)的4-羟基苯乙酸-3-羟化酶HpaB(GenBank登录号:ARI00017.1)和核黄素氧化还原酶HpaC(GenBank登录号:ARI00016.1)。
在本发明的一种实施方式中,所述大肠杆菌工程菌株以野生型大肠杆菌BL21(DE3)菌为宿主。
在本发明的一种实施方式中,所述最终构建的大肠杆菌基因工程菌BL-EcBc具备高效酪醇转化能力。
本发明的第四个目的是提供一种从头合成羟基酪醇的双菌共培养体系。本发明提供了一种发酵制备羟基酪醇的方法,所述方法为,采用上述重组酿酒酵母和重组大肠杆菌构成的双菌发酵体系制备得到。
在本发明的一种实施方式中,所述双菌发酵体系中的底物为葡萄糖、蔗糖、甘油中的一种或多种。
在本发明的一种实施方式中,所述双菌共培养体系中含有:胰蛋白胨(15g/L)、酵母提取物(17.5g/L)、氯化钠(5g/L)、蔗糖(10g/L)。
在本发明的一种实施方式中,所述双菌发酵体系为,将重组酿酒酵母种子液和重组大肠杆菌种子液是按照(1~10):(1~10)的比例混合后,得到混合种子液,将混合种子液添加至含有底物的反应体系中进行发酵。
在本发明的一种实施方式中,所述重组酿酒酵母种子液和重组大肠杆菌种子液按照体积比为5:1进行混合后得到混合种子液。
在本发明的一种实施方式中,所述发酵条件为:所述重组酿酒酵母种子液和重组大肠杆菌种子液的比例为5:1接种于最适培养基中发酵24~96小时;其中,在发酵2~10h添加IPTG进行诱导。
在本发明的一种实施方式中,在发酵8h添加IPTG进行诱导。
在本发明的一种实施方式中,所述双菌共培养时,添加诱导剂IPTG后双菌共培体系的发酵时间为72h。
本发明的第五个目的是提供一种从双菌共培养体系中制备羟基酪醇的方法。
在本发明的一种实施方式中,所述的从双菌共培养体系中制备羟基酪醇的方法为将共培养体系进行发酵培养后,收集发酵液上清分离出羟基酪醇。其中,所述发酵体系中添加抗坏血酸使其最终浓度为1g/L。
有益效果
(1)本发明通过对野生型酿酒酵母BY4741菌进行基因工程改造,成功获得了从头合成酪醇的工程酿酒酵母LYJ-001菌、LYJ-002菌、LYJ-003和LYJ-004菌,相较于野生菌,LYJ-001菌使酪醇的产量由17.60mg/L增加到106.05mg/L;LYJ-002菌使酪醇的产量进一步增加到116.83mg/L;LYJ-003菌使酪醇的产量进一步增加到371.09mg/L;最终LYJ-004菌使酪醇的产量达到461.07mg/L。
(2)本发明通过对野生型大肠杆菌BL21(DE3)菌进行基因工程改造,成功获得了高酪醇转化率的工程大肠杆菌BL-Ecbc菌,相较于野生菌,使酪醇转为羟基酪醇的转化率由0.03%提高到86.02%。
(3)本发明通过对共培养体系的培养环境进行优化,成功获得了一种从头高效合成羟基酪醇的双菌共培养体系,使得羟基酪醇的从头合成产量达到435.32mg/L。
附图说明
图1:酿酒酵母工程菌LYJ-001菌株、LYJ-002菌株、LYJ-003菌株和LYJ-004菌株的基因图谱(A)和上述工程菌株与野生菌BY4741菌以蔗糖和甘油为底物合成酪醇的产量(B)。
图2:工程大肠杆菌BL-Ecbc菌和野生菌BL21(DE3)菌以300mg/L酪醇为底物合成羟基酪醇的产量。
图3:从头合成羟基酪醇的双菌共培养体系演示及条件优化,其中A为:从头合成羟基酪醇的双菌共培养体系演示图,B为:双菌共培养体系培养基优化,C为:双菌共培养体系种子液初始接种比例优化,D为:双菌共培养体系诱导剂添加时间优化,E为:双菌共培养体系发酵时间优化。
具体实施方式
下述实施例中所涉及的生化材料如下:
酿酒酵母BY4741和大肠杆菌BL21(DE3)(本实验室);大肠杆菌Top10感受态细胞(美国Novagen公司);酪醇和羟基酪醇的标准品(中国Solarbio公司);限制性内切酶、T4DNA连接酶、Prime STAR Max DNA聚合酶、上样缓冲液、LE琼脂糖和S4核酸电泳染料(Takara);抗生素、酵母全基因组提取试剂盒和SanPrep柱式质粒DNA小量抽提试剂盒(上海生工生物科技有限公司);DNA 5000ladder和DNA 10000ladder(上海宝生物有限公司);胰蛋白胨和酵母提取物(英国Oxoid公司);欧芹中的酪氨酸脱羧酶基因Pcaasopt和短双歧杆菌中的磷酸转酮酶基因Bbxfpkopt密码子优化与合成(上海生工生物科技有限公司)。
下述实施例中所涉及的培养基如下:
YPD液体培养基:葡萄糖(20g/L),胰蛋白胨(20g/L),酵母提取物(10g/L),115℃灭菌30min。
YPD琼脂培养基:1L体积的YPD液体培养基中加入15g琼脂粉,高压蒸汽灭菌后倒入无菌平板,为无抗生素YPD固体培养基;加抗生素则为对应的抗生素选择性YPD固体培养基,冷凝后放于4℃冰箱放置备用。
YPSG液体培养基:蔗糖(10g/L),甘油(10g/L),胰蛋白胨(20g/L),酵母提取物(10g/L),115℃灭菌30min。
YPSG琼脂培养基:1L体积的YPSG液体培养基中加入15g琼脂粉,高压蒸汽灭菌后倒入无菌平板,为无抗生素YPSG固体培养基;加抗生素则为对应的抗生素选择性YPSG固体培养基,冷凝后放于4℃冰箱放置备用。
LB液体培养基:NaCl(10g/L),胰蛋白胨(10g/L),酵母提取物(5g/L),120℃灭菌20min。
LB琼脂培养基:1L体积的LB液体培养基中加入15g琼脂粉,灭菌方法与YPD琼脂培养基一致。
SD琼脂培养基:酵母无氨基酸氮基(1.7g/L),无水硫酸铵(5g/L),酵母总培养氨基酸预混粉(1.31g/L),葡萄糖(2g/L)和(15g/L)琼脂粉,115℃灭菌30min。
SD-FOA琼脂培养基:首先配置100mg/mL 5-氟乳清酸(FOA)母液,称取1g 5-FOA粉末,溶解于10mL二甲基亚砜溶剂中,用灭菌的0.22μm规格的有机系针式过滤器过滤除菌,于-20℃保存。制作SD-FOA平板时,将高温灭菌的100mL的SD琼脂培养基温度降至60℃左右,加入1mL FOA母液,即5-FOA的工作浓度为1mg/mL。
双菌共培养的混合液体培养基配置:
培养基1:胰蛋白胨(15g/L),酵母提取物(17.5g/L),NaCl(5g/L)和葡萄糖(10g/L);
培养基2:胰蛋白胨(15g/L),酵母提取物(17.5g/L),NaCl(5g/L)和蔗糖(10g/L);
培养基3:胰蛋白胨(15g/L),酵母提取物(17.5g/L),NaCl(5g/L),蔗糖(5g/L)和甘油(5g/L);
培养基4:酵母提取物(5g/L),葡萄糖(40g/L),KH2PO4(13.3g/L),(NH4)2HPO4(4g/L),Citric acid(1.7g/L),EDTA(0.0084g/L),CoCl2(0.0025g/L),MnCl2(0.015g/L),CuCl2(0.0015g/L),H3BO3(0.003g/L),Na2MoO4(0.0025g/L),Zn(CH3COO)2)(0.008g/L),Fe(III)citrate(0.06g/L)和MgSO4(1.3g/L);
培养基5:酵母提取物(5g/L),蔗糖(20g/L),甘油(20g/L),KH2PO4(13.3g/L),(NH4)2HPO4(4g/L),Citric acid(1.7g/L),EDTA(0.0084g/L),CoCl2(0.0025g/L),MnCl2(0.015g/L),CuCl2(0.0015g/L),H3BO3(0.003g/L),Na2MoO4(0.0025g/L),Zn(CH3COO)2)(0.008g/L),Fe(III)citrate(0.06g/L)和MgSO4(1.3g/L),115℃灭菌30min。
上述培养基均加过滤除菌的抗坏血酸,氨苄和卡那霉素使其最终浓度分别为1g/L,50μg/mL和50μg/mL。
下述实施例中所涉及的菌株、质粒和引物如表1~3所示:
表1:菌株及其基因型
表2:质粒及其基因型
表3:引物序列
分子生物学的基本操作:
(1)大肠杆菌质粒抽提、基因组提取、PCR产物的纯化、胶回收如无特别说明,均按照相应试剂盒说明进行操作。
(2)利用PCR技术和重叠延伸PCR技术分别进行DNA片段的扩增和基因定点突变,根据不同的实验需求采用不同的反应体系和程序。反应体系参照表4,反应程序参照表5。
表4:PCR反应体系
表5:PCR反应程序
(3)酶切与连接:DNA双酶切及T4连接酶反应体系与反应条件,如无特别说明,参照(Takara)公司网站(https://www.takarabiomed.com.cn/)进行双酶切反应与T4连接酶连接。
(4)大肠杆菌感受态热激法转化:首先取5μL的连接产物加入50μL冻融的感受态细胞,冰浴20min;然后将感受态细胞置于42℃金属浴中热击90s,迅速放置冰上,冰浴5min;然后加入1mL的新鲜LB培养基,于37℃震荡复苏60min;最后取200ul菌液涂布在相应抗性的固体LB平板上,37℃培养过夜。
(5)酿酒酵母感受态制备及电击法转化:①挑取单菌落,接种到5mL的YPD液体培养基中,放置于转速为200rpm,温度为30℃的恒温摇床中培养过夜;②取1mL菌液转接至50mLYPD培养基中,于相同的条件下培养至OD600为1.3~2左右;③转移到50mL灭菌离心管,冰浴10min,2500rpm转速离心,回收细胞;④用30mL预冷的灭菌水悬浮菌液,于4℃、2500rpm离心10min,弃上清;⑤用预冷的30mL的1M山梨醇溶液重悬细胞,4℃、2500rpm离心10min,弃上清;⑥将沉淀溶解于200μL的山梨醇溶液,转移到预冷的1.5mL离心管中,即制成酿酒酵母感受态细胞。⑦取5μL质粒或10μL浓缩后的线性片段,加入50μL感受态细胞中,冰浴5min,转入预冷的1mm无菌电转杯中;⑧将电转化杯于750V/mm的电压下进行电击,然后立即加入1mLYPD培养基,悬浮细胞后转移至1.5mL离心管中,于30℃培养箱静置复苏2h;⑨复苏后的细胞用无菌水清洗,取200μL涂布于相应抗性或影响缺陷筛选标记的固体YPD/SD琼脂平板上,30℃培养。
(6)菌株培养及发酵方法:从琼脂平板上挑取单菌落,接种到5mL的YPD/LB液体培养基中,酵母菌放置于转速为200rpm,温度为30℃的恒温摇床中培养过夜,大肠杆菌放置于转速为200rpm,温度为37℃的恒温摇床中培养过夜。对于单一菌株培养,取1mL菌液转接至50mL YPSG/LB培养基中扩大培养。按照菌株要求添加相应的诱导剂和抗生素。对于共培养,取1mL不同菌种比例的混合菌液转接至50mL不同混合培养基中扩大培养以筛选最佳发酵条件。按照菌株要求添加相应的诱导剂、抗生素和抗坏血酸。
酪醇和羟基酪醇的检测方法:
用HPLC-UV系统(Waters 2695)对发酵液上清中的酪醇和羟基酪醇进行检测。发酵后,取2mL发酵液在转速为10000g下离心5min,取上清用0.22μm的水系膜进行过滤,然后用C18柱(250×4.6mm i.d.,5μm;Agilent)进行检测。进样体积为10μL,检测波长为280nm,柱温为30℃,流速为0.3mL/min。流动相为A为5%甲酸,B为100%乙腈。液相洗脱程序采用梯度洗脱,如表6:
表6:液相洗脱程序
下述实施例中所涉及的pUMRI-B-△GAL80、pUMRI-A-△HO公开自以下论文:Lv,X.M.;Wang,F.;Zhou,P.P.;Ye,L.D.;Xie,W.P.;Xu,H.M.;Yu,H.W.Dual regulation ofcytoplasmic and mitochondrial acetyl-CoA utilization for improved isopreneproduction in Saccharomyces cerevisiae.Nat Commun.2016,7,No.12851.。
实施例1:基因工程改造野生型酿酒酵母BY4741并检测其从头合成酪醇产量
具体步骤如下:
1、酵母工程菌株YLYJ-001菌的制备
(1)利用重叠延伸PCR的方法从野生型酵母BY4741菌的全基因组中扩增出带有酶切位点的aro4K229L基因片段,引物为aro4K229L-F1、aro4K229L-R1(SalI)、aro4K229L-F2(BamHI)和aro4K229L-R2(SalI),引物核苷酸序列参考于表3,PCR反应体系见表4,PCR反应程序见表5。
(2)对带有酶切位点的aro4K229L基因片段和质粒pUMRI-B-△GAL80进行双酶切,胶回收双酶切基因片段和载体片段后,将基因片段与载体片段进行基因克隆得到重组质粒pB-△GAL80-aro4K229L
(3)将得到的重组质粒pB-△GAL80-aro4K229L进行SfiI单酶切并利用同源重组的方法将其整合在BY4741菌的染色体GAL80位点上并敲除BY4741菌的GAL80基因,得到酵母工程菌株YLYJ-001菌,YLYJ-001菌的基因型如图1A所示。
2、酵母工程菌株YLYJ-002菌的制备
(1)利用重叠延伸PCR的方法从野生型酵母BY4741菌的全基因组中扩增出带有酶切位点的aro7G141S基因片段,引物为aro7G141S-F1(EcoRI)、aro7G141S-R1、aro7G141S-F2和aro7G141S-R2(NotI),引物核苷酸序列如表3所示,PCR反应体系如表4所示,PCR反应程序如表5所示。
(2)对YLYJ-001菌制备中带有酶切位点的aro4K229L和上述aro7G141S基因片段和质粒pUMRI-B-△GAL80进行双酶切,胶回收双酶切基因片段和载体片段后,将基因片段与载体片段进行基因克隆得到重组质粒pB-△GAL80-aro4K229L-aro7G141S
(3)将得到的重组质粒pB-△GAL80-aro4K229L-aro7G141S进行SfiI单酶切并利用同源重组的方法将其整合在BY4741菌的染色体GAL80位点上并敲除BY4741菌的GAL80基因,得到酵母工程菌株YLYJ-002菌,YLYJ-002菌的基因型如图1A所示。
3、酵母工程菌株YLYJ-003菌的制备
(1)按照上述方法,将密码子优化后的Pcaasopt基因片段(核苷酸序列分别如SEQID NO.3所示)与质粒pUMRI-A-△HO进行基因克隆得到重组质粒pA-△HO-Pcaasopt
(2)将得到的重组质粒pA-△HO-Pcaasopt进行SfiI单酶切并利用同源重组的方法将其整合在YLYJ-002菌的染色体HO位点上并同时敲除HO基因,得到酵母工程菌株YLYJ-003菌,YLYJ-003菌的基因型如图1A所示。
4、酵母工程菌株YLYJ-004菌的制备
(1)按照上述方法,将密码子优化后的Pcaasopt和Bbxfpkopt基因片段(核苷酸序列分别如SEQ ID NO.3、SEQ ID NO.4所示)与质粒pUMRI-A-△HO进行基因克隆得到重组质粒pA-△HO-Pcaasopt-Bbxfpkopt
(2)将得到的重组质粒pA-△HO-Pcaasopt-Bbxfpkopt进行SfiI单酶切并利用同源重组的方法将其整合在YLYJ-002菌的染色体HO位点上并同时敲除HO基因,得到酵母工程菌株YLYJ-004菌,YLYJ-004菌的基因型如图1A所示。
5、酪醇的生产
分别将野生型酿酒酵母BY4741、YLYJ-001、YLYJ-002、YLYJ-003和YLYJ-004接种在YPSG培养基中,在30℃,200rpm条件下,进行72小时发酵,得到发酵液;
用HPLC-UV系统对发酵液上清进行酪醇产量的测定。结果如图1B所示。
结果显示,相较于野生菌BY4741,YLYJ-001菌使酪醇的产量由17.60mg/L增加到106.05mg/L;YLYJ-002菌使酪醇的产量进一步增加到116.83mg/L;YLYJ-003菌使酪醇的产量进一步增加到371.09mg/L;最终YLYJ-004菌使酪醇的产量达到461.07mg/L。
结果显示,同时过表达aro4K229L,aro7G141S,Pcaasopt和Bbxfpkopt的重组菌株YLYJ-004的酪醇产量最高,因此,以YLYJ-004继续实验。
实施例2:基因工程改造野生型大肠杆菌BL21(DE3)并检测其酪醇转化率
(1)利用PCR技术从野生型大肠杆菌BL 21(DE3)的全基因组中扩增出带有酶切位点的Echpab和Echpac片段(GenBank登录号分别为:ARI00017.1、ARI00016.1),引物如表3所示。
然后对带有酶切位点的Echpab和Echpac基因片段分别与质粒PET 30a和PET 22b进行双酶切,胶回收双酶切基因片段和载体片段后,将基因片段与线性载体进行基因克隆得到重组质粒,得到重组质粒PET 30a-Echpab和PET 22b-Echpac。将重组质粒PET 30a-Echpab和PET 22b-Echpac一起用热激法导入大肠BL 21(DE3)感受态,得到工程大肠杆菌BL21(DE3)/PET 30a-Echpab/PET 22b-Echpac,命名为BL-EcBc菌。
(2)将野生型大肠杆菌BL 21(DE3)和BL-EcBc接种至LB培养基中,在37℃、200rpm并外源添加酪醇使其酪醇浓度最终为300mg/L条件下进行24小时发酵,制备得到发酵液;
用HPLC-UV系统对发酵液上清进行酪醇和羟基酪醇产量的测定。结果如图2所示,经过Echpab和Echpac基因的过表达,使酪醇转为羟基酪醇的转化率由0.03%提高到86.02%。
实施例3:一种从头高效合成羟基酪醇的双菌共培养体系的建立与优化
1、羟基酪醇的制备
将实施例1和将实施例2得到的工程菌株YLYJ-004和BL-EcBc进行双菌共培养,以期从头合成羟基酪醇,演示如图3A所示。
(1)混合种子液的制备
YLYJ-004种子液的制备:
从琼脂平板上挑取单菌落,接种到5mL的带有200mg/L G418抗性的YPD液体培养基中,放置于转速为200rpm,温度为30℃的恒温摇床中,培养15h。
BL-EcBc种子液的制备:
从琼脂平板上挑取单菌落,接种到5mL的带有50μg/mL氨苄和50μg/mL卡那霉素抗性的LB液体培养基中,放置于转速为200rpm,温度为37℃的恒温摇床中,培养15h。
混合种子液的制备:
将YLYJ-004种子液与BL-EcBc种子液按照1:1的比例混合后制备得到混合种子液;
(2)羟基酪醇的制备
取1mL(即:分别取0.5mL YLYJ-004种子液和0.5mL BL-EcBc种子液进行混合)步骤(1)制备得到的混合种子液接种至50mL的不同培养基中(培养基1-5),于30℃和200rpm条件下发酵4h,然后添加1mM异丙基-β-D-硫代半乳糖苷(IPTG)进行诱导后,在27℃和200rpm条件下继续发酵72h,取上清液测羟基酪醇的产量,结果如图3B所示。
结果显示,最适合双菌共培养的培养基为培养基2,此时双菌共培养体系从头合成羟基酪醇的产量为254.31mg/L。
2、羟基酪醇制备条件的优化
(1)对双菌共培养体系进行菌种比例优化
将YLYJ-004种子液与BL-EcBc种子液分别按照体积比为10:1,5:1,1:1,1:5,1:10的比例制备得到混合种子液;
取1ml混合种子液接种至50mL的培养基2中,于30℃和200rpm条件下发酵4h,然后添加1mM IPTG进行诱导后,在27℃和200rpm条件下发酵72h,取上清液测羟基酪醇的产量,结果如图3C所示。
结果显示,最适合双菌共培养的初始菌种比例为YLYJ-004/BL-Ecbc=5:1,此时双菌共培养体系从头合成羟基酪醇的产量为375.02mg/L,比双菌共培养的初始菌种比例为YLYJ-004/BL-Ecbc=1:1条件下合成的羟基酪醇产量高0.47倍。
(2)对双菌共培养体系进行IPTG添加时间优化
将YLYJ-004种子液与BL-EcBc种子液分别按照体积比为5:1的比例制备得到混合种子液;
取1mL混合种子液接种至50mL的培养基2中,于30℃和200rpm条件下发酵,分别在发酵2h、4h、6h、8h、10h添加1mM IPTG进行诱导后,在27℃和200rpm条件下发酵72h,取上清液测羟基酪醇的产量,结果如图3D所示。
结果显示,最适合双菌共培养的IPTG添加时间为发酵后的8h,此时双菌共培养体系从头合成羟基酪醇的产量为435.32mg/L。
(3)对双菌共培养体系进行发酵时间优化
将YLYJ-004种子液与BL-EcBc种子液分别按照体积比为5:1的比例制备得到混合种子液;
取1mL混合种子液接种至50mL的培养基2中,于30℃和200rpm条件下发酵8h,然后添加1mM IPTG进行诱导,继续在27℃和200rpm条件下发酵24h、36h、48h、72h、96h,取上清液测羟基酪醇的产量,结果如图3E所示。
结果显示,最适合双菌共培养的发酵时间为72h,此时双菌共培养体系从头合成羟基酪醇的产量为435.32mg/L。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种重组酿酒酵母,其特征在于,所述重组酿酒酵母过表达了来源于酿酒酵母的3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸合成酶突变体aro4K229L、来源于酿酒酵母的分支酸变位酶突变体aro7G141S、来源于欧芹的酪氨酸脱羧酶pcaasopt及来源于短双歧杆菌的磷酸转酮酶Bbxfpkopt,同时敲除酿酒酵母基因组上的GAL80基因和HO基因。
2.如权利要求1所述的重组酿酒酵母,其特征在于,所述3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸合成酶突变体aro4K229L的核苷酸序列如SEQ ID NO.1所示;所述分支酸变位酶突变体aro7G141S的核苷酸序列如SEQ ID NO.2所示;所述酪氨酸脱羧酶pcaasopt的核苷酸序列如SEQID NO.3所示;所述磷酸转酮酶Bbxfpkopt的核苷酸序列如SEQ ID NO.4所示。
3.如权利要求2所述的重组酿酒酵母,其特征在于,所述重组酿酒酵母是以BY4741为出发菌株。
4.一种制备羟基酪醇的方法,其特征在于,采用权利要求1~3任一所述的重组酿酒酵母和重组大肠杆菌构成的双菌发酵体系制备得到;所述重组大肠杆菌表达了4-羟基苯乙酸-3-羟化酶HpaB和核黄素氧化还原酶HpaC,所述4-羟基苯乙酸-3-羟化酶HpaB在NCBI上的登录号为ARI00017.1,所述核黄素氧化还原酶HpaC在NCBI上的登录号为ARI00016.1。
5.如权利要求4所述的方法,其特征在于,所述重组大肠杆菌以大肠杆菌BL21(DE3)为表达宿主,采用PET30a质粒表达4-羟基苯乙酸-3-羟化酶HpaB,采用PET22b质粒表达核黄素氧化还原酶HpaC。
6.如权利要求5所述的方法,其特征在于,所述双菌发酵体系中的底物为葡萄糖、蔗糖、甘油中的一种或多种。
7.如权利要求6所述的方法,其特征在于,将重组酿酒酵母种子液和重组大肠杆菌种子液按照(1~10):(1~10)的比例混合后,得到混合种子液,将混合种子液接种至双菌发酵体系中进行发酵。
8.如权利要求7所述的方法,其特征在于,所述重组酿酒酵母种子液和重组大肠杆菌种子液按照体积比为5:1进行混合后得到混合种子液;将混合种子液接种至双菌发酵体系中进行发酵,在发酵2~10h后添加IPTG进行诱导。
9.如权利要求8所述的方法,其特征在于,在发酵8h后添加IPTG进行诱导,添加诱导剂IPTG后双菌共培体系的发酵时间为24~96h。
10.如权利要求9所述的方法,其特征在于,添加诱导剂IPTG后双菌共培体系的发酵时间为72h。
CN202210798069.8A 2022-07-06 2022-07-06 一种利用双菌共培养体系生产羟基酪醇的方法 Pending CN116574623A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210798069.8A CN116574623A (zh) 2022-07-06 2022-07-06 一种利用双菌共培养体系生产羟基酪醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210798069.8A CN116574623A (zh) 2022-07-06 2022-07-06 一种利用双菌共培养体系生产羟基酪醇的方法

Publications (1)

Publication Number Publication Date
CN116574623A true CN116574623A (zh) 2023-08-11

Family

ID=87532798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210798069.8A Pending CN116574623A (zh) 2022-07-06 2022-07-06 一种利用双菌共培养体系生产羟基酪醇的方法

Country Status (1)

Country Link
CN (1) CN116574623A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118207237A (zh) * 2024-03-19 2024-06-18 江南大学 一套提升酿酒酵母合成酚类化合物产量的双动态调控系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118207237A (zh) * 2024-03-19 2024-06-18 江南大学 一套提升酿酒酵母合成酚类化合物产量的双动态调控系统

Similar Documents

Publication Publication Date Title
EP4086343A1 (en) Use of biological enzyme for preparing orlistat intermediate, and preparation method
CN104388373A (zh) 一种共表达羰基还原酶和葡萄糖脱氢酶的大肠杆菌系统的构建
CN110564788B (zh) 一种利用亚胺还原酶生产麻黄碱的方法
CN110387379B (zh) 一种用于生产谷胱甘肽的重组大肠杆菌的混合培养工艺及其应用
CN111454998B (zh) 一种手性羟基酸酯的生物制备方法
CN116574623A (zh) 一种利用双菌共培养体系生产羟基酪醇的方法
CN114672525B (zh) N-乙酰基-5-甲氧基色胺的生物合成方法及其应用
CN117965473A (zh) 一种脱氢酶系统及其在制备p34hb中的应用
CN104130967A (zh) 一株共表达l-乳酸脱氢酶和甲酸脱氢酶的大肠杆菌及其构建方法与应用
CN115433721B (zh) 一种羰基还原酶突变体及其应用
CN109722442B (zh) 7β-羟基胆酸脱氢酶及其应用
CN109055417B (zh) 一种重组微生物、其制备方法及其在生产辅酶q10中的应用
CN103820506B (zh) 一种基因重组菌发酵生产辅酶q10的方法
CN107513525B (zh) 一种d-扁桃酸脱氢酶、基因、基因工程菌及其应用
CN107201375B (zh) 生产(r,r)-2,3-丁二醇基因工程菌株的构建方法及其应用
CN114736918B (zh) 一种整合表达生产红景天苷的重组大肠杆菌及其应用
CN106086082B (zh) 一种改良重组大肠杆菌生产9-癸烯醇的方法
WO2017202193A1 (zh) 重组酮还原酶在制备(r)-3-奎宁醇中的应用
CN101177686B (zh) 一种丙酮酸氧化酶基因、其重组表达质粒及转化的菌株
CN111826358A (zh) 12-羟基胆酸脱氢酶及其应用
CN112011523B (zh) 一种提高乙酰丙酮合成效率的乙酰丙酮裂解酶突变体、其基因、表达载体、细胞及应用
KR102126928B1 (ko) 4-하이드록시발레르산을 생산하는 형질전환 미생물
CN112553174B (zh) 一种脱氢酶在(r)-9-(2-羟丙基)腺嘌呤制备中的应用
CN117603930B (zh) 一种表达突变型西罗血红素合酶的重组菌
CN116904468A (zh) 一种磷酸盐响应的启动子及其在d-乳酸生产中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination