CN116854698A - 一种基于卟啉的立方体金属-有机笼状配合物及光动力治疗的应用 - Google Patents

一种基于卟啉的立方体金属-有机笼状配合物及光动力治疗的应用 Download PDF

Info

Publication number
CN116854698A
CN116854698A CN202310699624.6A CN202310699624A CN116854698A CN 116854698 A CN116854698 A CN 116854698A CN 202310699624 A CN202310699624 A CN 202310699624A CN 116854698 A CN116854698 A CN 116854698A
Authority
CN
China
Prior art keywords
metal
organic
organic cage
porphyrin
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310699624.6A
Other languages
English (en)
Inventor
焦扬
段春迎
张义豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202310699624.6A priority Critical patent/CN116854698A/zh
Publication of CN116854698A publication Critical patent/CN116854698A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0076PDT with expanded (metallo)porphyrins, i.e. having more than 20 ring atoms, e.g. texaphyrins, sapphyrins, hexaphyrins, pentaphyrins, porphocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/187Metal complexes of the iron group metals, i.e. Fe, Co or Ni
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Public Health (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

一种基于卟啉的立方体金属‑有机笼状配合物及光动力治疗的应用,其属于金属‑有机超分子、光动力治疗和生物无机化学领域。本申请采用较为简洁的卟啉类光敏剂的修饰方法,使得卟啉避免了聚集自淬灭导致的光动力治疗能力下降,且卟啉超分子功能材料的构建避免了繁琐的有机合成与共价修饰,采用了简单的配位自组装过程制备,是一类简洁的可靠的可应用于生物体内水环境中卟啉类光敏剂的制备方法,为卟啉类光敏剂的改造及其光动力治疗性能提升提供了全新的方法。

Description

一种基于卟啉的立方体金属-有机笼状配合物及光动力治疗 的应用
技术领域
本发明涉及一种基于卟啉的立方体金属-有机笼,其属于金属-有机配合物、超分子化学、光动力治疗和生物无机化学的技术领域,具体涉及简单高效的卟啉类光敏剂的合成方法和该卟啉光敏剂纳米颗粒在细胞中光动力治疗的应用。
背景技术
光动力疗法是近年来得到广泛研究的一类治疗方法,凭借其优秀的抗癌潜力脱颖而出,是新开发之一种具有优异靶向性和几乎无耐药性兼存的新型癌症治疗战略。其中光敏剂为光动力治疗的载体,利用光敏剂对氧气的敏化,可以做到对癌细胞选择杀伤,不具有耐药性,并且有良好的靶向性,是近年来迅猛发展的一类拥有精良治疗效果的抗癌策略并得到了大量研究。通过不同的方法使得光敏剂性能得到改进或被赋予新的功能,从而使光敏剂在光动力治疗的临床应用中得到广泛的使用。现今研究领域已经开发出了多种光敏剂应用于光动力治疗,常见的光敏剂有卟啉类化合物、酞菁类化合物、吲哚菁绿类化合物、BODIPY类化合物、聚集诱导发光效应化合物(AIE效应化合物)等等。基于不同类别光敏剂的优点缺点,大量经过了修饰改良的光敏剂材料得到开发和普及,并在光动力治疗领域中产生了深远的影响。
卟啉及其衍生物是一种经典的光敏剂,由于其在自然界中广泛存在,原材料容易得到,同时拥有优异的光物理和光化学性质,以上优点使卟啉类化合物得到了广泛研究。卟啉在其核心具有大的π-共轭芳香结构,在可见光区域具有大的摩尔消光系数的大吸收峰和高ROS产率。但卟啉分子之间的π-π相互作用会导致高浓度下的聚集和自猝灭,阻碍ROS的产生。为了提高卟啉在光动力治疗中的生物活性,有必要提高卟啉的溶解度并解决自猝灭问题。给卟啉核赋予良好的水溶性通常是通过适当的亲水取代基或核的轴向取代来实现的,以改善聚集自猝灭现象,进一步提高ROS的产生效率并增强光毒性。开发一种可以通过简单的制备过程有效提高卟啉光敏性能的策略仍然是一个具有挑战性的工作。
光敏剂在金属-有机笼(MOCs)中用于生物医学应用在过去几年中引起了相当大的关注。与传统的小分子化合物和简单的金属配位化合物相比,MOCs易于通过配体修饰进行功能化,并具有一般金属配合物和配体从未提供的固定的立体特异性构象。与传统共价连接的复合物相比,各种非共价相互作用的存在,如氢键、π-π堆积、静电相互作用、疏水或亲水效应,赋予了MOCs优异的灵活性和更有效的应用,在分子鉴定、药物递送、成像或抗癌活性和光动力疗法。此外,离散的MOCs是在分子水平上制备的,并且往往以几纳米的尺寸分布。较大的尺寸为MOCs在生物学应用中提供了优势,例如促进肿瘤中增强的渗透和滞留(EPR)效应,以增强药物的吸收和释放,这符合纳米医学技术的最终目标。通过金属-有机笼的应用和卟啉光敏剂的改进,将卟啉作为构建金属-有机笼中的构建块,并将其作为构建金属-有机笼的前体,具有提高光动力疗法疗效的巨大潜力。
发明内容
本发明的目的是提出一种基于卟啉的金属-有机笼的简洁高效的合成路径,并能够将其通过简单的自组装合成为水溶性良好的纳米颗粒。来源于卟啉金属-有机笼的纳米颗粒能够在水溶液中高效产生活性氧,并能在肿瘤细胞中有效地产生活性氧导致肿瘤细胞的凋亡,从而达到治疗肿瘤目的。
本发明解决其技术问题所采用的技术方案是:
一种用于金属-有机笼的配位自组装的四氨基金属卟啉配体的制备方法,包括如下步骤:
(1)以对硝基苯甲醛、吡咯、丙酸和吡啶为原材料制备中间体1;所述对硝基苯甲醛:吡咯的摩尔比为1:1;
(2)以所示中间体1、氯化亚锡和盐酸为原料制备中间体2;所述中间体1:氯化亚锡的摩尔比为1:15;
(3)以中间体2和金属醋酸盐M(OAc)2在N,N-二甲基甲酰胺中反应,得到四氨基金属卟啉配体,所述中间体2:金属醋酸盐M(OAc)2的摩尔比为1:13;
所述金属醋酸盐M(OAc)2为醋酸钴、醋酸镍或醋酸锌。
所述四氨基金属卟啉配体与金属醋酸盐M(OAc)2、醛类化合物组装得到的M8L6型正方体金属-有机笼状配合物。
所述四氨基金属卟啉配体:金属醋酸盐M(OAc)2:醛类化合物的摩尔比为6:8:24。
所述醛类化合物的结构为:R-CHO;
其中,
将四氨基金属卟啉配体、醛类化合物与金属醋酸盐M(OAc)2溶于有机溶剂中,将溶液充分混合搅拌,通过溶剂挥发结晶、溶剂扩散或加入产物金属-有机笼的不良溶剂沉淀出金属-有机笼状配合物。
所述纳米颗粒中包括以上任一所述的金属-有机笼状配合物和两亲性分子聚乙二醇单甲醚-2000-二十八烷基磷脂酰乙醇胺(MPEG-2000-DSPE)。
以上任一所述的金属-有机笼状配合物与两亲性分子MPEG-2000-DSPE在水和丙酮的混合溶液中自组装得到纳米颗粒。
所述纳米颗粒应用于水溶液中的活性氧产生能力检测。
所述纳米颗粒的溶液中加入单线态氧探针1,3-二苯基异苯并呋喃或超氧阴离子自由基探针二氢罗丹明123进行紫外和荧光检测。
所述纳米颗粒应用于制备细胞光动力治疗的试剂。
卟啉配体作为金属-有机笼的配位自组装有机配体单元;
所述的金属-有机笼的制备方法与纳米粒子制备方法,包括如下步骤:
(1)以M-TAPP、醛、三氟甲磺酸锌在N,N-二甲基甲酰胺中加热搅拌反应,并加入乙醚沉淀出金属-有机配合物,得到式III金属-有机笼结构,所述M-TAPP:醛:金属醋酸盐M(OAc)2的摩尔比为6:24:8。通过核磁、质谱数据确认结构M8L6
(2)以金属-有机笼(式III)、MPEG-2000-DSPE在水和丙酮的混合溶液中自组装,得到最终产物金属-有机笼纳米颗粒,所述金属-有机笼(式III):MPEG-2000-DSPE的质量比为1:5。
所述的卟啉为核心的金属-有机笼在溶剂中产生活性氧的检测。
一类用于溶剂中高效产生活性氧的以卟啉为核心的金属-有机笼,测试方法:向新配置的1,3-二苯基异苯并呋喃(单线态氧检测探针)/二氢罗丹明123(超氧阴离子检测探针)的DMSO溶液(0.05mM)中分别加入卟啉配体(M-TAPP)(6μM)、金属-有机笼(1μM)。在光敏剂的存在下1,3-二苯基异苯并呋喃被分解后,418nm吸收峰降低;二氢罗丹明123被氧化后,540nm处荧光发射上升。通过对应的信号变化得出活性氧的产生能力。将卟啉配体修饰成金属-有机笼使卟啉间的聚集自淬灭得到一定的抑制,光敏剂性能得到提升。
所述的卟啉为核心的金属-有机笼与修饰为纳米颗粒以后产生活性氧的检测。
一类用于溶剂中高效产生活性氧的以卟啉为核心的金属-有机笼及其纳米颗粒,测试方法:向新配置的1,3-二苯基异苯并呋喃(单线态氧检测探针)/二氢罗丹明123(超氧阴离子检测探针)的水溶液(0.05mM)中分别加入金属-有机笼(1μM)、纳米颗粒(1μM)。在光敏剂的存在下1,3-二苯基异苯并呋喃被分解后,420nm吸收峰降低;二氢罗丹明123被氧化后,526nm处荧光发射上升。通过对应的信号变化得出活性氧的产生能力。将卟啉金属-有机笼状化合物修饰成纳米粒子使金属-有机笼具有较之增长的水溶性,且在水溶液中的光敏剂性能得到提升。
所述的金属-有机笼的纳米颗粒在细胞中的光动力治疗应用。
一类用于溶剂中高效产生活性氧的基于金属-有机笼的纳米颗粒,测试方法:配置DMEM培养基(加入FBS 10%,双抗1%)用于培养Hela细胞,在正常氧浓度条件下培养细胞24h后,再用金属-有机笼的纳米粒子2μM孵育4h,孵育后分别加入DCFH-DA、钙黄绿素碘化丙啶活死细胞双染色试剂,600-610nm LED灯光照后进行细胞的激光共聚焦荧光成像实验,确定纳米颗粒在细胞内的光毒性。
本发明的有益效果:
本申请采用较为简洁的卟啉类光敏剂的修饰方法,使得卟啉避免了聚集自淬灭导致的光动力治疗能力下降,且卟啉超分子功能材料的构建避免了繁琐的有机合成与共价修饰,采用了简单的配位自组装过程制备,是一类简洁的可靠的可应用于生物体内水环境中卟啉类光敏剂的制备方法,为卟啉类光敏剂的改造及其光动力治疗性能提升提供了全新的方法。
通过配位自组装过程合成了基于卟啉核心单元的金属-有机笼,以提高光动力治疗的疗效。将常见的卟啉衍生物配体作为面修饰到金属-有机笼内作为主体结构,锌离子的引入为金属-有机笼自组装到立方笼中提供了附着位点。金属-有机笼具有比原始配体更高的可见光利用程度;金属-有机笼结构的设计为卟啉提供了固定的间距并抑制聚集自淬灭效应。且纳米粒子的修饰赋予了该金属-有机笼的更优秀的水溶性,在水溶液中具有较好的活性氧生成能力,且能够被癌细胞有效内吞并通过光动力治疗造成癌细胞凋亡。
附图说明
图1是以卟啉为核心的金属-有机笼C66及其纳米颗粒应用于细胞中光动力治疗图。
图2是金属-有机笼C66与配体Zn-TAPP的紫外可见吸收和荧光发射图。
图3是金属-有机笼C66与配体Zn-TAPP的产生单线态氧效果对比图。
图4是金属-有机笼C66与配体Zn-TAPP的产生超氧阴离子自由基效果对比图。
图5是金属-有机笼C66制备成纳米颗粒后粒径与紫外可见吸收和荧光发射及活性氧产生能力比较图。
图6是纳米粒子在七天之内的稳定性的图。
图7是金属-有机笼纳米颗粒及修饰前配体和金属-有机笼的细胞光毒性暗毒性图。
图8是金属-有机笼纳米颗粒及修饰前配体和金属-有机笼的DCFH-DA活性氧生成实验激光共聚焦显微镜的所见图。
图9是金属-有机笼纳米颗粒及修饰前配体和金属-有机笼的钙黄绿素碘化丙啶双染色实验激光共聚焦显微镜的所见图。
具体实施方式
基于卟啉的正方体金属-有机笼及其纳米颗粒的制备合成与生物体内的光动力治疗,如图1所示。
其中,卟啉配体——四氨基金属卟啉(M-TAPP)与金属离子M2+组成M8L6型金属-有机笼状配合物,进一步以甲基PEG-DSPE作为两亲性分子包封制备了基于金属-有机笼状配合物的纳米颗粒。纳米颗粒在水中拥有良好的溶解度,能够被肿瘤细胞有效内化并在细胞内释放,通过600-610nm LED灯照射能够在细胞内产生巨量活性氧,造成肿瘤细胞凋亡。
本发明提出了一种易于制备的基于卟啉类光敏剂的金属-有机笼纳米颗粒并用于肿瘤细胞中高效产生活性氧的策略。该纳米粒子能够在水中产生大量活性氧,在细胞应用中能被Hela细胞快速内化并在细胞内光动力治疗中凋亡,做到肿瘤的治疗效果。
实施例1:以卟啉为核心的金属-有机笼的合成制备
(1)以对硝基苯甲醛和吡咯为原料合成TNPP
在250mL圆底烧瓶中,将对硝基苯甲醛(5.5g,0.0363mol)和乙酸酐(6mL,0.0635mol)溶于150mL丙酸中,将溶液加热回流。然后缓慢滴加吡咯(2.4mL,0.036mol)。回流30分钟后,通过过滤收集固体,用水和甲醇洗涤,然后在真空下干燥。将所得固体溶解在40mL吡啶中并回流1小时。将其冷却至室温并冷藏过夜。将产物过滤并用甲醇和丙酮洗涤,得到紫红色固体。该粗产物可以直接用于下一个反应,无需纯化。
(2)以TNPP和氯化亚锡为原料合成TAPP
将TNPP(0.826g,1.038mmol)溶于56mL盐酸中,并加热至80℃。然后将SnCl2·2H2O(3.6g,15.94mmol)溶于6mL盐酸中,缓慢加入反应器中,在80℃下保持6小时。反应结束后,冷却至室温,然后在含有氨水的冰水浴中将pH调节至9。收集固体产物,得到明亮的紫色晶体。产率:0.637g,91%。1H NMR(400MHz,DMSO)δ8.89(s,8H),7.86(d,J=8.1Hz,8H),7.01(d,J=8.1Hz,8H),5.60(s,8H),-2.74(s,2H).13C NMR(101MHz,DMSO)δ149.02,135.95,129.16,121.06,112.98.ESI-MS m/z:[M+H]+计算值[C44H35N8]+675.2979,实验值675.2943.
(3)以TAPP和醋酸锌为原料合成Zn-TAPP
将TAPP(0.202g,0.3mmol)溶于37mL DMF中,并将Zn(OAc)2·2H2O(0.878g,4mmol)加入反应体系中,然后将混合物加热并回流12h。反应完成后,将体系冷却至室温,然后加入250mL水中,过滤并用水和乙醇洗涤,得到深绿色固体。产率:0.208g,94%。1H NMR(400MHz,DMSO)δ8.84(s,8H),7.82(d,J=8.1Hz,8H),6.97(d,J=8.2Hz,8H),5.47(s,8H).13C NMR(101MHz,DMSO)δ150.13,148.39,135.64,131.68,130.82,121.26,112.69.MALDI-TOF-MSm/z:[M]+计算值[C44H32N8Zn]+736.2036,实验值736.2030.
(4)以Zn-TAPP、2-吡啶甲醛和三氟甲磺酸锌为原料合成金属-有机笼C66将Zn-TAPP(36.8mg,0.05mmol,6当量)、2-吡啶甲醛(20μL,0.2mmol,24当量)、Zn(CF3SO3)2(25mg,0.07mmol,8当量)和无水DMF(6mL)加入Schlenk烧瓶中,在真空下对溶液脱气三次,然后将混合物在80℃下反应24小时。将产物冷却至室温,将上清液离心并过滤以除去固体。将澄清溶液逐滴加入乙醚中,离心下部固体层并用另外的乙醚洗涤,得到棕色产物。产率:40.5mg,49.5%。1H NMR(400MHz,DMSO)δ9.05(s,4H),8.89(s,12H),8.37(s,4H),8.28(s,8H),8.15(s,4H),7.82(s,8H),7.72(s,4H).
(5)以金属-有机笼C66和两亲分子MPEG-DSPE作为原料合成纳米颗粒
将金属-有机笼C66 2mg溶于2mL丙酮中,随后将两亲性分子MPEG-2000-DSPE 10mg溶于10mL超纯水内,在搅拌下快速地将金属-有机笼的丙酮溶液注射入两亲性分子的超纯水溶液中,在超声处理一分钟后避光搅拌蒸发掉丙酮,以得到金属-有机笼的纳米颗粒溶液。
实施例2:以卟啉为核心的金属-有机笼与其纳米颗粒的溶剂性质测试
金属-有机笼与纳米粒子的溶剂测试参照文献方法进行,并设置卟啉配体Zn-TAPP作为对照组,具体步骤为:
(1)金属-有机笼与配体Zn-TAPP的光物理性质
使用UV-Vis分光光度计和荧光光谱仪测试了配体Zn-TAPP和C66在常见溶剂DMSO中的吸收光谱和荧光发射光谱。
如图2所示,卟啉配体Zn-TAPP和金属-有机笼C66在DMSO中的吸收峰集中在415nm、580nm和610nm附近,发射峰集中在650nm附近,具有强烈的红色荧光,同时也具有较为明显的穿透组织的潜能。当激发光波长选择为365nm时,配体和金属笼仍然能显示出强烈的红色荧光,并在650nm附近有一组明显的的发射峰,对应于卟啉的核心的荧光。另外,对Zn-TAPP(6当量)和C66(1当量)在二甲基亚砜中的UV-Vis吸收和荧光发射光谱对照,C66(1当量)在它的主要吸收峰处的摩尔消光系数远远高于6当量Zn-TAPP,强烈的可见光吸收能力为金属-有机笼C66的应用提供了坚实的基础。而两者的荧光强度比较中,金属-有机笼的发光能力较6当量Zn-TAPP仍有较为明显的提升,说明了该金属-有机笼C66的修饰方法能够改善卟啉的聚集自淬灭的现象。
(2)金属-有机笼与配体Zn-TAPP的活性氧生成能力测试
单线态氧是一种常见的活性氧,在光动力治疗中对细胞凋亡起着重要作用,单线态氧的产生能力,一定程度上是一种光敏剂光动力治疗能力的评测标准之一。使用1,3-二苯基异苯并呋喃(DPBF)作为测量单线态氧(1O2)的指示剂。确定Zn-TAPP和C66在红光激发下释放1O2的能力,在单线态氧的存在下,DPBF呋喃部分可以被氧化为内过氧化物,内过氧化物进一步分解为低荧光的1,2-二苯甲酰基苯,同时在418nm处的吸收峰逐渐降低一直至消失,通过418nm处DPBF的吸收峰变化程度可以推断出光敏剂在单线态氧产生方面的性能。使用600-610nm LED灯对卟啉Zn-TAPP和C66的DMSO溶液照射50秒后,如图3所示,在对含有6μmol/L的Zn-TAPP的DMSO溶液进行照射,UV-Vis光谱中DPBF在418nm处的吸收峰降低约67%,相比之下在对1μmol/L的C66的DMSO溶液进行照射后,DPBF吸收下降更为强烈,几乎完全降解,这表明金属-有机笼C66相对于六当量配体具有更高的单线态氧产生效果,在相同时间内产生了更多的1O2。另外,使用单线态氧猝灭剂NaN3能够有效地淬灭单线态氧物种,在C66金属-有机笼的DMSO溶液中加入叠氮化钠后,强烈抑制C66的1O2生产能力,说明金属-有机笼C66能够高效率的生成单线态氧。
为了确定配体和C66是否能够在红光激发下释放超氧阴离子自由基,使用二氢罗丹明123(DHR123)作为测定超氧阴离子自由基(·O2 )的指示剂。在存在超氧阴离子自由基的情况下,DHR123可以被氧化为具有强烈绿色荧光的罗丹明123,光敏剂产生·O2 -的能力因此能够可以通过观察DMSO中540nm处荧光发射的增加幅度来证实(水中为526nm处荧光发射的增强)。如图4所示。在用600-610nm LED灯对溶于DMSO的卟啉配体或金属-有机笼C66的DHR123的溶液照射50秒后,对于6μmol/L的Zn-TAPP,DHR123在540nm处荧光发射增强了近两倍,表明卟啉配体能够有效的产生·O2 -活性氧种类,而1μmol/L的C66表现出比其6当量卟啉配体更好的·O2 -产生效率,表现为三倍的荧光发射增强。随后对超氧阴离子自由基的产生进行确认,超氧阴离子自由基猝灭剂抗坏血酸的加入显著抑制了C66的·O2 -产生能力,说明金属-有机笼C66具有一定的·O2 -产生能力。
实施例3:金属-有机笼修饰为纳米颗粒后的性能测试
通过DLS分析获得该C66-NPs的纳米颗粒的流体动力学直径,得到了该纳米粒子直径分布约为135nm,如图5和图6所示。修饰成纳米颗粒后,金属-有机笼C66在水中的紫外-可见吸收和荧光发射大幅增强,可归因于更优越的水溶性。对C66及其纳米粒子C66-NPs在水溶液中的1O2和·O2 -生产能力进行了测试,水中DPBF与DHR123的降解速率的比较说明了纳米粒子C66-NPs相较于金属-有机笼C66在水溶液中有更好的单线态氧和超氧阴离子自由基产生能力。放置C66纳米粒子溶液一周后,C66纳米粒子的近似粒径稳定在130-150nm的区间内上下浮动,未出现剧烈变化,另外测得C66纳米粒子的紫外吸收光谱几乎没有变化,证实了该纳米粒子在存储过程中拥有优异的稳定性,这为纳米粒子的储存和应用奠定了基础。
实施例4:金属-有机笼纳米粒子的细胞光动力治疗效果测评
(1)金属-有机笼纳米颗粒的细胞毒性实验
使用基于3-(4′,5′-二甲基噻唑-2′-基)-2,5-二苯基四唑溴化铵的MTT法评估配体Zn-TAPP、金属-有机笼C66和纳米粒子C66-NPs对于Hela细胞的在0至10μM浓度范围内的暗细胞毒性与光细胞毒性。如图7所示,纳米颗粒C66-NPs在0至10μM浓度范围内表现出较低的暗细胞毒性,避免除光动力疗法外相关的不必要的细胞毒性。纳米颗粒在光照条件下成功地原位产生具有强烈的细胞毒性的1O2/·O2 -物种,对癌细胞造成剧烈的氧化损杀,其半数抑制浓度IC50在0.5-1μmol/L范围内,说明纳米颗粒C66-NPs具有优异的治疗效果。
(2)细胞内活性氧产生能力测评
使用细胞内ROS探针2',7'-二氯二氢荧光素二乙酸酯(DCFH-DA)表征细胞内ROS产生的能力,如图8所示,在600-610nm LED灯光照射后,通过CLSM在纳米颗粒处理后的Hela细胞中观察到强烈的绿色荧光,且细胞形态发生了大幅度的改变,说明C66纳米粒子在细胞内光照下能够有效的产生活性氧。
(3)细胞光动力治疗能力测评
使用了钙黄绿素-AM和碘化丙啶(PI)对细胞进行染色,以检测C66-NPs通过氧化损伤对肿瘤细胞的影响。钙黄绿素-AM只能对活细胞进行染色产生绿色荧光,PI作为一种核染色染料,只对死细胞进行染色产生红色荧光。如图9所示,600-610nm LED灯照射后,纳米粒子处理的Hela细胞在绿色通道中几乎没有信号,在红色通道中显示出显著的信号,表明Hela细胞几乎完全死亡。相反,C66-NPs处理的细胞在没有光的情况下仅在绿色通道中显示出强烈荧光,表明细胞死亡可以忽略不计,说明纳米颗粒C66-NPs在细胞内吞后无光条件下肿瘤细胞活性较好(低暗毒性)且光照条件下肿瘤细胞被大量杀死、细胞活性很低(高光毒性)。

Claims (10)

1.一种用于金属-有机笼的配位自组装的四氨基金属卟啉配体的制备方法,其特征在于,包括如下步骤:
(1)以对硝基苯甲醛、吡咯、丙酸和吡啶为原材料制备中间体1;所述对硝基苯甲醛:吡咯的摩尔比为1:1;
(2)以所示中间体1、氯化亚锡和盐酸为原料制备中间体2;所述中间体1:氯化亚锡的摩尔比为1:15;
(3)以中间体2和金属醋酸盐在N,N-二甲基甲酰胺中反应,得到四氨基金属卟啉配体,所述中间体2:金属醋酸盐M(OAc)2的摩尔比为1:13;
所述金属醋酸盐M(OAc)2为醋酸钴、醋酸镍或醋酸锌。
2.根据权利要求1所述的方法制备的四氨基金属卟啉配体配位自组装得到正方体金属-有机笼状配合物,其特征在于:所述四氨基金属卟啉配体与金属醋酸盐M(OAc)2、醛类化合物组装得到的M8L6型正方体金属-有机笼状配合物。
3.根据权利要求2所述的正方体金属-有机笼状配合物,其特征在于:所述四氨基金属卟啉配体:金属醋酸盐M(OAc)2:醛类化合物的摩尔比为6:8:24。
4.根据权利要求2所述的正方体金属-有机笼状配合物,其特征在于:所述醛类化合物的结构为:R-CHO;
其中,
5.根据权利要求2-4任一所述的金属-有机笼状配合物的制备方法,其特征在于:将四氨基金属卟啉配体、醛类化合物与金属醋酸盐M(OAc)2溶于有机溶剂中,将溶液充分混合搅拌,通过溶剂挥发结晶、溶剂扩散或加入产物金属-有机笼的不良溶剂沉淀出金属-有机笼状配合物。
6.一种金属-有机笼状配合物通过自组装合成的水溶性良好的纳米颗粒,其特征在于:所述纳米颗粒中包括权利要求2-4任一所述的金属-有机笼状配合物和两亲性分子聚乙二醇单甲醚-2000-二十八烷基磷脂酰乙醇胺。
7.根据权利要求6所述的纳米颗粒的制备方法,其特征在于:权利要求2-4任一所述的金属-有机笼状配合物与两亲性分子聚乙二醇单甲醚-2000-二十八烷基磷脂酰乙醇胺在水和丙酮的混合溶液中自组装得到纳米颗粒。
8.根据权利要求6所述的纳米颗粒的应用,其特征在于:所述纳米颗粒应用于水溶液中的活性氧产生能力检测。
9.根据权利要求8所述的纳米颗粒的应用,其特征在于:所述纳米颗粒的溶液中加入单线态氧探针1,3-二苯基异苯并呋喃或超氧阴离子自由基探针二氢罗丹明123进行紫外和荧光检测。
10.根据权利要求6所述的纳米颗粒的应用,其特征在于:所述纳米颗粒应用于制备细胞光动力治疗的试剂。
CN202310699624.6A 2023-06-14 2023-06-14 一种基于卟啉的立方体金属-有机笼状配合物及光动力治疗的应用 Pending CN116854698A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310699624.6A CN116854698A (zh) 2023-06-14 2023-06-14 一种基于卟啉的立方体金属-有机笼状配合物及光动力治疗的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310699624.6A CN116854698A (zh) 2023-06-14 2023-06-14 一种基于卟啉的立方体金属-有机笼状配合物及光动力治疗的应用

Publications (1)

Publication Number Publication Date
CN116854698A true CN116854698A (zh) 2023-10-10

Family

ID=88231251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310699624.6A Pending CN116854698A (zh) 2023-06-14 2023-06-14 一种基于卟啉的立方体金属-有机笼状配合物及光动力治疗的应用

Country Status (1)

Country Link
CN (1) CN116854698A (zh)

Similar Documents

Publication Publication Date Title
Wang et al. Carbon dots in bioimaging, biosensing and therapeutics: a comprehensive review
Xu et al. A supramolecular photosensitizer derived from an Arene-Ru (II) complex self-assembly for NIR activated photodynamic and photothermal therapy
Cheng et al. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self‐Assembly, Properties, and Applications
Khurana et al. Supramolecular nanorods of (N-Methylpyridyl) porphyrin with captisol: effective photosensitizer for anti-bacterial and anti-tumor activities
Huang et al. Phthalocyanine-based coordination polymer nanoparticles for enhanced photodynamic therapy
Cheng et al. Multifunctional nano-photosensitizer: A carrier-free aggregation-induced emission nanoparticle with efficient photosensitization and pH-responsibility
Tanaka et al. Highly efficient singlet oxygen generation and high oxidation resistance enhanced by arsole-polymer-based photosensitizer: Application as a recyclable photooxidation catalyst
CN108948060B (zh) 三苯胺基树枝配体取代硅酞菁及其制备方法和应用
CN111689955A (zh) 一类萘并噻二唑自由基型光敏剂及其制备方法与应用
He et al. Designing a highly stable coordination-driven metallacycle for imaging-guided photodynamic cancer theranostics
Xia et al. Near-infrared organic fluorescent nanoparticles for long-term monitoring and photodynamic therapy of cancer
CN114790218B (zh) 一种非晶态mof纳米光敏剂及其制备方法与应用
CN112812137A (zh) 一种双核Ir(Ⅲ)金属-有机三螺旋结构化合物的制备方法及其应用
Xu et al. BSA-encapsulated cyclometalated iridium complexes as nano-photosensitizers for photodynamic therapy of tumor cells
Liu et al. A photoactive Ir–Pd bimetallic cage with high singlet oxygen yield for efficient one/two-photon activated photodynamic therapy
Cui et al. Water-soluble sulfonate porphyrin functionalized hyaluronic acid with comb-like structure: potential photosensitizers for photodynamic therapy
CN113200913B (zh) 一种光激活i型光敏剂及其制备方法和应用
Luo et al. Lanthanide-titanium oxo-clusters, new precursors of multifunctional colloids for effective imaging and photodynamic therapy
CN113230401A (zh) 一种核壳上转换MOFs光敏复合材料、制备方法及其应用
Li et al. Enhancing the photosensitivity of hypocrellin A by perylene diimide metallacage-based host–guest complexation for photodynamic therapy
CN114907381B (zh) 一种具有扭曲分子骨架的噻二唑并[3,4-g]喹喔啉结构的光敏剂,制备及其应用
CN114209825B (zh) 亚铜离子响应的no释放和光热协同治疗剂及其应用
CN108358972B (zh) 邻菲罗啉钌配合物类光敏染料及其制备方法和用途
CN116854698A (zh) 一种基于卟啉的立方体金属-有机笼状配合物及光动力治疗的应用
CN112939905B (zh) 一种具有聚集诱导发光性质的化合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination