CN116768632A - 一种超低掺量烧结助剂制备AlON透明陶瓷的方法 - Google Patents

一种超低掺量烧结助剂制备AlON透明陶瓷的方法 Download PDF

Info

Publication number
CN116768632A
CN116768632A CN202310785517.5A CN202310785517A CN116768632A CN 116768632 A CN116768632 A CN 116768632A CN 202310785517 A CN202310785517 A CN 202310785517A CN 116768632 A CN116768632 A CN 116768632A
Authority
CN
China
Prior art keywords
alon
powder
sintering
transparent ceramic
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310785517.5A
Other languages
English (en)
Other versions
CN116768632B (zh
Inventor
单英春
徐久军
郗雪敏
马莉娅
郭浩然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202310785517.5A priority Critical patent/CN116768632B/zh
Publication of CN116768632A publication Critical patent/CN116768632A/zh
Application granted granted Critical
Publication of CN116768632B publication Critical patent/CN116768632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种超低掺量烧结助剂制备AlON透明陶瓷的方法,属于透明陶瓷材料制备领域。该方法在纯相AlON粉体中添加La2O3和Y2O3粉体作为烧结助剂,通过球磨调控混合粉体粒度,采用无压烧结方法制备AlON透明陶瓷,其中,所述La2O3粉体的掺量为0.02‑0.04wt.%,Y2O3粉体的掺量为0.02‑0.05wt.%,烧结助剂的总掺量≤0.08wt.%;所述混合粉体的D50为0.4‑0.6μm,粒度分布范围为0.15‑1.2μm,<0.25μm的颗粒含量<5vol.%,>0.9μm的颗粒含量<6vol.%。该方法采用超低掺量的烧结助剂快速无压烧结制备宽波段高透过率的AlON陶瓷,设备简单、烧结温度低、保温时间短,成本低、节能效果好、效率高,适用于工业化生产。

Description

一种超低掺量烧结助剂制备AlON透明陶瓷的方法
技术领域
本发明涉及一种超低掺量烧结助剂制备AlON透明陶瓷的方法,属于透明陶瓷材料制备领域。
背景技术
氮氧化铝简称AlON,是Al2O3和AlN体系中的一个重要的单相固溶体,属立方尖晶石结构,光学各向同性。AlON陶瓷不仅在0.2-6.0μm的宽波段范围内具有高透光性的特点,透过率可达80%以上,而且还拥有强度高、硬度大、耐高温及化学稳定性好等优点。因此,AlON透明陶瓷可以用作透明装甲、红外探测及精密仪器仪表的透明面板等,在军民领域均具有广阔的应用前景。
由于受本身的强共价键和低自扩散系数影响,AlON透明陶瓷的致密化烧结一般需要加入烧结助剂以促进气孔排出,获得高致密度和高透光性。然而,目前无压烧结制备AlON透明陶瓷仍然存在烧结温度高、保温时间长的问题,通常需要在1900℃以上保温6-30h才能获得具有良好透光性AlON陶瓷。
另外,在AlON透明陶瓷烧结过程中使用烧结助剂时还要考虑AlON对烧结助剂阳离子的固溶极限问题(Miller et al.,Journal of the American Ceramic Society,91(2008)1693-1696),烧结助剂用量不宜过大,过多的烧结助剂易在晶界处富集形成第二相,造成光的吸收与偏转,从而降低陶瓷的透过率。
在制备AlON透明陶瓷的烧结助剂中,Y2O3和La2O3较为常用,其中,Y2O3具有提高晶界移动能力,促进晶粒生长的作用,而La2O3的作用恰恰相反。Chen等将0.08wt.%Y2O3与0.02wt.%La2O3复合使用,在1900℃保温2h无压烧结制得的AlON样品相对密度为99.01%(Chen et al.,Journal of Alloys and Compounds 650(2015)753-757)。添加0.1wt.%的Y2O3-La2O3复合烧结助剂的样品在1930℃保温15h所制备的陶瓷具有较高的透过率,400nm和3000nm波长处的透过率约为75%和80%(Chen et al.,Scripta Materialia 81(2014)20-23)。Wang等以0.12wt.%Y2O3-0.09wt.%La2O3为烧结助剂,在1950℃保温7h无压烧结制得了透过率为80%的AlON透明陶瓷(Wang etal.,Journal of the European CeramicSociety,35(2015)23-28)。由此可见,La2O3和Y2O3在AlON透明陶瓷制备过程中发挥着重要的作用,但其透明陶瓷的烧结温度和保温时间有待进一步降低/缩短。
发明内容
本发明的目的在于提供一种超低掺量烧结助剂制备AlON透明陶瓷的方法,具体为以AlON粉体为原料,控制AlON粉体粒度,添加La2O3和Y2O3作为烧结助剂,在氮气环境中采用无压烧结方法制备AlON透明陶瓷。在升温阶段的前期烧结过程中,在La2O3和Y2O3协同作用下,使较少的AlON发生分解,样品中的α-Al2O3含量较低,从而有效地抑制了颗粒聚集、削弱了颗粒粗化及相互粘结现象,提高了后期的致密化烧结能力。因此,在烧结助剂掺量低的前提下,在较低温度条件下保温较短时间(1880℃保温2.5h)制得了高致密度的具有透波范围宽(400-4200nm)、透光性好的AlON透明陶瓷(T=76%@400nm,T=82%@3600nm),该陶瓷同时还具有硬度高的特点(HV可达18.9GPa)。该方法烧结温度低、保温时间短,效率高、成本低、节能效果好,而且生产过程简单,易实现产业化。
一种超低掺量烧结助剂制备AlON透明陶瓷的方法,在纯相AlON粉体中添加La2O3和Y2O3粉体作为烧结助剂,通过球磨调控混合粉体粒度,采用无压烧结方法制备AlON透明陶瓷,其中,
所述La2O3粉体的掺量为0.02-0.04wt.%,Y2O3粉体的掺量为0.02-0.05wt.%,烧结助剂的总掺量≤0.08wt.%;
所述混合粉体的D50为0.4-0.6μm,粒度分布范围为0.15-1.2μm,<0.25μm的颗粒含量<5vol.%,>0.9μm的颗粒含量<6vol.%。
优选地,所用AlON粉体是纯相的AlON,纯度>99.9%。
优选地,烧结助剂La2O3的纯度>99.9%;烧结助剂Y2O3的纯度>99.9%。
优选地,将混合粉体干压预成型后,再冷等静压成型,得坯体;将所得坯体放入烧结炉中,在氮气环境中无压烧结制备AlON透明陶瓷。
进一步地,所述预成型压强为20-60MPa,冷等静压成型在100-180MPa条件下完成。
进一步地,所述无压烧结的升温速率为10-50℃/min,烧结温度为1850-1900℃,保温时间为2-3h。
优选地,将AlON粉体、La2O3和Y2O3烧结助剂粉体在无水乙醇中,以直径为2、4和8mm的氮化硅球为磨介进行球磨混合,球料比为13:1-15:1,球磨机转速为170-250rpm,总球磨时间为48-60h,得浆料,将浆料烘干、过筛,得具有特定粒度分布特征的AlON与烧结助剂的混合粉体。
进一步地,粉体首先以170rpm球磨8-12h,然后提高转速至210rpm,继续球磨20-24h,最后再以250rpm球磨20-24h。
优选地,所述法包括后处理步骤:将得AlON透明陶瓷进行磨平、抛光。
本发明的另一目的是提供由上述方法制得的AlON透明陶瓷。
进一步地,所述AlON透明陶瓷在400-4200nm波段的透过率≥69%,在400nm和3600nm处的透过率可达76%和82%,HV为15.6-18.9GPa。
本发明的有益效果为:在AlON粉体中同时添加超低掺量的La2O3和Y2O3作为烧结助剂(总掺量≤0.08wt.%),利用La2O3/Y2O3复合烧结助剂在超低掺量条件下通过快速无压烧结实现了透波范围宽的高透过率AlON透明陶瓷低成本制备。该方法烧结助剂掺量低,减小了在晶界富集的风险,为获得高透光性提供了保障,同时,其利用La2O3和Y2O3共同作用下对AlON晶格的稳定作用,有效地抑制了AlON的分解,使前期烧结过程中样品的α-Al2O3含量较低,削弱了颗粒早期粗化和相互粘结,使更多的小颗粒在后期的致密化烧结过程中仍具有移动能力,因此有效地促进了陶瓷的后期致密化烧结。此外,该方法以无压烧结为技术手段,且烧结温度低、保温时间短,效率高、成本低、节能效果好,易实现产业化。
附图说明
图1为AlON粉体性能:(a)物相组成、(b)粒度分布、(c)微观形貌;
图2为升温过程样品中的α-Al2O3含量;
图3为1600℃样品的断口形貌:(a)对比例1、(b)实施例1、(c)实施例2、(d)实施例3;
图4为致密化过程曲线;
图5为实施例1升温过程中样品的断口形貌;
图6为AlON陶瓷的透过率曲线和样品照片;
图7为实施例2升温过程中样品的断口形貌;
图8为实施例3升温过程中样品的断口形貌。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
一种超低掺量烧结助剂制备AlON透明陶瓷的方法,包括下述工艺步骤:
①配料:分别称取AlON粉体、La2O3和Y2O3烧结助剂粉体,将称得的粉体在无水乙醇中,以氮化硅球为磨介,控制磨球直径、球料比、球磨机转速及球磨时间,得浆料,将浆料烘干、过筛,得AlON与烧结助剂的混合粉体,其中,
所得混合粉体的D50为0.4-0.6μm,粒度分布范围为0.15-1.2μm,<0.25μm的颗粒含量<5vol.%,>0.9μm的颗粒含量<6vol.%。
②成型:将步骤①所得粉体干压预成型后,再冷等静压成型,得坯体。
③烧结:将步骤②所得坯体放入烧结炉中,在氮气环境中无压烧结制备AlON陶瓷。
④加工:AlON透明陶瓷进行磨平、抛光。
本发明所述步骤①优选按下述方法进行:步骤①所用AlON粉体是纯相的,其纯度>99.9%;烧结助剂La2O3的纯度>99.9%,掺量为0.02-0.04wt.%,烧结助剂Y2O3的纯度>99.9%,掺量为0.02-0.05wt.%,烧结助剂的总掺量≤0.08wt.%。
进一步地,将AlON粉体、La2O3和Y2O3烧结助剂粉体在无水乙醇中,以直径为2、4和8mm的氮化硅球为磨介进行球磨混合,球料比为13:1-15:1,球磨机转速为170-250rpm,总球磨时间为48-60h,得浆料,将浆料烘干、过筛,得具有特定粒度分布特征的AlON与烧结助剂的混合粉体。
粉体首先以170rpm球磨8-12h,然后提高转速至210rpm,继续球磨20-24h,最后再以250rpm球磨20-24h。
本发明步骤②成型过程中对将步骤①所得粉体干压预成型后,再冷等静压成型,得坯体。预成型压强为20-60MPa,冷等静压成型在100-180MPa条件下完成。
本发明步骤③中无压烧结的升温速率为10-50℃/min,烧结温度为1850-1900℃,保温时间为2-3h。
本发明步骤④的对AlON透明陶瓷进行双面磨平、抛光。
本发明所述方法以AlON粉体为原料,添加La2O3和Y2O3作为复合烧结助剂,采用无压烧结方法制备AlON透明陶瓷。在控制AlON粉体粒度的基础上,通过La2O3和Y2O3复合添加抑制AlON的分解,降低升温阶段前期烧结过程中样品的α-Al2O3含量,削弱颗粒早期团聚、粗化,避免了物质分离,为后期的致密化烧结奠定了良好的微观结构基础,同时,利用Y2O3促进晶界迁移的作用,为后期的致密化烧结提供了充足的烧结驱动力。因此,在La2O3和Y2O3二者的共同作用下,在总掺量≤0.08wt.%条件下实现了透波范围宽、透过率高AlON陶瓷的快速无压烧结。其中,当0.03wt%La2O3与0.04wt.%Y2O3复合使用时,AlON陶瓷在可见到中红外波段均具有较高的透光性(T=76%@400nm,T=82%@3600nm)和较高的硬度,HV可达18.9GPa。该方法采用超低掺量的烧结助剂快速无压烧结制备宽波段高透过率的AlON陶瓷,设备简单、烧结温度低、保温时间短,成本低、节能效果好、效率高,适用于工业化生产。
实施例1
以纯相AlON粉体为原料(AlON粉体的XRD图谱、粒度分布和微观形貌见图1),同时添加纯度均为99.99%的0.03wt.%La2O3和0.04wt.%Y2O3作为烧结助剂。以直径为2、4和8mm的氮化硅球为磨介进行球磨混合,球料比为14:1,粉体相继以170、210和250rpm球磨12h、24h和24h,得混合粉体,所述混合粉体的D50=0.5μm、粒度分布范围为0.16-1.2μm,<0.25μm的颗粒含量为3.7vol.%,>0.9μm的颗粒含量为5.6vol.%。将混合粉体先在50MPa条件下预压,再120MPa冷等静压成型,制得坯体。将坯体放入真空气氛烧结炉中,在氮气环境中20℃/min升温至1880℃保温2.5h,制得AlON透明陶瓷。样品升温过程中的α-Al2O3含量,见图2,由此可见,0.03wt.%La2O3和0.04wt.%Y2O3共同使用时,Y2O3的加入使样品中AlON分解产生的α-Al2O3含量显著降低,1600℃时样品中的α-Al2O3含量由对比例1仅使用La2O3时的82.0wt.%降到了51.5wt.%。样品1600℃的断口形貌见图3,与单掺La2O3的对比例1样品相比,0.03wt.%La2O3-0.04wt.%Y2O3复合烧结助剂所制备样品的早期颗粒粗化较弱,在局部烧结的大尺寸颗粒之间仍然存在大量可移动的小颗粒,促进了后期的致密化烧结(致密化过程曲线见图4),图5是升温过程中样品的断口形貌。图6是AlON透明陶瓷的透过率曲线和样品照片,所制备的陶瓷透波范围宽(在310-4800nm波段的透过率≥70%)、透过率高(T=76%@400nm,T=82%@3600nm,2mm厚),HV=18.9GPa。
实施例2
实施例2按照实施例1的方法,所不同的是Y2O3掺量为0.02wt.%,样品升温过程中的α-Al2O3含量见图2,1600℃时样品中的α-Al2O3含量为52.9wt.%,进入快速致密化烧结阶段前样品中颗粒粗化/烧结有限,仍存在较多小尺寸颗粒(图7),致密化过程曲线见图4,该样品后期的致密化烧结能力强,所制备AlON透明陶瓷的最大透过率为76%(透过率曲线和样品照片见图6),1600℃时样品的断口形貌见图3。
实施例3
实施例3按照实施例1的方法,所不同的是Y2O3掺量为0.03wt.%,样品升温过程中的α-Al2O3含量见图2,1600℃时样品中的α-Al2O3含量为52.8wt.%,进入快速致密化烧结阶段前样品中颗粒粗化/烧结有限,仍存在较多小尺寸颗粒(图8),致密化过程曲线见图4,所制备AlON透明陶瓷在可见至红外波段均具有透光性,最大透过率为78%(透过率曲线和样品照片见图6),1600℃时样品的断口形貌见图3。
对比例1
对比例1按照实施例1的方法,所不同的是仅使用La2O3烧结助剂,掺量为0.03wt.%,所制备AlON透明陶瓷仅在红外波段具有透光性,最大透过率为47%,在可见光区不透光(透过率曲线和样品照片见图6)。

Claims (10)

1.一种超低掺量烧结助剂制备AlON透明陶瓷的方法,其特征在于:在纯相AlON粉体中添加La2O3和Y2O3粉体作为烧结助剂,通过球磨调控混合粉体粒度,采用无压烧结方法制备AlON透明陶瓷,其中,
所述La2O3粉体的掺量为0.02-0.04wt.%,Y2O3粉体的掺量为0.02-0.05wt.%,烧结助剂的总掺量≤0.08wt.%;
所述混合粉体的D50为0.4-0.6μm,粒度分布范围为0.15-1.2μm,<0.25μm的颗粒含量<5vol.%,>0.9μm的颗粒含量<6vol.%。
2.根据权利要求1所述的方法,其特征在于:所用AlON粉体是纯相的AlON,纯度>99.9%。
3.根据权利要求1所述的方法,其特征在于:将混合粉体干压预成型后,再冷等静压成型,得坯体;将所得坯体放入烧结炉中,在氮气环境中无压烧结制备AlON透明陶瓷。
4.根据权利要求3所述的方法,其特征在于:所述预成型压强为20-60MPa,冷等静压成型在100-180MPa条件下完成。
5.根据权利要求3所述的方法,其特征在于:所述无压烧结的升温速率为10-50℃/min,烧结温度为1850-1900℃,保温时间为2-3h。
6.根据权利要求1所述的方法,其特征在于:将AlON粉体、La2O3和Y2O3烧结助剂粉体在无水乙醇中,以直径为2、4和8mm的氮化硅球为磨介进行球磨混合,球料比为13:1-15:1,球磨机转速为170-250rpm,总球磨时间为48-60h,得浆料,将浆料烘干、过筛,得具有特定粒度分布特征的AlON与烧结助剂的混合粉体。
7.根据权利要求6所述的方法,其特征在于:粉体首先以170rpm球磨8-12h,然后提高转速至210rpm,继续球磨20-24h,最后再以250rpm球磨20-24h。
8.根据权利要求1所述的方法,其特征在于:所述方法包括后处理步骤:将所得AlON透明陶瓷进行磨平、抛光。
9.一种由权利要求1~8任一项所述方法制备的AlON透明陶瓷。
10.根据权利要求9所述的AlON透明陶瓷,其特征在于:所述AlON透明陶瓷在400-4200nm波段的透过率≥69%,在400nm和3600nm处的透过率可达76%和82%,HV为15.6-18.9GPa。
CN202310785517.5A 2023-06-29 2023-06-29 一种超低掺量烧结助剂制备AlON透明陶瓷的方法 Active CN116768632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310785517.5A CN116768632B (zh) 2023-06-29 2023-06-29 一种超低掺量烧结助剂制备AlON透明陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310785517.5A CN116768632B (zh) 2023-06-29 2023-06-29 一种超低掺量烧结助剂制备AlON透明陶瓷的方法

Publications (2)

Publication Number Publication Date
CN116768632A true CN116768632A (zh) 2023-09-19
CN116768632B CN116768632B (zh) 2024-09-20

Family

ID=87985747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310785517.5A Active CN116768632B (zh) 2023-06-29 2023-06-29 一种超低掺量烧结助剂制备AlON透明陶瓷的方法

Country Status (1)

Country Link
CN (1) CN116768632B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042379A1 (de) * 1969-08-27 1971-03-18 Ngk Insulators Ltd Verfahren zur Herstellung eines lichtdurchlässigen Aluminiumoxids
CN101070242A (zh) * 2002-07-10 2007-11-14 皇家飞利浦电子股份有限公司 透明的多晶氧化铝
CN102875152A (zh) * 2012-09-13 2013-01-16 大连海事大学 一种AlON透明陶瓷的低温快速制备方法
CN109109142A (zh) * 2018-09-04 2019-01-01 北京中材人工晶体研究院有限公司 一种热压烧结AlON透明陶瓷用石墨模具
CN109516813A (zh) * 2019-01-08 2019-03-26 大连海事大学 一种直接水注成型制备高透光性AlON透明陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042379A1 (de) * 1969-08-27 1971-03-18 Ngk Insulators Ltd Verfahren zur Herstellung eines lichtdurchlässigen Aluminiumoxids
CN101070242A (zh) * 2002-07-10 2007-11-14 皇家飞利浦电子股份有限公司 透明的多晶氧化铝
CN102875152A (zh) * 2012-09-13 2013-01-16 大连海事大学 一种AlON透明陶瓷的低温快速制备方法
CN109109142A (zh) * 2018-09-04 2019-01-01 北京中材人工晶体研究院有限公司 一种热压烧结AlON透明陶瓷用石墨模具
CN109516813A (zh) * 2019-01-08 2019-03-26 大连海事大学 一种直接水注成型制备高透光性AlON透明陶瓷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG CHEN ET AL: "Hot isostatic pressing of transparent AlON ceramics with Y2O3/La2O3 additives", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 650, 25 November 2015 (2015-11-25), pages 753 - 757, XP029268899, DOI: 10.1016/j.jallcom.2015.08.028 *

Also Published As

Publication number Publication date
CN116768632B (zh) 2024-09-20

Similar Documents

Publication Publication Date Title
CN111253162B (zh) 一种制备高强高韧高热导率氮化硅陶瓷的方法
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN102115332B (zh) 一种高强度β-SiAlON陶瓷及其无压烧结制备方法
CN114538931B (zh) 一种高性能AlON透明陶瓷及其低温快速制备方法
CN114031376B (zh) 一种高硬度、细晶粒zta体系复相陶瓷材料的制备方法
CN110272282B (zh) AlON透明陶瓷的低温制备方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN112645726B (zh) 一种具有典型长颗粒形貌、富含层错和孪晶的碳化硅晶须陶瓷及其制备方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN112299861B (zh) 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法
CN111825458A (zh) 一种高致密碳化硼陶瓷材料及其无压烧结的制备方法
CN114804912A (zh) 一种高韧性耐高温的定向排列氮化硅独石多孔陶瓷制备的方法
CN107827465A (zh) 一种碳化硅陶瓷材料的制备方法
CN110937898B (zh) 一种倍半氧化物窗口材料的制备方法
US11807582B1 (en) Silicon nitride ceramic sintered body and preparation method thereof
CN109467442B (zh) 一种氮化硅陶瓷及其制备方法
CN116768632B (zh) 一种超低掺量烧结助剂制备AlON透明陶瓷的方法
CN111848179A (zh) 一种可在超高温环境中使用的高强度氮化硼陶瓷的制备方法
CN115010503A (zh) 一种氧化物透明陶瓷材料烧结助剂的使用方法
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN109851329A (zh) 一种细晶Al2O3/SiC复合陶瓷刀具材料及制备工艺
CN110937903B (zh) 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
CN115353389A (zh) Ho离子参杂倍半氧化物透明陶瓷及其制备方法
CN110183229A (zh) 一种具有低温裂纹自愈合能力的Ti2Al(1-x)SnxC陶瓷修复相粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant