CN116730386A - 一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法 - Google Patents

一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法 Download PDF

Info

Publication number
CN116730386A
CN116730386A CN202310002308.9A CN202310002308A CN116730386A CN 116730386 A CN116730386 A CN 116730386A CN 202310002308 A CN202310002308 A CN 202310002308A CN 116730386 A CN116730386 A CN 116730386A
Authority
CN
China
Prior art keywords
solution
bivo
monoclinic phase
stirring
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310002308.9A
Other languages
English (en)
Inventor
赵玉真
孙嬿
彭文修
王笛笛
李春生
赵一璟
贺泽民
刘鹏超
张慧敏
郎婷婷
高新荣
赵阳
马成
王海洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xijing University
Original Assignee
Xijing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xijing University filed Critical Xijing University
Priority to CN202310002308.9A priority Critical patent/CN116730386A/zh
Publication of CN116730386A publication Critical patent/CN116730386A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Emergency Management (AREA)
  • Dentistry (AREA)
  • Plasma & Fusion (AREA)
  • Business, Economics & Management (AREA)
  • Agronomy & Crop Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法,加入分析纯Bi(NO3)3·5H2O和十六烷基三甲基溴化铵(CTAB)溶于蒸馏水中,搅拌后置于带有回流冷凝装置的常压微波反应器中,在温度85~120℃下混合得到溶液A;将NH4VO3溶于蒸馏水中,搅拌至完全溶解后获得溶液B;在剧烈搅拌的条件下,将溶液A逐滴加入盛有溶液B的烧瓶中,获得溶液C;将溶液C置于带有回流冷凝装置的常压微波反应器中,采用微波辐射法在反应温度80~120℃的条件下反应得到固液混合悬浊液样品;上述样品经离心、洗涤、干燥得到由纳米片组装的微米球状单斜相BiVO4材料;该方法同时具备工艺操作简单、反应快速周期短、形貌可控、节约能源等优点,得到的产物形貌尺寸分布均匀且纯度高。

Description

一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料 及其制备方法
技术领域
本发明涉及光催化材料领域,特别涉及一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法。
背景技术
由于社会工农业发展水平迅速,以水污染与空气污染为代表的环境污染问题尤为突出。传统的污水处理方法存在成本高、处理不完全、产生二次污染等问题。半导体光催化技术因其可直接利用太阳能能源,且工艺环保、高效等鲜明特点,可作为一种新型的环境污染治理技术。光催化技术以能带理论为基础,当太阳能照射到半导体催化剂上时,光催化剂受到激发,产生具有强氧化能力的空穴,能够使难降解的有机污染物完全分解。因此,半导体光催化技术的发展,为水体中污染物的深度处理,与当前的环境污染问题的缓解提供了一条可行的道路;并且研究证实,光催化技术在有机污染物治理领域具备广阔的应用前景(XueW,Zhangg,Xu X,et al.Preparation of titania nanotubes dopedWith cerium andtheir photocatalytic activity forglyphosate[J].Chemical Engineering Journal,2011,167(1):397-402;Chen X,Liu F,Liu B,et al.A novel route tographite-likecarbon supporting SnO2With high electron transfer and photocatalytic activity[J].Journal of Hazardous Materials,2015,287:126-132)。
然而,以TiO2,SnO2和ZnO为代表的传统的光催化材料因较宽的禁带宽度,对太阳光的利用率极低,从而影响了光催化性能,限制了光催化技术的发展。BiVO4材料因其无毒、色泽鲜亮、环境友好、稳定性等特点,早期广泛被用作代替含有毒重金属的黄色颜料使用。近年来,随着光催化技术领域的需要,BiVO4由于具有约2.4eV的窄带隙,作为光催化材料在降解污染物与分解水反应中的作用吸引的人们广泛的关注(Tong H,Ouyang S,Bi Y,etal.Nano-photocatalytic materials:possibilities and challenges[J].AdvancedMaterials,2012,24(2):229-251)。BiVO4存在三种主要的晶体结构,即四方白钨矿型、四方锆石型及单斜白钨矿型。其中,四方和单斜白钨矿型的禁带宽度均约为2.4eV,四方锆石型为2.9eV。单斜与四方白钨矿具有极为相似的结构,即每个BiO8十二面体被8个VO4四面体所围绕,每个O原子连接2个Bi中心和一个V中心。但不同的是,单斜白钨矿中Bi和V离子周围空间的扭曲程度更高,增加了局部极化程度,有利于电子-空穴对的分离。因此,在相同禁带宽度的情况下,单斜相BiVO4具有较高的催化活性(谢明政.TiO2和BiVO4基可见光催化剂的改性机制与污染物降解效能[D].哈尔滨工业大学,2015)。
目前,钒酸铋光催化剂的制备方法主要有:沉淀法、固相法、水热法、溶胶凝胶法、静电纺丝法等。但这些方法大多需要高温、高压、耗时的反应条件,对设备的要求较高、操作繁琐、能耗大,或具有反应过程中产生大量二次污染、产物粒径不均一、形貌不易控制等问题。
发明内容
本发明目的在于提出一种低能耗、工艺操作简单、制备方法反应条件温和的微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法。
本发明采用如下方案予以实现:
一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料的方法,包括以下步骤:
第一、称量2.0615g分析纯Bi(NO3)3·5H2O、0.7745g十六烷基三甲基溴化铵CTAB置于250mL烧杯中,加入115mL蒸馏水磁力搅拌均匀,然后置于微波反应器中,设置加热功率为500~2000W、频率为2450MHz,加热温度为80~120℃、混和搅拌60min后得到混合溶液A;
第二、称量0.7457g NH4VO3于100mL烧杯中,加入85mL蒸馏水磁力搅拌均匀,获得均一相水溶液B;
第三、将第二步骤所配置的溶液B转移至500mL石英圆底烧瓶中,将第一步骤所得的溶液A在剧烈搅拌的条件下,逐滴滴加至盛有混合溶液B的500mL石英圆底烧瓶中,待滴加完成后持续搅拌均匀,得到混合溶液C;
第四、将第三步骤所配置的溶液C置于带有常压回流冷却装置的微波反应器中,设置加热功率为200~2000W、频率为2450MHz;设置加热温度为80~120℃、反应时间为150min;
第五、反应结束后,待石英圆底烧瓶中所得产物冷却至室温,将所得产物转移至离心机中离心后移除上清液并取出下层样品,用蒸馏水和乙醇洗涤多次,烘干即得到纳米片组装微米球状单斜相BiVO4材料。
进一步,所述第一步骤和第二步骤中磁力搅拌转速为800rpm,搅拌时间为15min。
进一步,所述第五步骤中以5000rpm的转速离心2min后移除上清液并取出下层样品。
进一步,所述第五步骤中用蒸馏水洗涤固体样品3~5次,再用乙醇洗涤3~5次,随后将洗涤好的产物置于烘箱中,在70℃的温度条件下干燥24h后即得到目标BiVO4材料。
一种纳米片组装微米球状单斜相BiVO4材料,由纳米片组装成微米球状BiVO4,纳米片厚度为11.74~35.25nm,微米球直径为1.24~1.34μm。
一种纳米片组装微米球状单斜相BiVO4材料,产物空间群为I2/a,晶胞参数为及/>α=γ=90.0°及β=90.38°,最强峰对应hkl晶面指数为/>
与现有技术相比,本发明具有以下有益的技术效果:
本发明以分析纯Bi(NO3)3·5H2O和NH4VO3为反应原料、蒸馏水为溶剂、十六烷基三甲基溴化铵(CTAB)为表面活性剂,采用微波辐射技术制备由纳米片组装的微米球状单斜相BiVO4材料;
本发明制备的单斜相BiVO4材料通过X射线衍射结果与扫描电镜图发现,产物为结晶性良好的、由纳米片组装的微米球状单斜相BiVO4,样品结晶性好、形貌尺寸均一、分布均匀且具有大的比表面积;具有高光催化活性,在提高光催化材料效率等方面具有重要研究意义与商业化的潜力。
本发明所采用的微波辐射法,制备工艺无需使用酸或碱进行pH的调节、无需高温高压的水热反应釜、操作简单、无需高温、反应条件温和可控、耗时周期短、成本低廉且快速可控,绿色节能,从而解决了单斜相BiVO4制备过程中通常需要使用酸碱进行pH调节造成的工艺复杂、耗时长与较高温度反应下能耗大等问题;
本发明制备的单斜相BiVO4是一种带隙窄、绿色无毒且具有可见光响应的高活性新型光催化性能的n型半导体材料,被广泛应用于降解有机污染物、分解水制氢、消毒杀菌等领域;该方法有望推动单斜相BiVO4作为光催化材料在污染物治理与能源转化等领域的研究进展。
本发明方法合成过程机理如下:微波辐射加热不同于传统加热方式的由表及里,它是在电磁场作用下由介质引起的介电加热产生的热效应,其加热速度快、操作简便、高效。CTAB是一种阳离子表面活性剂,在水中可解离成带有疏水基的C19H42N+阳离子,可通过静电和位阻效应影响BiVO4的生长过程和结构。C19H42N+阳离子易与BiVO4晶核表面的VO4 3-阴离子相互吸引,附着在晶体表面,形成有序的疏水膜,从而控制了特定吸附晶面的生长速度。因此,CTAB的添加会导致晶核成长中动力学沉积过程的改变,促进晶核生长的各向异性。因此,在微波辐射作用下,在特定表面活性剂CTAB与反应物浓度、温度、反应时间等实验参数条件下,本发明方法能够高效可控合成纳米片组装微米球状单斜相BiVO4材料。
附图说明
图1为BiVO4样品的X射线衍射(XRD)图;
图2为BiVO4样品的晶体结构图;
图3为BiVO4样品的100k倍扫描电子显微镜(SEM)图;
图4为BiVO4样品的50k倍扫描电子显微镜(SEM)图;
图5为BiVO4样品的25k倍扫描电子显微镜(SEM)图;
图6为BiVO4样品的形貌示意图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
实施例1利用微波辐射技术制备BiVO4样品1
室温下,称取2.0615g分析纯Bi(NO3)3·5H2O、0.7745g十六烷基三甲基溴化铵(CATB)置于250mL烧杯中,并加入115mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min,搅拌完成后转移至250mL圆底烧瓶中置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为1000W、频率为2450MHz,设置加热温度为100℃、混合60min后,得到混合溶液A;随后,称取0.7457g NH4VO3并置于100mL烧杯中,向其中加入85mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min获得均一相水溶液B;继而,将混合溶液B转移至500mL石英圆底烧瓶中,将第一步骤所得的溶液A在剧烈搅拌的条件下,逐滴滴加至盛有混合溶液B的500mL石英圆底烧瓶中,滴加完成后持续搅拌10min,得到混合溶液C;最后,将第三步骤所配置的溶液C置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为1000W、频率为2450MHz;设置加热温度为100℃、反应时间为150min;反应结束后,待石英圆底烧瓶中所得产物冷却至室温,将所得产物转移至离心机中,以5000rpm的转速离心2min,移除上清液并取出下层产物,用蒸馏水洗涤下层产物3次,再用乙醇洗涤3次,随后将洗涤好的产物置于烘箱中,在70℃的温度条件下干燥24h后即得到目标BiVO4材料。
产物的X射线衍射结果与JCPDS卡片号为14-0688相吻合(图1),最强峰对应hkl晶面指数为产物空间群为I2/a,晶胞参数为/>及/> α=γ=90.0°及β=90.38°,晶体结构图如图2所示。
样品的扫描电子显微镜SEM图(图3~5)表明样品形貌为由纳米片组装成的微米球状BiVO4,经测量,纳米片厚度为11.74~35.25nm,微米球直径为1.24~1.34μm,其形貌示意图如图6所示;产物的X射线衍射测试结果和扫描电子显微镜测试结果均为证实该材料为纯的单斜相钒酸铋材料、样品结晶性好且形貌尺寸均匀提供了有力证明,是一种十分具有前途的光催化功能性材料。
实施例2利用微波辐射技术制备BiVO4样品2
室温下,称取2.0615g分析纯Bi(NO3)3·5H2O、0.7745g十六烷基三甲基溴化铵(CATB)置于250mL烧杯中,并加入115mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min,搅拌完成后转移至250mL圆底烧瓶中置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为1200W、频率为2450MHz,设置加热温度为95℃、混合60min后,得到混合溶液A;随后,称取0.7457g NH4VO3并置于100mL烧杯中,加入85mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min获得均一相水溶液B;继而,将混合溶液B转移至500mL石英圆底烧瓶中,将第一步骤所得的溶液A在剧烈搅拌的条件下,逐滴滴加至盛有混合溶液B的500mL石英圆底烧瓶中,滴加完成后持续搅拌10min,得到混合溶液C;最后,将第三步骤所配置的溶液C置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为1200W、频率为2450MHz;设置加热温度为95℃、反应时间为150min;反应结束后,待石英圆底烧瓶中所得产物冷却至室温,将所得产物转移至离心机中,以5000rpm的转速离心2min,移除上清液并取出下层产物,用蒸馏水洗涤下层产物3次,再用乙醇洗涤3次,随后将洗涤好的产物置于烘箱中,在70℃的温度条件下干燥24h后即得到目标BiVO4材料。
实施例3利用微波辐射技术制备BiVO4样品3
室温下,称取2.0615g分析纯Bi(NO3)3·5H2O、0.7745g十六烷基三甲基溴化铵(CATB)置于250mL烧杯中,并加入115mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min,搅拌完成后转移至250mL圆底烧瓶中置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为1500W、频率为2450MHz,设置加热温度为80℃、混合60min后,得到混合溶液A;随后,称取0.7457g NH4VO3并置于100mL烧杯中,加入85mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min获得均一相水溶液B;继而,将混合溶液B转移至500mL石英圆底烧瓶中,将第一步骤所得的溶液A在剧烈搅拌的条件下,逐滴滴加至盛有混合溶液B的500mL石英圆底烧瓶中,滴加完成后持续搅拌10min,得到混合溶液C;最后,将第三步骤所配置的溶液C置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为1500W、频率为2450MHz;设置加热温度为80℃、反应时间为150min;反应结束后,待石英圆底烧瓶中所得产物冷却至室温,将所得产物转移至离心机中,以5000rpm的转速离心2min,移除上清液并取出下层产物,用蒸馏水洗涤下层产物3次,再用乙醇洗涤3次,随后将洗涤好的产物置于烘箱中,在70℃的温度条件下干燥24h后即得到目标BiVO4材料。
以上所述仅为本发明的三种实施方式,不是全部的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。
实施例1的对比例1:
(Ke D,Peng T,Ma L,et al.Effects of hydrothermal temperature on themicrostructures of BiVO4 and its photocatalytic O2 evolution activity undervisible light[J].Inorganic Chemistry,2009,48:4685-4691)Ke等人采用水热法合成单斜相钒酸铋材料的操作如下:将2.9100g Bi(NO3)3·5H2O和0.7204g NH4VO3在磁力搅拌作用下溶解于30mL 0.5M的HNO3中;随后,加入30mL 0.03M CTAB溶液于上述混合物中,剧烈搅拌;用氨溶液将上述混合物的pH调节至6.00;静置12小时后,将混合物转移到聚四氟乙烯内衬的不锈钢高压釜中,并在不同温度下保持72小时;反应所得固体通过离心分离并用水和乙醇洗涤3次,然后在空气中干燥;随后,将所制备的0.5000g样品与40mL 0.05M乙酸钠的乙醇溶液在40℃下搅拌混合72小时,进行阴离子交换处理;将固体用水和乙醇洗涤,然后在60℃干燥以获得产物;该方法需要用到酸碱进行pH的调节,操作复杂且用时较长,反应需高温耗能大且产品粒径较大;在160℃的水热温度下制得的BiVO4粒径范围为7~12μm,为正方晶相和单斜晶相组成的混合晶体;而具有纯单斜晶相BiVO4需要在200℃更高的水热温度下才能获得。
本发明公布的方法、创新性及技术效果与该对比例有本质区别。
实施例1的对比例2:
(García-Pérez U M,Sepúlveda-Guzmán S,Martínez-De La CruzA.Nanostructured BiVO4 photocatalysts synthesized via a polymer-assistedcoprecipitation method and their photocatalytic properties under visible-light irradiation[J].Solid State Sciences,2012,14(3):293-298)garcía-Pérez等人用共沉淀法合成钒酸铋材料的操作如下:在70℃下,将0.03mol的Bi(NO3)3·5H2O溶解在100mL 4M的HNO3溶液中,得到溶液A;将0.03mol NH4VO3溶解在100mL 2M的NH4OH溶液中,获得均一相水溶液B;将1.84g CMC溶解在100mL蒸馏水中,得到溶液C;在室温下,向溶液A和溶液B中分别加入50mL的CMC溶液C,连续搅拌下混合60分钟,得到两种透明溶液D和E;然后,在剧烈搅拌下将铋酸盐CMC混合溶液D滴加到钒酸盐CMC混合溶液E中;混合后,使用2M NH4OH溶液将溶液的pH值调节至9,得到黄色悬浮液,将该悬浮液搅拌1小时;将黄色分散体冷却至室温并通过冷冻干燥过程除去其水含量;将所得橙色粉末在空气中在350℃下退火24小时,冷却后用蒸馏水洗涤数次,得到钒酸铋产品。
本发明公布的方法、创新性及技术效果与该对比例有本质区别。
实施例1的对比例3:
(Wang F,Shao M,Cheng L,et al.The synthesis of monoclinic bismuthvanadate nanoribbons and studies of photoconductive,photoresponse,andphotocatalytic properties[J].Materials Research Bulletin,2009,44(8):1687-1691)Wang等人采用水热法合成目标产物的操作如下:在室温下,首先称取0.047g BiCl3置于40mL蒸馏水中,用0.1mol/L的NaOH溶液调节pH值为10,并搅拌2h;其次,称取0.018gNH4VO3加入至上述溶液中,并搅拌30min;随后,将搅拌好的溶液转移至50mL不锈钢高压釜中,在180℃的条件下加热14h;反应结束后,离心分离出黄色沉淀,并用蒸馏水和无水乙醇洗涤干净;随后将洗涤好的产物在50℃中真空干燥6h后即得到目标产物;该方法不能制备14-0133、14-0688相BiVO4和48-575相[Bi6O5(OH)3](NO3)5·3H2O三相共存的产物,且所得产物为尺寸为60~80nm的纳米管。
本发明公布的方法、创新性及技术效果与该对比例有本质区别。
实施例4利用微波辐射技术制备BiVO4样品4
室温下,称取2.0615g分析纯Bi(NO3)3·5H2O、0.7745g十六烷基三甲基溴化铵(CATB)置于250mL烧杯中,并加入115mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min,搅拌完成后转移至250mL圆底烧瓶中置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为500W、频率为2450MHz,设置加热温度为120℃、混合60min后,得到混合溶液A;随后,称取0.7457g NH4VO3并置于100mL烧杯中,加入85mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min获得均一相水溶液B;继而,将混合溶液B转移至500mL石英圆底烧瓶中,将第一步骤所得的溶液A在剧烈搅拌的条件下,逐滴滴加至盛有混合溶液B的500mL石英圆底烧瓶中,滴加完成后持续搅拌10min,得到混合溶液C;最后,将第三步骤所配置的溶液C置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为200W、频率为2450MHz;设置加热温度为120℃、反应时间为150min;反应结束后,待石英圆底烧瓶中所得产物冷却至室温,将所得产物转移至离心机中,以5000rpm的转速离心2min,移除上清液并取出下层产物,用蒸馏水洗涤下层产物5次,再用乙醇洗涤4次,随后将洗涤好的产物置于烘箱中,在70℃的温度条件下干燥24h后即得到目标BiVO4材料。
实施例5利用微波辐射技术制备BiVO4样品5
室温下,称取2.0615g分析纯Bi(NO3)3·5H2O、0.7745g十六烷基三甲基溴化铵(CATB)置于250mL烧杯中,并加入115mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min,搅拌完成后转移至250mL圆底烧瓶中置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为2000W、频率为2450MHz,设置加热温度为90℃、混合60min后,得到混合溶液A;随后,称取0.7457g NH4VO3并置于100mL烧杯中,加入85mL蒸馏水,将烧杯置于转速为800rpm的磁力搅拌器上匀速搅拌15min获得均一相水溶液B;继而,将混合溶液B转移至500mL石英圆底烧瓶中,将第一步骤所得的溶液A在剧烈搅拌的条件下,逐滴滴加至盛有混合溶液B的500mL石英圆底烧瓶中,滴加完成后持续搅拌10min,得到混合溶液C;最后,将第三步骤所配置的溶液C置于带有常压回流冷却装置的微波反应器中,该微波反应器型号为“美的PJ21C-AU”,其加热功率为2000W、频率为2450MHz;设置加热温度为100℃、反应时间为90min;反应结束后,待石英圆底烧瓶中所得产物冷却至室温,将所得产物转移至离心机中,以5000rpm的转速离心2min,移除上清液并取出下层产物,用蒸馏水洗涤下层产物4次,再用乙醇洗涤5次,随后将洗涤好的产物置于烘箱中,在70℃的温度条件下干燥24h后即得到目标BiVO4材料。

Claims (7)

1.一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料的方法,其特征在于包括以下步骤:
第一、称量2.0615g分析纯Bi(NO3)3·5H2O、0.7745g十六烷基三甲基溴化铵CTAB置于250mL烧杯中,加入115mL蒸馏水磁力搅拌均匀,然后置于微波反应器中,设置加热功率为500~2000W、频率为2450MHz、加热温度为80~120℃,混和搅拌60min后得到混合溶液A;
第二、称量0.7457g NH4VO3于100mL烧杯中,加入85mL蒸馏水磁力搅拌均匀,获得均一相水溶液B;
第三、将第二步骤所配置的溶液B转移至500mL石英圆底烧瓶中,将第一步骤所得的溶液A在剧烈搅拌的条件下,逐滴滴加至盛有混合溶液B的500mL石英圆底烧瓶中,待滴加完成后持续搅拌均匀,得到混合溶液C;
第四、将第三步骤所配置的溶液C置于带有常压回流冷却装置的微波反应器中,设置加热功率为200~2000W、频率为2450MHz;设置加热温度为80~120℃、反应时间为150min;
第五、反应结束后,待石英圆底烧瓶中所得产物冷却至室温,将所得产物转移至离心机中离心后移除上清液并取出下层样品,用蒸馏水和乙醇洗涤多次,烘干即得到纳米片组装微米球状单斜相BiVO4材料。
2.根据权利要求1所述的微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料的方法,其特征在于:所述第一步骤和第二步骤中磁力搅拌转速为800rpm,搅拌时间为15min。
3.根据权利要求1所述的微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料的方法,其特征在于:所述第五步骤中以5000rpm的转速离心2min后移除上清液并取出下层样品。
4.根据权利要求1所述的微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料的方法,其特征在于:所述第五步骤中用蒸馏水洗涤固体样品3~5次,再用乙醇洗涤3~5次,随后将洗涤好的产物置于烘箱中,在70℃的温度条件下干燥24h后即得到目标BiVO4材料。
5.一种根据权利要求1-4任一项所述的制备方法制得的纳米片组装微米球状单斜相BiVO4材料。
6.根据权利要求5所述的纳米片组装微米球状单斜相BiVO4材料,其特征在于:由纳米片组装成微米球状BiVO4,纳米片厚度为11.74~35.25nm,微米球直径为1.24~1.34μm。
7.根据权利要求5所述的纳米片组装微米球状单斜相BiVO4材料,其特征在于:产物空间群为I2/a,晶胞参数为及/>α=γ=90.0°及—
β=90.38°,最强峰对应hkl晶面指数为(121)。
CN202310002308.9A 2023-01-03 2023-01-03 一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法 Pending CN116730386A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310002308.9A CN116730386A (zh) 2023-01-03 2023-01-03 一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310002308.9A CN116730386A (zh) 2023-01-03 2023-01-03 一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116730386A true CN116730386A (zh) 2023-09-12

Family

ID=87912033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310002308.9A Pending CN116730386A (zh) 2023-01-03 2023-01-03 一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116730386A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318700A (zh) * 2008-07-16 2008-12-10 武汉大学 一种钒酸铋粉体及其制备方法
CN101717116A (zh) * 2009-12-18 2010-06-02 北京工业大学 一种制备花状BiVO4的表面活性剂辅助醇-水热法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318700A (zh) * 2008-07-16 2008-12-10 武汉大学 一种钒酸铋粉体及其制备方法
CN101717116A (zh) * 2009-12-18 2010-06-02 北京工业大学 一种制备花状BiVO4的表面活性剂辅助醇-水热法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUN-QI LI ET AL.: "Effects of pH value on the surface morphology of BiVO4 microspheres and removal of methylene blue under visible light", JOURNAL OF EXPERIMENTAL NANOSCIENCE, vol. 9, no. 6, 5 July 2012 (2012-07-05), pages 616 - 624 *
JUN-QI LI ET AL.: "Nanosheet-based BiVO4 hierarchical microspheres and their photocatalytic activity under visible light", PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, vol. 209, no. 2, 26 October 2011 (2011-10-26), pages 248 - 253 *
彭枫萍 等: "C量子点修饰BiVO_4纳米片的制备及可见光裂解水性能的增强", 南京工业大学学报(自然科学版), vol. 40, no. 02, 31 March 2018 (2018-03-31), pages 1 - 6 *

Similar Documents

Publication Publication Date Title
CN105688970B (zh) g‑C3N4修饰的自掺杂Bi2WO6复合光催化剂及其制备方法和应用
CN105817253B (zh) 石墨相氮化碳纳米片/二氧化钛纳米管阵列光催化材料的制备方法
CN105502286B (zh) 一种多孔纳米NiFe2O4的制备方法
CN109647445B (zh) 一种MoS2纳米片包覆KNbO3纳米线压电/光催化材料的制备方法
CN112246272A (zh) 一种具有缺陷g-C3N4纳米片光催化剂的制备方法
CN108097267A (zh) 一种硫化物量子点改性的石墨烯/氧化钛纳米微球光催化材料的制备方法
Li-Xin et al. Controllable synthesis, polar behavior and photoelectric properties of BiOCl microplates
CN107803170A (zh) 一种二氧化钛/氧化镍双壳空心球的制备方法
CN108654663B (zh) 一种混合硝酸盐熔盐法制备硼氮共掺杂单晶介孔TiO2催化材料的方法
CN112830515B (zh) 一种具有八面体结构NaMg4V3O12材料的制备方法
CN107140686B (zh) 一种定向生长的二氧化钛纳米簇阵列的制备方法
CN102897835A (zh) 一种BiVO4的制备方法
CN103145183A (zh) 一种三维TiO2网状纳米材料、制备方法及应用
CN116730386A (zh) 一种微波辐射法制备的纳米片组装微米球状单斜相BiVO4材料及其制备方法
CN116832837A (zh) 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN108714424A (zh) 一种铁掺杂三斜-六方复合晶相三氧化钨薄膜的制备方法
CN112516991B (zh) 一种二维结构的氧化铋光催化剂制备方法
CN109354061A (zh) 一种单分散超小粒径二氧化钛纳米晶的制备方法
CN108654662A (zh) 一种熔盐法制备氟氮共掺杂单晶介孔TiO2催化材料的方法
CN105129842B (zh) 一种可见光响应的高活性SnO2纳米晶体的制备方法
CN110270332B (zh) 一种磁性TiO2(R)复合光催化剂及其制备方法
CN113856732A (zh) 一种片层花状Mn(VO3)2复合g-C3N4光催化剂及其制备方法和应用
CN108190940B (zh) 一种硫化锌光催化纳米材料的制备方法
CN106582593B (zh) 一种含有束缚电子氧空位的金红石相二氧化钛光催化剂的合成方法
CN110980665A (zh) 一种二维薄层结构氮化碳的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination