CN116676585A - 提高控温准确性的方法、复合涂层和热处理反应装置 - Google Patents

提高控温准确性的方法、复合涂层和热处理反应装置 Download PDF

Info

Publication number
CN116676585A
CN116676585A CN202310531037.6A CN202310531037A CN116676585A CN 116676585 A CN116676585 A CN 116676585A CN 202310531037 A CN202310531037 A CN 202310531037A CN 116676585 A CN116676585 A CN 116676585A
Authority
CN
China
Prior art keywords
coating
heat treatment
composite coating
reaction device
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310531037.6A
Other languages
English (en)
Inventor
薛俊辉
冀建民
李海卫
刘春峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing E Town Semiconductor Technology Co Ltd
Original Assignee
Beijing E Town Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing E Town Semiconductor Technology Co Ltd filed Critical Beijing E Town Semiconductor Technology Co Ltd
Priority to CN202310531037.6A priority Critical patent/CN116676585A/zh
Publication of CN116676585A publication Critical patent/CN116676585A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明提供了一种提高热处理控温准确性的方法、复合涂层和热处理反应装置。所述方法包括在热处理反应装置的一个或多个部件表面涂覆复合涂层;其中涂覆所述复合涂层包括在所述部件表面上涂覆第一涂层,以及在所述第一涂层上涂覆第二涂层。本发明的方法通过在热处理反应装置的部件表面涂覆复合涂层,使得在500℃以上的温区内快速升温或快速降温的时间偏差在0.01s以内,温度偏差在3℃以内。

Description

提高控温准确性的方法、复合涂层和热处理反应装置
技术领域
本发明涉及半导体制造领域,尤其涉及提高热处理控温准确性的方法、复合涂层和包括该复合涂层的热处理反应装置。
背景技术
在半导体制造(例如晶圆制造)过程中,热处理工艺在热生长氧化、离子注入后的热沉积膜层及退火硅化物形成等方面有广泛应用。热处理设备主要有卧式炉、立式炉和快速热处理(RTP)装置。RTP是一种在非常短的时间内将整个硅片加热至某一温度(例如200-1300℃)的热处理方法,相比于炉管加热式退火,具有热预算少、掺杂区域中杂质运动范围小、污染小和加热时间短等优点。
RTP设备的核心技术主要包括处理腔室体设计、温度测量技术和温度控制技术。在RTP设备中,热量多数借助辐射方式热传导到硅片表面。目前主要用的辐射热源有卤素灯、电弧灯和传统电阻式热源。
发明人发现现有技术中至少存在如下问题:
在RTP设备中,通常运用灯组作为热源,除了灯管阵列模式与晶圆(wafer)表面温度均匀性相关外,而处理腔室体内表面的二次反射以及吸收对于升降温波动及温度控制难度也有非常大,尤其是对于主要通过红外可见光对晶圆进行快速加热控温降温处理来说,会导致热滞后,加热的稳定性和测量的精度都有影响。
发明内容
本发明提供了一种提高热处理控温准确性的方法、复合涂层和热处理反应装置。
根据本发明的一方面,提供了一种提高热处理控温准确性的方法,包括在热处理反应装置的一个或多个部件表面涂覆复合涂层;
其中,涂覆所述复合涂层包括在所述部件表面上涂覆第一涂层,以及在所述第一涂层上涂覆第二涂层。
优选地,所述方法还包括:
将待处理工件放置在所述热处理反应装置的处理腔室内;
设定热处理反应装置的运行温度在150-1300℃之间;
设定目标热处理温度;以及
控制所述热处理反应装置的升温系统,使得热处理反应装置快速升温或快速降温至所述目标热处理温度。
根据本发明的另一方面,提供一种用于热处理反应装置的复合涂层,所述复合涂层位于所述热处理反应装置的一个或多个部件表面;
其中,所述复合涂层包括依次形成于所述部件表面上的第一涂层和第二涂层。
优选地,所述第一涂层由包括第一碱土金属、铝和第一过渡金属中的两种或更多种的合金化合物形成;
所述第二涂层由选自第二碱土金属、铝和第二过渡金属的金属氧化物和金属氮化物中的一种或多种形成。
根据本发明的又一方面,提供一种热处理反应装置,包括表面具有所述复合涂层的一个或多个部件。
根据本发明的提高热处理控温准确性的方法可达到极佳的热处理效果和更好的表面均匀性,提高设备的运行效率和可靠性,实现较长的平均清洁间隔时间,并且在大规模生产中实现超过20%到30%的总体效益。
应当理解,本部分所描述的内容并非旨在标识本发明的实施例的关键或重要特征,也不用于限制本发明的范围。本发明的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用于更好地理解本方案,不构成对本发明的限定。其中:
图1是根据本发明一实施方式的内壁具有复合涂层的快速热处理设备的结构示意图;
图2示出了根据图1所示的具有复合涂层的内壁的结构示意图;
图3是根据本发明一实施方式的形成复合涂层的工艺流程图;
图4是根据本发明实施例1的复合涂层的反射率曲线;
图5是根据本发明实施例1的复合涂层的表面形貌图片,其中(a)是复合涂层的目视图,(b)和(c)是复合涂层的电子扫描显微镜(SEM)的图片,(d)是复合涂层的透射电子显微镜(SEM)的图片;
图6是根据本发明实施例1的具有复合涂层热处理反应设备的温度控制曲线。
具体实施方式
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
为了达到精确控制晶圆升降温速率以及热处理处理腔室体内温控单元的准确性,发明人在处理腔室体内壁进行特殊涂层处理,改变其表面对红外可见光谱的反射吸收,达到热处理退火设备温度精准控制的要求。开发了一种用于热处理反应装置的温度控制方法和复合涂层。
复合涂层和热处理反应装置
图1是根据本公开一实施方式的具有复合涂层内壁的热处理设备结构的横截面示意图。其中,该热处理设备可包括处理腔室(例如可为石英腔)2、位于处理腔室内壁的复合涂层1、位于处理腔室下部的灯组5,以及测温元件3(例如可为红外测温仪);待处理的工件(例如硅片)4置于处理腔室2内。
参见图2,根据本发明的一个实施方式,上述复合涂层可包括依次涂覆于热处理反应装置的一个或多个部件表面(即基底层)11上的第一涂层12和第二涂层13。其中,第一涂层12起粘结作用,将被涂覆表面(例如被涂覆部件的表面,即处理腔室2的内壁)与第二涂层13连接在一起。第二涂层13可为反射涂层,用于反射吸收红外可见光谱。
上述复合涂层1的总厚度小于或等于5mm,例如可为1-5mm,进一步可为2mm,3mm,或4mm。
进一步地,上述复合涂层的孔隙率可为4%-7%,例如可为5%或6%。
进一步地,上述复合涂层的HV0.3硬度为680-1000,优选700-950,更优选750-890,例如可为780,800,820,850或870。
具有上述特性的复合涂层一方面能够有效地反射吸收红外可见光谱,从而有助于提高热处理腔室内的温度控制精度,提高表面均匀性;另一方面也具有良好的热处理稳定性,以避免在热处理半导体工件的过程中引入不必要的杂质,从而延长设备的平均清洁间隔时间。
在上述复合涂层中,第一涂层作为中间连接层用于使第二涂层与被涂覆表面(例如热处理腔室中的一个或多个部件表面,优选热处理腔室内壁)结合。
在本发明中,第一涂层由包括第一碱土金属、铝和第一过渡金属中的两种或更多种的合金化合物形成。其中,第一碱土金属可选自铍(Be)、镁(Mg)、钙(Ca)、锶(Sr);第一过渡金属可选自钪(Sc)、钛(Ti)、钒(V)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)和铜(Cu)。
根据一个具体实施方式,形成第一涂层的合金化合物可为例如第一碱土金属和铝的合金,或者为第一碱土金属和第一过渡金属的合金,或者为铝和第一过渡金属的合金,或者为第一碱土金属、铝和第一过渡金属的合金。例如,基于合金化合物的总质量,该合金化合物可包括第一碱土金属10-50%、铝10-50%和第一过渡金属20-50%。
优选地,该形成第一涂层的合金化合物可包括镁(Mg)20-38%(例如26%,32%,35%)、铝(Al)15-35%(例如18%,23%,28%,32%)和钒(V)21-48%(例如26%,30%,35%,40%,46%)的合金;或者包括锶(Sr)20-50%(例如25%,31%,37%,42%,48%)、镍(Ni)20-50%(例如24%,32%,36%,40%,45%)和铜(Cu)10-30%(例如14%,20%,24%,28%)的合金;或者包括铝(Al)20-50%(例如25%,31%,37%,42%,48%)、镍(Ni)20-50%(例如24%,32%,36%,40%,45%)和铜(Cu)10-30%(例如14%,20%,24%,28%)的合金。
由上述合金化合物形成的第一涂层可具有50-1000μm(优选100-950μm,例如可为150μm,200μm,260μm,300μm,350μm,400μm,450μm,500μm,550μm,600μm,650μm,700μm,750μm,800μm,850μm或900μm)的厚度,和4μm以上(例如4-10μm)的粗糙度。
上述第二涂层可为反射层,用于反射吸收红外可见光谱。该第二涂层可由选自第二碱土金属、铝和第二过渡金属的金属氧化物和金属氮化物中的一种或多种形成。具体地,形成第二涂层的材料例如可为第二碱土金属的氧化物或/或氮化物,铝的氧化物或/或氮化物,第二过渡金属的氧化物或/或氮化物中的一种或多种;优选镁的氧化物或氮化物,铬的氧化物或氮化物,钴的氧化物或氮化物和/或钛的氧化物或氮化物。
基于形成第二涂层的材料的总质量,第二涂层包括以下质量百分比的各成分:第二碱土金属的氧化物或氮化物0-100%(例如10%,20%,30%,40%,50%,60%,70%,80%,90%),铝的氧化物或氮化物0-100%(例如10%,20%,30%,40%,50%,60%,70%,80%,90%),和第二过渡金属的氧化物或氮化物0-90%(例如10%,20%,30%,40%,50%,60%,70%,80%),且这些成分的质量百分比不同时为0。
第二碱土金属可选自铍、镁、钙、锶;第二过渡金属可选自钪、钛、钒、铬、锰、铁、钴、镍和铜。
举例来说,该形成第二涂层的材料例如可为MgO;或者为MgO 20-60%(例如25%,30%,35%,40%,45%,50%,55%),和TiO2 40-80%(例如45%,50%,55%,60%,65%,70%,75%);或者为AlN;或者为AlN 10-50%(例如15%,20%,25%,30%,35%,40%,45%),和Ni3N2 50-90%(例如55%,60%,65%,70%,75%,80%,85%)。
由上述合金化合物形成的第二涂层可具有50-1000μm(优选100-950μm,例如可为150μm,200μm,260μm,300μm,350μm,400μm,450μm,500μm,550μm,600μm,650μm,700μm,750μm,800μm,850μm或900μm)的厚度,和4-7μm(例如5μm,6μm)的粗糙度。
上述第二涂层在500-1500nm-1的波数区域内具有70%-100%(例如75%,80%,85%,90%,95%)的反射率;和/或在1800-2500nm-1的波数区域内具有大于0%且小于或等于70%(例如1%,5%,10%,15%,20%,25%,30%,35%,40%,45%,50%,55%,60%,65%)的反射率。
具有上述特性的第二涂层赋予复合涂层合适的粗糙度、反射率和工艺稳定性。
根据本发明的另一方面,提供一种热处理反应装置,其包括表面具有上述复合涂层的一个或多个部件,例如一个或多个内壁。
具体地,上述热处理反应装置还可包括位于处理腔室室下部的灯组(例如可为卤素灯组),用于对待处理工件(例如硅片)进行热处理;还可包括测温元件(例如红外测温仪)。
参见图3,根据本发明,在热处理反应装置上形成复合涂层的方法可包括预处理步骤、第一涂层涂覆步骤和第二涂层涂覆步骤。
预处理步骤对被涂覆部件表面(即基底层)进行预处理,例如喷砂清洗干燥等步骤。
对经过预处理步骤的被涂覆部件表面进行第一涂层涂覆步骤。第一涂层的涂覆方法可包括等离子体喷涂、物理气相沉积(PVD)、化学气相沉积(CVD)、原子层沉积(ALD)、气溶胶沉积中的至少一种。
对涂覆有第一涂层的被涂覆部件进行清洗干燥步骤,随后进行第二涂层涂覆步骤。第二涂层的涂覆方法包括等离子体喷涂、PVD、CVD、ALD、气溶胶沉积法等的至少一种。
根据本发明的具有上述复合涂层的热处理反应装置能够实现较高的升温速率和降温速率,并且能精准控制热处理温度,提高工艺的可靠性,使大规模生产的总体效益提高20%到30%。
提高热处理控温准确性的方法
根据本发明的另一方面,提供一种提高热处理(特别是快速热处理)控温准确性的方法,包括在热处理反应装置的一个或多个部件表面涂覆复合涂层。
根据本发明的一个具体实施方式,上述提高热处理控温准确性的方法包括:
将待处理工件放置在所述热处理反应装置的处理腔室内;
设定热处理反应装置的运行温度在150-1300℃之间;
设定目标热处理温度;以及
控制所述热处理反应装置的升温系统,使得热处理反应装置快速升温或快速降温至所述目标热处理温度。
其中,快速升温是指在500℃以上(例如600℃,700℃,800℃,900℃,1000℃,1100℃,1200℃)的温区内的升温速率在200℃/s以上,所述快速降温是指在500℃以上(例如600℃,700℃,800℃,900℃,1000℃,1100℃,1200℃)的温区内的降温速率在70℃/s以上。
上述待处理工件可以是半导体工件,例如至少部分地由硅(Si)、砷化镓(GaAs)、锗(Ge)或其它合适的半导体或其组合构成的工件。根据本公开,该工件可具有任何合适的形状或尺寸。例如,工件可以是具有基本上圆形或卵形表面的“晶片”。
上述处理腔室可具有工件支撑件,用于支撑工件,并且可以具有适于处理该工件的任何形状、配置和/或构造。具体地,处理腔室的下部具有一个或多个热源,例如可为灯组,特别是卤素灯组。
在本发明的该方法中可用的复合涂层可包括起中间连接作用的第一涂层,起反射吸收作用的第二涂层。其中,复合涂层、第一涂层和第二涂层的组成、形成方法和特性如上文所述。
复合涂层具有4%-7%的孔隙率和680-1000的HV0.3硬度,并且第二涂层具有50-1000μm的厚度和4-7μm的粗糙度,从而能够在热处理工件的时候充分实现对加热灯组辐射的吸收和反射,使得处理腔室内的温度更均匀,温度控制更恒定,进而提高升温和降温的精确度。
复合涂层的上述特定成分的组成、比例和厚度使得涂层在处理腔室的热处理工程中保持稳定,避免在热处理过程中引入杂质,从而提高工艺过程的洁净度,延长设备的清洁间隔时间,提升生产效率。
在本发明的方法中,使得热处理反应装置快速升温或快速降温至所述目标热处理温度的步骤,温度偏差在3℃以内,时间偏差在0.01s以内。
以下将通过实施例进一步说明本发明,但本发明不限于此。
实施例
实施例1
形成第一涂层的材料为Mg-Al-V合金,其中它们的质量百分比分别为38%、15%和47%。
形成第二涂层的材料为包括MgO 40%和TiO2 60%的金属氧化物复合物。
上述提高热处理控温准确性的方法包括:
对热处理处理腔室内壁进行包括喷砂、清洗和干燥的预处理;
在经过预处理的热处理处理腔室内壁上通过PVD上述Mg-Al-V合金形成第一涂层(中间涂层);
在第一涂层(中间涂层)上通过CVD上述金属氧化物复合物形成第二涂层(反射涂层);
将待处理工件(硅片)放置在经过涂覆的热处理反应装置的处理腔室(石英腔)内的工件支撑件上;
设定热处理反应装置的运行温度在150-1300℃之间;
设定目标热处理温度为1050℃;以及
控制热处理反应装置的升温系统,实现高温区(大于500℃的区间)快速升降温,控制升温速度达到200℃/s,降温速率达到70℃/s。
测得升温至设定温度的时间偏差在0.01s内,达到设置温度的温差在3℃以内。
参见图5,示出了根据本实施例的复合涂层的形貌,其中,(a)示出了视觉观察的涂层表面,涂层表面均匀平整;(b)和(c)示出了SEM下涂层表面和断面的形态;(d)示出了TEM下涂层表面和断面的形态。
在第一涂层涂覆步骤和第二涂层涂覆步骤结束时分别测试涂层的厚度和粗糙度,其中第一涂层的厚度为750μm,粗糙度为10μm;第二涂层的厚度为550μm,粗糙度为6μm。
测得复合涂层的孔隙率为5%,HV0.3硬度为780。
复合涂层反射率测试方法如下:
使用PerkinElmer Lambda 1050测试样品反射率,以波数1nm分辨率扫描,收集200nm-2500nm波束范围的反射率曲线,如图4所示,反射率可在60%至85%左右。
参见图6,示出了本实施例的温度控制曲线。其中,曲线1为设定温度曲线,曲线2为实际测试温度曲线,可见曲线1和曲线2基本重合,温度偏差和时间偏差均很小。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (21)

1.一种提高热处理控温准确性的方法,其特征在于,包括在热处理反应装置的一个或多个部件表面涂覆复合涂层;
其中,涂覆所述复合涂层包括在所述部件表面上涂覆第一涂层,以及在所述第一涂层上涂覆第二涂层。
2.根据权利要求1所述的方法,所述第二涂层在500-1500nm-1的波数区域内具有70%-100%的反射率。
3.根据权利要求1或2所述的方法,所述第二涂层在1800-2500nm-1的波数区域内具有大于0%且小于或等于70%的反射率。
4.根据权利要求1或2所述的方法,所述复合涂层具有以下特性中的一种或多种:总厚度小于或等于5mm,孔隙率为4%-7%,HV0.3硬度为680-1000。
5.根据权利要求1或2所述的方法,所述第二涂层由选自金属氧化物和金属氮化物中的一种或多种形成。
6.根据权利要求1或2所述的方法,所述第二涂层由选自第二碱土金属、铝和第二过渡金属的金属氧化物和金属氮化物中的一种或多种形成。
7.根据权利要求6所述的方法,所述第二碱土金属选自铍、镁、钙、锶;所述第二过渡金属选自钪、钛、钒、铬、锰、铁、钴、镍和铜。
8.根据权利要求6所述的方法,所述第二涂层包括以下质量百分比的各成分:第二碱土金属的氧化物或氮化物0-100%、铝的氧化物或氮化物0-50%和第二过渡金属的氧化物或氮化物0-90%,且这些成分的质量百分比不同时为0。
9.根据权利要求1或2所述的方法,所述第二涂层具有以下特性的一项或多项:厚度为50-1000μm,粗糙度为4-7μm。
10.根据权利要求1或2所述的方法,所述第一涂层由包括第一碱土金属、铝和第一过渡金属中的两种或更多种的合金化合物形成。
11.根据权利要求10所述的方法,所述第一碱土金属选自铍、镁、钙、锶;所述第一过渡金属选自钪、钛、钒、铬、锰、铁、钴、镍和铜。
12.根据权利要求10所述的方法,所述合金化合物包括以下质量百分比的各成分:第一碱土金属10-50%、铝10-50%和第一过渡金属20-50%。
13.根据权利要求1或2所述的方法,还包括:
将待处理工件放置在所述热处理反应装置的处理腔室内;
设定热处理反应装置的运行温度在150-1300℃之间;
设定目标热处理温度;以及
控制所述热处理反应装置的升温系统,使得热处理反应装置快速升温或快速降温至所述目标热处理温度。
14.根据权利要求13所述的方法,使得热处理反应装置快速升温或快速降温至所述目标热处理温度的步骤中,温度偏差在3℃以内,时间偏差在0.01s以内。
15.根据权利要求13所述的方法,所述快速升温是指在500℃以上的温区内的升温速率在200℃/s以上,所述快速降温是指在500℃以上的温区内的降温速率在70℃/s以上。
16.一种用于热处理反应装置的复合涂层,其特征在于,所述复合涂层位于所述热处理反应装置的一个或多个部件表面;
其中,所述复合涂层包括依次形成于所述部件表面上的第一涂层和第二涂层。
17.根据权利要求16所述的复合涂层,具有以下特性中的一种或多种:
所述复合涂层的总厚度小于或等于5mm;
所述复合涂层的孔隙率为4%-7%;
所述复合涂层的HV0.3硬度为680-1000;
所述第二涂层在500-1500nm-1的波数区域内具有70%-100%的反射率;
所述第二涂层在1800-2500nm-1的波数区域内具有0%-70%的反射率。
18.根据权利要求16或17所述的复合涂层,其中,
所述第一涂层由包括第一碱土金属、铝和第一过渡金属中的两种或更多种的合金化合物形成;
所述合金化合物包括以下质量百分比的各成分:第一碱土金属10-50%、铝10-50%和第一过渡金属20-50%;
所述第一碱土金属选自铍、镁、钙、锶;且
所述第一过渡金属选自钪、钛、钒、铬、锰、铁、钴、镍和铜。
19.根据权利要求16或17所述的复合涂层,所述第二涂层由选自第二碱土金属、铝和第二过渡金属的金属氧化物和金属氮化物中的一种或多种形成。
20.根据权利要求16或17所述的复合涂层,所述第二涂层包括以下质量百分比的各成分:第二碱土金属的氧化物或氮化物0-100%,铝的氧化物或氮化物0-100%,和第二过渡金属的氧化物或氮化物0-90%,且这些成分的质量百分比不同时为0;
所述第二碱土金属选自铍、镁、钙、锶;
所述第二过渡金属选自钪、钛、钒、铬、锰、铁、钴、镍和铜。
21.一种热处理反应装置,其特征在于,包括表面具有根据权利要求16-20中任一项所述的复合涂层的一个或多个部件。
CN202310531037.6A 2023-05-11 2023-05-11 提高控温准确性的方法、复合涂层和热处理反应装置 Pending CN116676585A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310531037.6A CN116676585A (zh) 2023-05-11 2023-05-11 提高控温准确性的方法、复合涂层和热处理反应装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310531037.6A CN116676585A (zh) 2023-05-11 2023-05-11 提高控温准确性的方法、复合涂层和热处理反应装置

Publications (1)

Publication Number Publication Date
CN116676585A true CN116676585A (zh) 2023-09-01

Family

ID=87777817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310531037.6A Pending CN116676585A (zh) 2023-05-11 2023-05-11 提高控温准确性的方法、复合涂层和热处理反应装置

Country Status (1)

Country Link
CN (1) CN116676585A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826985A1 (en) * 1996-08-28 1998-03-04 Applied Materials, Inc. Reflector for a semiconductor processing chamber
US20030094446A1 (en) * 2001-04-17 2003-05-22 Mattson Technology, Inc. Rapid thermal processing system for integrated circuits
US20120070136A1 (en) * 2010-08-09 2012-03-22 Applied Materials, Inc. Transparent Reflector Plate For Rapid Thermal Processing Chamber
CN208121151U (zh) * 2018-05-08 2018-11-20 武汉铢寸科技有限公司 一种坡莫合金真空热处理装置
TWI710458B (zh) * 2019-07-26 2020-11-21 翔名科技股份有限公司 高反射鍍膜
CN114371525A (zh) * 2022-01-18 2022-04-19 北京北方华创微电子装备有限公司 反射部件及工艺腔室

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826985A1 (en) * 1996-08-28 1998-03-04 Applied Materials, Inc. Reflector for a semiconductor processing chamber
US20030094446A1 (en) * 2001-04-17 2003-05-22 Mattson Technology, Inc. Rapid thermal processing system for integrated circuits
US20120070136A1 (en) * 2010-08-09 2012-03-22 Applied Materials, Inc. Transparent Reflector Plate For Rapid Thermal Processing Chamber
CN103109359A (zh) * 2010-08-09 2013-05-15 应用材料公司 用于快速热处理腔室的透明反射板
CN208121151U (zh) * 2018-05-08 2018-11-20 武汉铢寸科技有限公司 一种坡莫合金真空热处理装置
TWI710458B (zh) * 2019-07-26 2020-11-21 翔名科技股份有限公司 高反射鍍膜
CN114371525A (zh) * 2022-01-18 2022-04-19 北京北方华创微电子装备有限公司 反射部件及工艺腔室

Similar Documents

Publication Publication Date Title
JP3072738B2 (ja) 高融点金属皮膜の形態を改善する方法
KR20040054554A (ko) 불화물 함유 막 및 피복 부재
CN101944482B (zh) 形成介电膜的方法
JP2007247042A (ja) 半導体加工装置用セラミック被覆部材
JP5816753B2 (ja) 低温金属蒸着工程を適用した熱変色性ガラスの製造方法及びこれによる熱変色性ガラス
US20060019103A1 (en) Corrosion-resistant member and method forproducing same
CN116676585A (zh) 提高控温准确性的方法、复合涂层和热处理反应装置
US6406799B1 (en) Method of producing anti-corrosion member and anti-corrosion member
US7151068B2 (en) Sintered object of silicon monoxide and method for producing the same
KR20150117698A (ko) 유리-성형 몰드용 코팅 및 이를 포함하는 유리-성형 몰드
US20120003425A1 (en) TiAIN COATINGS FOR GLASS MOLDING DIES AND TOOLING
JP2007277019A (ja) 光学素子の成形調整治具
CN101471256B (zh) 形成介电膜的方法
KR20090093482A (ko) 이온빔 믹싱을 이용한 금속모재 표면에 세라믹층의코팅방법
KR0145692B1 (ko) CVD코팅된 Si를 함침한 SiC 제품 및 그 제조방법
KR20130099065A (ko) 원위치에서 코팅을 증착시키는 방법 및 그 방법으로 제조된 물품
Li et al. Enhancing oxidation resistance of Mo metal substrate by sputtering an MoSi2 (N) interlayer as diffusion barrier of MoSi2 (Si) surface coating
JPH0712017B2 (ja) X線リソグラフィー用SiC/Si▲下3▼N▲下4▼膜の成膜方法
JP6575119B2 (ja) 内面の化成処理性に優れる熱処理中空金属部材の製造方法
KR102389502B1 (ko) 자기조립형 탄소피복강재 및 그 제조방법
JP3843931B2 (ja) 電子部品収納用角管およびそれを用いた光−電気変換部品用パッケージ並びに角管およびパッケージの製造方法
KR930006119B1 (ko) 밀착성, 평활성 및 내식성에 뛰어난 치밀한 세라믹 피막을 갖춘 강판 및 그 제조방법
US6696205B2 (en) Thin tantalum silicon composite film formation and annealing for use as electron projection scatterer
JPH03285057A (ja) 赤外線放射体とその製法
JP2002338267A (ja) 光学素子成形用型

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination