CN116675751B - SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用 - Google Patents

SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用 Download PDF

Info

Publication number
CN116675751B
CN116675751B CN202310674526.7A CN202310674526A CN116675751B CN 116675751 B CN116675751 B CN 116675751B CN 202310674526 A CN202310674526 A CN 202310674526A CN 116675751 B CN116675751 B CN 116675751B
Authority
CN
China
Prior art keywords
potato
sweet1g
protein
plant
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310674526.7A
Other languages
English (en)
Other versions
CN116675751A (zh
Inventor
李向东
耿超
房乐
刘灵芝
闫志勇
田延平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Agricultural University
Original Assignee
Shandong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Agricultural University filed Critical Shandong Agricultural University
Priority to CN202310674526.7A priority Critical patent/CN116675751B/zh
Publication of CN116675751A publication Critical patent/CN116675751A/zh
Application granted granted Critical
Publication of CN116675751B publication Critical patent/CN116675751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8203Virus mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了SWEET1g蛋白及其编码基因在抗马铃薯病毒的应用,属于生物技术领域。本发明首次研究发现,来源于马铃薯的StSWEET1g蛋白在体内及体外均与马铃薯Y病毒的CP蛋白互作。沉默SWEET1g基因能够促进PVY侵染;过表达SWEET1g基因抑制PVY侵染。本发明还考察了StSWEET1g蛋白对马铃薯X病毒(potato virus X,PVX)和烟草脉带花叶病毒(tobacco vein banding mosaic virus,TVBMV)侵染的影响,发现过表达SWEET1g基因也会抑制马铃薯X病毒和烟草脉带花叶病毒的侵染。因此,StSWEET1g蛋白可以作为植物抗病毒的新靶标,能够应用于上述3种马铃薯病毒病的防治中,具有重要的应用价值。

Description

SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用
技术领域
本发明涉及生物技术领域,具体涉及SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用。
背景技术
马铃薯是世界第四大粮食作物,也是重要的经济作物和工业原料作物。而马铃薯病毒病是马铃薯的主要病害,一般使马铃薯减产20%~50%,严重的达80%以上。常见的马铃薯病毒有10余种,造成严重危害的主要有马铃薯Y病毒(PVY)、马铃薯X病毒(PVX)和烟草脉带花叶病毒(TVBMV)等。感染病毒的马铃薯通过无性繁殖进行世代积累和传递,致使产量不断下降,不能留种再生产,严重制约了马铃薯产业的发展。
种植抗病品种是防治作物病毒病最经济有效的方式,但目前抗病品种资源十分匮乏。筛选新的抗病毒靶标对于指导抗病品种培育有重要意义。
SWEET(Sugars Will Eventually be Exported Transporter)基因家族编码一类新型的糖转运蛋白,其在许多生理过程如韧皮部装载、花蜜分泌、种子灌浆、以及植物与病原物互作中发挥关键调控作用。已有研究表明,SWEETs参与糖的吸收和转运过程,在许多细菌和真菌病原物致病过程中发挥重要作用。细菌和真菌侵染激活特定的SWEET基因表达,以促进侵染部位的细胞分泌糖并促进病原物增殖。但是,目前关于SWEET蛋白在植物-病毒互作过程中的功能尚不清楚,阐明其机制有助于指导人们通过分子生物学手段对目的基因进行改造,从而获得具有抗性的作物品种。
发明内容
针对上述现有技术,本发明的目的是提供SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供SWEET1g蛋白在如下(1)或(2)中的应用:
(1)调控马铃薯病毒的侵染;
(2)调控植物对马铃薯病毒的抗性;
所述SWEET1g蛋白的氨基酸序列如SEQ ID NO.1所示。
上述应用中,所述SWEET1g蛋白与马铃薯病毒的CP互作,SWEET1g负调控马铃薯病毒的侵染。
上述应用中,所述SWEET1g蛋白与马铃薯病毒CP互作的关键氨基酸位点为第80位的甘氨酸。
上述应用中,所述马铃薯病毒为PVY、PVX或TVBMV。
本发明的第二方面,提供SWEET1g蛋白的编码基因在如下(1)或(2)中的应用:
(1)调控植物对马铃薯病毒的抗性;
(2)培育抗马铃薯病毒的植物品种。
上述应用中,所述马铃薯病毒为PVY、PVX或TVBMV。
上述应用中,所述SWEET1g蛋白的编码基因为如下(i)或(ii)所示的核酸分子:
(i)核苷酸序列如SEQ ID NO.2所示的核酸分子;
(ii)除(i)以外的编码SEQ ID NO.1所示氨基酸序列的核酸分子。
本发明的第三方面,提供含有上述编码基因的重组表达载体或工程菌在如下(1)或(2)中的应用:
(1)调控植物对马铃薯病毒的抗性;
(2)培育抗马铃薯病毒的植物品种;
所述马铃薯病毒为PVY、PVX或TVBMV。
本发明的第四方面,提供一种提高植物对马铃薯病毒病抗性的方法,包括以下步骤:
使植物中SWEET1g蛋白的编码基因过表达。
上述方法中,SWEET1g蛋白的编码基因过表达可以通过外源转入SWEET1g蛋白的编码基因的方法;或者上调植物基因组中SWEET1g蛋白的编码基因的表达。
上述方法中,所述马铃薯病毒病是由PVY、PVX或TVBMV引起的病毒病。
本发明的第五方面,提供一种培育抗马铃薯病毒的转基因植物的方法,包括以下步骤:
将SWEET1g基因导入野生型植物中,获得SWEET1g基因过表达植物;所获得的SWEET1g基因过表达植物对马铃薯病毒的抗性高于野生型植物。
上述方法中,所述SWEET1g基因为如下(i)或(ii)所示的核酸分子:
(i)核苷酸序列如SEQ ID NO.2所示的核酸分子;
(ii)除(i)以外的编码SEQ ID NO.1所示氨基酸序列的核酸分子。
上述方法中,所述马铃薯病毒为PVY、PVX或TVBMV。
本发明的有益效果:
(1)本发明首次研究发现,来源于马铃薯的StSWEET1g蛋白在体内及体外均与马铃薯Y病毒的CP蛋白互作。
(2)为进一步研究StSWEET1g蛋白对马铃薯Y病毒侵染的影响,本发明分别构建了SWEET1g基因沉默载体和SWEET1g基因过表达载体,发现沉默SWEET1g基因能够促进PVY侵染;过表达SWEET1g基因抑制PVY侵染。
(3)本发明还考察了StSWEET1g蛋白对马铃薯X病毒和烟草脉带花叶病毒侵染的影响,发现过表达SWEET1g基因也会抑制马铃薯X病毒和烟草脉带花叶病毒的侵染;StSWEET1g蛋白的第80位氨基酸是决定其与马铃薯病毒CP蛋白互作的关键氨基酸位点。
附图说明
图1:实施例1中膜酵母双杂交分析CP与StSWEET1g的互作关系。
图2:实施例1中免疫共沉淀试验结果。
图3:实施例1中萤火素酶互补试验结果。
图4:萤火素酶互补试验中接种区域萤火素酶活性定量测定结果。
图5:双分子荧光互补实验分析CP与StSWEET1g的互作;比例尺=50μm。
图6:实施例2中SWEET1g基因沉默效率的检测结果。
图7:实施例2中沉默StSWEET1g马铃薯植株接种PVY-GFP后系统叶片的荧光照片。
图8:实施例2中StSWEET1g沉默植株PVY CP的积累水平。
图9:实施例2中StSWEET1g沉默植株PVY RNA的积累水平。
图10:实施例2中在本氏烟中瞬时过表达StSWEET1g-HA后摩擦接种PVY-GFP病汁液后的荧光照片。
图11:实施例2中Western blot检测过表达StSWEET1g区域PVY CP的积累量。
图12:实施例2中qRT-PCR检测过表达StSWEET1g区域PVY RNA积累量。
图13:实施例2中过表达StSWEET1g区域PVY-GFP复制子的荧光照片。
图14:实施例2中叶片接种区域提取总蛋白,并用HA或CP抗体进行Western blot检测结果。
图15:实施例2中qRT-PCR分析本氏烟接种区域PVY基因组正链RNA的积累水平。
图16:实施例2中qRT-PCR分析本氏烟接种区域PVY负链RNA的积累水平。
图17:实施例3中BiFC验证StSWEET1g与TVBMV CP和PVX CP互作;比例尺=20μm。
图18:StSWEET1g及StSWEET1gG80D过表达叶片中TVBMV-GFPrep的荧光。
图19:StSWEET1g及StSWEET1gG80D过表达叶片中PVX-760-GFPrep的荧光。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
如前所述,目前关于SWEET蛋白的研究主要集中于其在植物-病原细菌或真菌侵染过程中发挥的调控作用,其在病毒侵染过程中的功能研究较少。
有鉴于此,本发明对来源于马铃薯的StSWEET1g蛋白的功能进行了深入研究。StSWEET1g蛋白的氨基酸序列如SEQ ID NO.1所示,具体如下:
MGGLVQTIKFVFGIVGNAATLFLFLVPTFTFKRIIENKSTEQFSGIPYVMTFLNCLLSAWYGLPFITSNNILIATVNGAGAAIELIYVLIFFLYAPNKQKGKILAMLILVILAFAAAAVISVLAFHGKNRQLFCGTAATIFSIVMYASPMSIIRLVIKTKSVEYMPFFLSFAVVVSCSCWFTYAMLGMDPFVGISTGVGLALGIVQLILYFIYCDKKILNKKTTATDESLQNMGNGYSNNVKCYNDEKQSNFHEQV。
StSWEET1g蛋白的编码基因的核苷酸序列如SEQ ID NO.2所示,具体如下:
atggg tggtcttgta caaactataa aatttgtttt tgggattgtt ggaaatgccgctactctttt tctcttcttg gtacccacgtttacattcaa gaggattatc gagaacaaat caacagaacagttctctgga ataccttatg ttatgacatt tctcaactgc ttgctttctgcatggtacgg tttaccatttataacatcaa acaatattct aatagcaaca gtaaatggtg ctggagctgc aattgaattgatatacgtgctaattttttt cttatatgca cccaataaac aaaaggggaa gatattagca atgttgatattagttatatt ggcgtttgct gccgcagcggttatttcagt gcttgctttt catggaaaaa acaggcaactcttttgtggt acggctgcta ccatattctc catcgttatg tatgcatctcctatgtctat cattagactagtaataaaga ccaagagtgt ggagtacatg ccattcttcc tgtcatttgc tgttgtcgtatcttgcagctgctggtttac ctatgccatg ctaggaatgg acccatttgt tggcatttca acaggtgttggcttggcttt aggaatagta cagttgatcttatattttat ttactgtgac aaaaaaatat taaataagaagacaactgct actgatgagt ccctacagaa tatgggcaat ggctatagcaataatgttaa gtgttacaatgatgagaagc aatcaaattt tcatgagcaa gtctag。
本发明以PVY CP为诱饵蛋白,筛选马铃薯膜酵母cDNA文库,初步筛选鉴定到StSWEET1g。随后利用膜酵母双杂交(membrane yeast two-hybrid,MY2H)技术验证二者互作,发现StSWEET1g蛋白与PVY CP在体外互作。为验证二者在体内是否互作,我们进行了体内免疫共沉淀实验(co-immunoprecipitation,Co-IP)、萤火素酶互补实验(luciferasecomplementation imaging,LCI)和双分子荧光互补实验(bimolecular fluorescencecomplementation,BiFC),结果均表明StSWEET1g蛋白与PVY CP在体内互作。
基于蛋白互作的考察结果,本发明进一步研究了StSWEET1g蛋白是否参与了PVY的侵染。本发明分别构建了StSWEET1g基因沉默载体和StSWEET1g基因过表达载体,浸润接种植物后再接种PVY病毒,结果表明:沉默StSWEET1g基因能够促进PVY侵染;过表达StSWEET1g基因抑制PVY侵染。
为探究StSWEET1g蛋白是否还参与其他RNA病毒的侵染,本发明选择了TVBMV和PVX进行验证,结果发现:过表达StSWEET1g-HA抑制TVBMV及PVX的侵染。StSWEET1g蛋白中的第80位甘氨酸是决定其与马铃薯病毒CP蛋白互作的关键氨基酸位点。
由此证明:StSWEET1g蛋白可以作为植物抗病毒的新靶标,能够应用于马铃薯病毒病的防治中,具有重要的应用价值。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。未注明详细条件的实验方法是按照常规试验方法或按照供应商所建议的操作说明书进行的。其中:
植物总RNA提取试剂Trizol购买自北京全式金公司;DNA聚合酶、高保真酶、反转录酶及荧光定量试剂均购自南京诺唯赞生物科技股份有限公司;同源重组酶购买自AppliedBiological Materials(abm)公司;限制性核酸内切酶购买自Thermo Fisher SCIENTIFIC公司;T4 DNA连接酶购买自Takara公司;质粒提取和胶回收试剂盒购买自Omega Bio-Tek公司;核酸分子量及蛋白分子量标准均购买自苏州新赛美科技有限公司,HA-trap琼脂糖凝珠购买自深圳康体生命科技有限公司;其他常用药剂均购买自国药集团化学试剂有限公司。
本发明中所用的本氏烟(Nicotiana benthamiana),除特殊说明外,在24/22℃(白天/夜晚)和16h光照/8小时黑暗,相对湿度65%的人工气候室或培养箱内培养。
本发明中所使用的PVY N605分离物(GenBank:X97895.1),TVBMV(GenBank:JQ407082.1),PVX(GenBank:KJ690769.1)。
实施例1:载体的构建
1、病毒侵染性克隆改造:
根据实验室已有TVBMV、PVY N605分离物序列设计引物,将TVBMV-GFP、PVY-GFP、PVX-760-GFP(缺少PVX CP基因,不能进行移动)全长序列扩增后连入双元载体pCB301,获得pCB301-TVBMV-GFP、pCB301-PVY-GFP及pCB301-PVX760-GFP。在此基础上,将35S-mCherry-HDEL表达盒连入pCB301-TVBMV-GFP、pCB301-PVY-GFP、pCB301-PVX-760-GFP载体Nos后面。
将TVBMV P3N-PIPO中第163位的苯丙氨酸,176位的缬氨酸及199位的苏氨酸的密码子同时突变为终止密码子,获得不能进行细胞间移动但可以正常复制的pCB301-TVBMV-GFP复制子(pCB301-TVBMV-GFPrep)。将PVY的P3N-PIPO第177位的赖氨酸和200位的谷氨酰胺的密码子同时突变成终止密码子,获得不能进行细胞间移动但可以正常复制的pCB301-PVY-GFP复制子(pCB301-PVY-GFPrep)。
2、瞬时表达载体构建:
以马铃薯cDNA为模版扩增StSWEET1g基因,以含有PVY全长的质粒为模版扩增CP基因。在免疫共沉淀实验中,将StSWEET1g等基因编码区序列连入pCam-UTR-HA载体(该载体包含35S启动子,TVBMV的5’UTR,3HA标签序列,构建方法参考文献Cheng DJ,Xu XJ,Yan ZY,Tettey CK,Fang L,Yang GL,Geng C,Tian YP,Li XD(2021)The chloroplast ribosomalprotein large subunit 1interacts with viral polymerase and promotes virusinfection.Plant Physiol 187:174-186,获得质粒pStSWEET1g-HA。在萤火素酶实验中,将StSWEET1g基因编码区分别连入pCam-Nluc载体(该载体包含FLUC的N端序列),获得质粒pStSWEET1g-Nluc。将CP基因克隆至pCam-Cluc载体(该载体包含FLUC的C端序列),获得质粒pCluc-CP。pCam-Nluc载体和pCam-Cluc载体参考文献Xu Xiao-Jie,Geng Chao,JiangShao-Yan,Zhu Qing,Yan Zhi-Yong,Tian Yan-Ping,Li Xiang-Dong*.Amaizetriacylglycerol lipase inhibits sugarcane mosaic virus infection.PlantPhysiology,2022,189(2):754-771构建。
3、病毒诱导的基因沉默载体构建:
用高保真聚合酶从马铃薯cDNA中扩增StSWEET1g基因片段(核苷酸第153-452位),并将其反向连入至PVX440载体,获得质粒pPVX440-StSWEET1g(Wang et al.,2014)。
4、酵母表达载体构建:
利用phanta高保真酶从PVY基因组中扩增P1、HC-Pro、P3、NIa、NIb、CP基因,片段分别用SfiI酶切后通过酶切连接法连入膜酵母载体pPR3-N,获得质粒pNubG-P1、pNubG-HC-Pro、pNubG-P3、pNubG-NIa、pNubG-NIb和pNubG-CP;利用phanta高保真酶从PVY基因组中扩增P3N-PIPO、6K1、6K2、VPg基因,将片段分别用SfiI酶切后通过酶切连接法连入膜酵母载体pPR3-C,获得质粒pP3N-PIPO-NubG、p6K1-NubG、p6K2-NubG和pVPg-NubG。利用phanta高保真酶从马铃薯cDNA中扩增StSWEET1g基因,将片段用SfiI酶切后连入膜酵母载体pBT3-STE,获得载体pStSWEET1g-CubG。
实施例2:StSWEET1g与马铃薯Y病毒CP蛋白互作研究
1、膜酵母双杂交试验:
取-80℃保存的NMY51酵母菌株在YPDA平板上划线,在30℃培养至长出单菌落。将单菌落挑至2mL 2×YPDA液体培养基中,30℃,220rpm过夜培养。吸取50μL菌液加入100mL 2×YPDA中培养至OD600=0.3。将菌液在操作台中分装至灭菌的80mL离心管中,700g室温离心5min,用10mL 2×YPDA培养基重悬菌体并将其转移至新的100mL2×YPDA中继续培养至OD600=0.6~0.7。700g室温离心5min,弃上清,每管用30mL灭菌水重悬菌体。700g室温离心5min,弃上清,每管用1ml LiOAc/TE溶液重悬菌体并将其转移至1.5mL灭菌离心管中。700g室温离心5min,每管用600μL LiOAc/TE重悬菌体。
在1.5mL灭菌离心管中分别加入1.5μg pNubG-CP和pStSWEET1g-Cub质粒,5uL10mg/mL变性的鲑鱼精,100μL酵母感受态,500μL PEG/LiOAc溶液,混匀后30℃孵育30min,每10min颠倒混匀一次。每管加入20μL DMSO后颠倒混匀,42℃水浴15min,每5min颠倒混匀一次。12000rpm离心15s,每管用150μL的0.9%NaCl溶液重悬菌体并涂布在SD/-Trp/-Leu(SD/-LW)缺陷型固体培养基平板。30℃倒置培养至长出单斑后,将其转移至含有5mM 3-AT的SD/-Trp/-Leu/-His/-Ade(SD-LWHA)缺陷型平板上培养。
实验结果表明,共转化质粒pNubG-CP和pStSWEET1g-CubG的酵母细胞在含有3-AT的SD-LWHA选择性培养基上正常生长(图1),说明CP与StSWEET1g在体外互作。
2、体内免疫共沉淀试验:
将StSWEET1g等基因编码区序列连入pCam-UTR-HA载体(该载体包含35S启动子,TVBMV的5’UTR,3HA标签序列),获得质粒pStSWEET1g-HA,将CP基因编码区序列连入pCam-UTR-Flag载体,获得质粒pFlag-CP。将相应农杆菌与含有pBinP19的农杆菌调整OD600=1.0后等体积混匀后共浸润接种本氏烟,接种3天后采集接种叶片加入液氮研磨,按照1:1(W/V)的比例加入蛋白提取液(25mM Tris-HCl[pH 7.5]、1mM EDTA、150mM NaCl、10mM DTT、10%glycerol、0.15% Nonidet P-40和1×protease inhibitor cocktail),充分震荡混匀,冰上孵育10min。4℃,12000rpm离心15min,将上清转移至新的预冷的离心管中,重复离心,将上清用0.22μm水系滤器过滤后备用。离心期间平衡HA-Trap磁珠,将磁珠涡旋混匀,吸取25μL转移到1.5mL离心管中,加入1mL预冷的1×PBS溶液,颠倒混匀,4℃,2500rpm离心3min,用枪吸弃上清,重复三次。将过滤后的上清与平衡好的磁珠冰上共孵育1h。4℃,5000rpm离心10min,小心弃去上清,将磁珠转移至1.5mL离心管中,按照平衡磁珠的方法漂洗磁珠4-6次,加入40μL的2×SDS,沸水煮样10min,随后用12%的蛋白胶进行SDS-PAGE电泳,利用湿转法将蛋白转移至NC膜上,转膜结束后将膜用0.5%的脱脂奶粉(每0.5g脱脂奶粉加入10mLTBST缓冲液(20mM Tris-HCl[pH 7.5],150mM NaCl和0.05%Tween-20))室温封闭1h或4℃封闭过夜。根据抗体效价按比例加入相应抗体,室温孵育1h后,用1×TBST洗膜,10min/次,洗三次。根据一抗来源按比例加入二抗,室温孵育1h后,用1×TBST洗膜,10min/次,洗两次,用1×TBS(20mM Tris-HCl[pH 7.5],150mM NaCl和0.05%Tween-20)洗膜,10min/次,洗一次。洗膜结束后加入ECL western blotting substrate,用化学发光检测仪检测蛋白信号。
Co-IP实验结果表明,Flag-CP可以被StSWEET1g-HA捕获到(图2)。
3、萤火素酶互补实验:
将含有pStSWEET1g-Nluc和pCluc-CP质粒的农杆菌与含有pBin19的菌液分别调整菌液浓度为OD600=1.0,等体积混匀后浸润接种本氏烟,3天后采集接种叶片,用棉签蘸取含1mM/L的发光底物D-luciferin溶液涂抹至接种区域,暗处理5min后利用活体成像系统检测信号,并用该系统对萤火素酶活性进行定量测定及数据统计。结果表明共表达Cluc-CP和StSWEET1g-Nluc的区域检测到明显的信号(图3),且萤火素酶活性明显高于对照组合(图4)。
4、双分子荧光互补试验:
将含有YN-CP和StSWEET1g-YC的农杆菌与含有pBin19的菌液调至OD600=1.0,等比例混匀后浸润接种本氏烟,3天后切取浸润区域制片在共聚焦显微镜下观察,YFP的激发波长为514nm,捕获波长为565nm-585nm。结果表明,YFP荧光仅在共表达YC-CP和StSWEET1g-YN的细胞中观察到(图5),以上结果表明CP和StSWEET1g在体内及体外均互作。
实施例3:StSWEET1g对PVY侵染影响的研究
接种本氏烟采集系统发病叶片用磷酸盐缓冲液研磨,将病汁液摩擦接种马铃薯,并以PVX连入GUS片段接种的马铃薯作为对照。具体方法如下:采集发病叶片按照1:1(W/V)用磷酸盐缓冲液研磨获得病毒粗提物,将其转移至1.5mL离心管中,4℃,12000rpm离心5min,取上清备用。在待接种植株上部撒少量金刚砂以制造微伤口,吸取上清单方向摩擦接种植株展开叶片。
接种15天后采集系统叶片通过RT-qPCR检测基因沉默效率,具体方法如下:按照全式金TransZol(货号ET101-01)说明书提取植物总RNA。称取50-100mg在预冷的研钵中充分研磨,将样品粉末转移至2.0mL的RNase-free离心管中,加入1mL TransZol于组织研磨仪中剧烈震荡1min,室温静置3min后每管加入300μL氯仿,充分震荡15s,静置5min。4℃,12000rpm离心15min,将无色上清转移至1.5mL的RNase-free离心管中,加入等体积的异丙醇,颠倒混匀后室温静置10min。4℃,12000rpm离心10min,弃上清。此时观察到管底或侧壁上有白色或胶状沉淀,每管加入1mL 75%的乙醇溶液,颠倒混匀洗涤沉淀,4℃,9000rpm离心5min,弃上清。室温静置5min,使管底残余液体挥发,每管加入50-100μL超纯水使RNA充分溶解后备用。利用Primer 5软件根据目的基因序列设计qPCR引物。将提取后的总RNA用gDNA清除酶去除植物的基因组,以1-2μg的总RNA为模板用5×HiScriptⅡqRT Super MixⅡ反转录。以cDNA为模板,使用2×ChamQ SYBR qPCR Master Mix及特异性引物检测。结果表明PVX-StSWEET1g接种植株StSWEET1g的mRNA积累水平约为对照植株的18%(图6)。将沉默及对照植株摩擦接种PVY-GFP,在接种12天后在紫外灯下观察荧光发现沉默StSWEET1g马铃薯植株系统叶片荧光点的数量及亮度均高于对照(图7),采集系统叶片进行Western blot及qRT-PCR检测,StSWEET1g沉默植株PVY CP及RNA积累水平显著高于对照(图8和9),说明沉默StSWEET1g促进PVY侵染。
为进一步验证StSWEET1g的生物学功能,在本氏烟中瞬时过表达StSWEET1g-HA后摩擦接种PVY-GFP病汁液,并以Rluc-HA为对照,接种4天后观察发现,过表达StSWEET1g-HA区域病毒荧光点的数量明显少于对照,荧光点面积明显小于对照(图10),Western blot检测结果表明过表达StSWEET1g区域PVY CP的积累量低于对照(图11),qRT-PCR检测结果表明过表达StSWEET1g区域PVY RNA积累量相较于对照也显著降低(图12)。
我们利用PVY-GFP复制子进行了类似的实验,结果表明,与对照相比,过表达StSWEET1g区域PVY-GFP复制子的荧光明显弱于对照,且病毒CP及RNA积累水平也显著低于对照(图13-16),说明过表达StSWEET1g抑制PVY的复制。
上述结果表明:StSWEET1g负调控PVY侵染。
实施例4:StSWEET1g对其他RNA病毒侵染的影响
为探究StSWEET1g是否参与其他RNA病毒的侵染,我们选择了TVBMV和PVX进行验证,将TVBMV及PVX的CP编码区序列分别克隆至pCam-YC载体(参考文献“Cheng DJ,Xu XJ,Yan ZY,Tettey CK,Fang L,Yang GL,Geng C,Tian YP,Li XD(2021)The chloroplastribosomal protein large subunit 1interacts with viral polymerase and promotesvirus infection.Plant Physiol 187:174-186构建,该载体包含YFP的C端序列,获得质粒pYC-CPTVBMV和pYC-CPPVX,将其转化农杆菌后分别与StSWEET1g-YN或StSWEET1gG80D-YN(StSWEET1g-YN或StSWEET1gG80D-YN是将编码StSWEE1g及突变体StSWEET1gG80D基因的片段利用酶切连接连入载体pCam-YN,参考文献“Cheng DJ,Xu XJ,Yan ZY,Tettey CK,Fang L,Yang GL,Geng C,Tian YP,Li XD(2021)The chloroplast ribosomal protein largesubunit 1interacts with viral polymerase and promotes virus infection.PlantPhysiol 187:174-186”构建而成,该载体包含YFP的N端序列)在本氏烟细胞中共表达。
接种第3天观察,共表达YC-CPTVBMV和StSWEET1g-YN或共表达YC-CPPVX和StSWEET1g-YN的细胞均观察到明显的点状结构(图17),说明TVBMV及PVX的CP与StSWEET1g互作。而共表达YC-CPTVBMV和StSWEET1gG80D-YN或共表达YC-CPPVX和StSWEET1gG80D-YN的细胞未观察到点状结构(图17),说明G80D突变废除了StSWEET1g与TVBMV及PVX的互作。
类似的我们构建了TVBMV及PVX的复制子,将TVBMV-GFP、PVX-760-GFP(缺少PVX CP基因,不能进行移动)全长序列扩增后连入双元载体pCB301,获得pCB301-TVBMV-GFP及pCB301-PVX760-GFP。在此基础上,将35S-mCherry-HDEL表达盒连入pCB301-TVBMV-GFP,pCB301-PVX-760-GFP载体Nos后面,获得不能进行细胞间移动但可以正常复制的PVX-760-GFP复制子;在TVBMV的P3N-PIPO上引入突变,获得的pCB301-TVBMV-GFP复制子(pCB301-TVBMV-GFPrep)。将含有StSWEET1g-HA和RNA沉默抑制子pBin-P19的菌液等体积混匀(单菌终OD600=0.35)浸润接种本氏烟叶片,3天后在StSWEET1g-HA过表达区域接种TVBMV及PVX的复制子(OD600=0.5)。
结果表明:过表达StSWEET1g-HA抑制TVBMV及PVX的侵染(图18和19)。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (7)

1.SWEET1g蛋白在如下(1)或(2)中的应用:
(1)调控马铃薯病毒的侵染;
(2)调控植物对马铃薯病毒的抗性;
所述SWEET1g蛋白的氨基酸序列如SEQ ID NO.1所示;
所述调控马铃薯病毒的侵染具体为:提高SWEET1g蛋白表达,抑制马铃薯病毒的侵染;降低SWEET1g蛋白表达,促进马铃薯病毒的侵染;
所述调控植物对马铃薯病毒的抗性具体为:提高SWEET1g蛋白表达水平,上调植物对马铃薯病毒的抗性;降低SWEET1g蛋白表达,下调植物对马铃薯病毒的抗性;
所述马铃薯病毒为PVY、PVX或TVBMV;
所述植物为烟草或马铃薯。
2.根据权利要求1所述的应用,其特征在于,所述SWEET1g蛋白与马铃薯病毒中的CP蛋白互作,抑制马铃薯病毒的侵染。
3.根据权利要求1所述的应用,其特征在于,所述SWEET1g蛋白与CP互作的关键氨基酸位点为第80位的甘氨酸。
4.SWEET1g蛋白的编码基因在如下(1)或(2)中的应用:
(1)调控植物对马铃薯病毒的抗性;
(2)培育抗马铃薯病毒的植物品种;
所述调控植物对马铃薯病毒的抗性具体为:过表达SWEET1g蛋白的编码基因,上调植物对马铃薯病毒的抗性;沉默SWEET1g蛋白的编码基因,下调植物对马铃薯病毒的抗性;
所述马铃薯病毒为PVY、PVX或TVBMV;
所述植物为烟草或马铃薯;
所述SWEET1g蛋白的编码基因为如下(i)或(ii)所示的核酸分子:
(i)核苷酸序列如SEQ ID NO.2所示的核酸分子;
(ii)除(i)以外的编码SEQ ID NO.1所示氨基酸序列的核酸分子。
5.含有权利要求4所述编码基因的重组表达载体或工程菌在如下(1)或(2)中的应用:
(1)调控植物对马铃薯病毒的抗性;
(2)培育抗马铃薯病毒的植物品种;
所述调控植物对马铃薯病毒的抗性具体为:过表达SWEET1g蛋白的编码基因,上调植物对马铃薯病毒的抗性;沉默SWEET1g蛋白的编码基因,下调植物对马铃薯病毒的抗性;
所述马铃薯病毒为PVY、PVX或TVBMV;
所述植物为烟草或马铃薯。
6.一种提高植物对马铃薯病毒病抗性的方法,其特征在于,包括以下步骤:
使植物中SWEET1g蛋白的编码基因过表达;
所述马铃薯病毒病是由PVY、PVX或TVBMV引起的病毒病;
所述SWEET1g蛋白的编码基因为如下(i)或(ii)所示的核酸分子:
(i)核苷酸序列如SEQ ID NO.2所示的核酸分子;
(ii)除(i)以外的编码SEQ ID NO.1所示氨基酸序列的核酸分子;
所述植物为烟草或马铃薯。
7.一种培育抗马铃薯病毒的转基因植物的方法,其特征在于,包括以下步骤:
SWEET1g基因导入野生型植物中,获得SWEET1g基因过表达植物;所获得的SWEET1g基因过表达植物对马铃薯病毒的抗性高于野生型植物;
所述SWEET1g基因为如下(i)或(ii)所示的核酸分子:
(i)核苷酸序列如SEQ ID NO.2所示的核酸分子;
(ii)除(i)以外的编码SEQ ID NO.1所示氨基酸序列的核酸分子;
所述马铃薯病毒为PVY、PVX或TVBMV;
所述植物为烟草或马铃薯。
CN202310674526.7A 2023-06-08 2023-06-08 SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用 Active CN116675751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310674526.7A CN116675751B (zh) 2023-06-08 2023-06-08 SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310674526.7A CN116675751B (zh) 2023-06-08 2023-06-08 SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用

Publications (2)

Publication Number Publication Date
CN116675751A CN116675751A (zh) 2023-09-01
CN116675751B true CN116675751B (zh) 2024-01-26

Family

ID=87790412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310674526.7A Active CN116675751B (zh) 2023-06-08 2023-06-08 SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用

Country Status (1)

Country Link
CN (1) CN116675751B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004825A1 (en) * 1993-08-06 1995-02-16 Unilever Plc Improvements in or relating to disease-resistance of plants
US5503999A (en) * 1992-07-09 1996-04-02 Monsanto Company Virus resistant plants
US5589612A (en) * 1992-07-09 1996-12-31 Monsanto Company Virus resistant plants transformed with a PVY protease gene
EP1024195A1 (en) * 1999-01-28 2000-08-02 Bejo Zaden B.V. Coat protein genes of potyvirus of capsicum spp. and plants transformed therewith
CN1303433A (zh) * 1998-04-07 2001-07-11 以色列国农业部 重组马铃薯y病毒组构建物及其应用
KR20100126036A (ko) * 2009-05-22 2010-12-01 서울대학교산학협력단 감자 바이러스 x의 외피 단백질과 상호작용하는 담배 식물 니코티아나 벤타미아나 유래의 단백질
CN102180955A (zh) * 2011-03-18 2011-09-14 中国农业大学 与马铃薯y病毒属病毒侵染有关的玉米蛋白及其编码基因与应用
CN103826440A (zh) * 2010-10-18 2014-05-28 杰.尔.辛普洛公司 马铃薯的马铃薯y病毒组抗性
CN105189759A (zh) * 2013-03-13 2015-12-23 华盛顿卡内基研究所 调节植物种子和蜜腺内含物的方法
CN106496313A (zh) * 2016-11-03 2017-03-15 中国农业大学 抗病相关蛋白IbSWEET10及其编码基因与应用
WO2018187796A1 (en) * 2017-04-07 2018-10-11 Donald Danforth Plant Science Center Methods for increasing resistance to cotton bacterial blight and plants produced thereby
CN110760539A (zh) * 2019-11-18 2020-02-07 中国农业科学院茶叶研究所 茶树己糖转运体基因CsSWEET1a的应用
CN110951763A (zh) * 2019-11-25 2020-04-03 中国热带农业科学院热带生物技术研究所 一种马铃薯y病毒属病毒诱导的基因沉默系统及其应用
CN113637678A (zh) * 2021-07-07 2021-11-12 中国农业科学院棉花研究所 基因GhSWEET42在防治棉花黄萎病中的应用
CN113774081A (zh) * 2021-05-11 2021-12-10 南京师范大学 一种基因编辑载体及其编辑基因的方法和应用
CN116063439A (zh) * 2023-02-28 2023-05-05 山东农业大学 植物14-3-3h蛋白及其编码基因在抗马铃薯Y病毒中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1276882A2 (de) * 2000-03-24 2003-01-22 Frommer, Wolf-Bernd, Prof. Dr. Verfahren zur genetischen modifizierung einer pflanze
DE102010013166B4 (de) * 2010-03-27 2012-08-09 Technische Universität Kaiserslautern Verfahren zur Erhöhung des Samenertrages sowie Förderung des Wachstums von Pflanzen
BR122019017037B1 (pt) * 2010-08-30 2022-05-31 Evogene Ltd Método de aumento de eficiência do uso de nitrogênio, rendimento, biomassa, taxa de crescimento, vigor e/ou tolerância ao estresse à deficiência de nitrogênio de uma planta
WO2019173721A1 (en) * 2018-03-09 2019-09-12 Monsanto Technology Llc Methods and compositions for controlling plant viral infection

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503999A (en) * 1992-07-09 1996-04-02 Monsanto Company Virus resistant plants
US5589612A (en) * 1992-07-09 1996-12-31 Monsanto Company Virus resistant plants transformed with a PVY protease gene
WO1995004825A1 (en) * 1993-08-06 1995-02-16 Unilever Plc Improvements in or relating to disease-resistance of plants
CN1303433A (zh) * 1998-04-07 2001-07-11 以色列国农业部 重组马铃薯y病毒组构建物及其应用
EP1024195A1 (en) * 1999-01-28 2000-08-02 Bejo Zaden B.V. Coat protein genes of potyvirus of capsicum spp. and plants transformed therewith
KR20100126036A (ko) * 2009-05-22 2010-12-01 서울대학교산학협력단 감자 바이러스 x의 외피 단백질과 상호작용하는 담배 식물 니코티아나 벤타미아나 유래의 단백질
CN103826440A (zh) * 2010-10-18 2014-05-28 杰.尔.辛普洛公司 马铃薯的马铃薯y病毒组抗性
CN102180955A (zh) * 2011-03-18 2011-09-14 中国农业大学 与马铃薯y病毒属病毒侵染有关的玉米蛋白及其编码基因与应用
CN105189759A (zh) * 2013-03-13 2015-12-23 华盛顿卡内基研究所 调节植物种子和蜜腺内含物的方法
CN106496313A (zh) * 2016-11-03 2017-03-15 中国农业大学 抗病相关蛋白IbSWEET10及其编码基因与应用
WO2018187796A1 (en) * 2017-04-07 2018-10-11 Donald Danforth Plant Science Center Methods for increasing resistance to cotton bacterial blight and plants produced thereby
CN110760539A (zh) * 2019-11-18 2020-02-07 中国农业科学院茶叶研究所 茶树己糖转运体基因CsSWEET1a的应用
CN110951763A (zh) * 2019-11-25 2020-04-03 中国热带农业科学院热带生物技术研究所 一种马铃薯y病毒属病毒诱导的基因沉默系统及其应用
CN113774081A (zh) * 2021-05-11 2021-12-10 南京师范大学 一种基因编辑载体及其编辑基因的方法和应用
CN113637678A (zh) * 2021-07-07 2021-11-12 中国农业科学院棉花研究所 基因GhSWEET42在防治棉花黄萎病中的应用
CN116063439A (zh) * 2023-02-28 2023-05-05 山东农业大学 植物14-3-3h蛋白及其编码基因在抗马铃薯Y病毒中的应用

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family;Jasmin Manck-Götzenberger、Natalia Requena;《Frontiers in Plant Science》;第07卷(第487期);第1-14页 *
KU686969.1: Solanum tuberosum SWEET transporter protein 1g mRNA, complete cds;GenBank;《GenBank》;标题、PROTEIN、CDS、ORIGIN部分 *
Molecular Characterization of Potato Virus Y (PVY) Using High-Throughput Sequencing: Constraints on Full Genome Reconstructions Imposed by Mixed Infection Involving Recombinant PVY Strains.;Miroslav Glasa等;《Plants》;第10卷(第04期);第753篇 *
Phylogenetic relationships of closely related potyviruses infecting sweet potato determined by genomic characterization of Sweet potato virus G and Sweet potato virus 2;Fan Li等;《Virus Genes》;第45卷(第01期);第118-125页 *
XM_006366690.2: PREDICTED: Solanum tuberosum bidirectional sugar transporter SWEET1-like (LOC102599149), mRNA;GenBank;《GenBank》;标题、PROTEIN、CDS、ORIGIN部分 *
XP_006366752.1: PREDICTED: bidirectional sugar transporter SWEET1-like [Solanum tuberosum];GenBank;《GenBank》;标题、PROTEIN、CDS、ORIGIN部分 *
利用RNA介导的抗病性获得高度抗马铃薯Y病毒的转基因烟草;郭兴启等;《植物病理学报》;第31卷(第04期);第349-356页 *
马铃薯StSWEET基因参与糖转运和寄主病原菌互作的功能验证;范希德;《中国优秀硕士学位论文全文数据库》;农业科技专辑(2022年第02期);全文 *
马铃薯Y病毒属病毒基因功能研究进展;李向东等;《山东科学》;第19卷(第03期);第1-6页 *
马铃薯Y病毒衣壳蛋白基因片段长度对RNA介导抗病性的影响;朱俊华等;《中国科学C辑》;第34卷(第01期);第23-30页 *
马铃薯糖转运蛋白StSWEET基因的克隆及功能分析;李明;《中国优秀硕士学位论文全文数据库》;农业科技专辑(2020年第04期);全文 *

Also Published As

Publication number Publication date
CN116675751A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
ES2785329T3 (es) Métodos y composiciones para identificar y enriquecer células que comprenden modificaciones genómicas específicas para el sitio
AU2019276382B2 (en) Use of Yr4DS gene of Aegilops tauschii in stripe rust resistance breeding of Triticeae plants
CN113906138A (zh) 将沉默活性引入多个功能性失调的rna分子并修饰其对一感兴趣的基因的特异性
JPH03280883A (ja) Rna型ウイルス由来の配列を包含する組換えdnaおよびそれを用いる遺伝子操作方法
JP6827491B2 (ja) 植物における自家不和合性の操作
CN110892074A (zh) 用于增加香蕉的保质期的组成物及方法
CN115190912A (zh) Rna指导核酸酶及其活性片段与变体以及使用方法
Ravelonandro et al. The efficiency of RNA interference for conferring stable resistance to Plum pox virus
KR101996891B1 (ko) 포티바이러스 저항성을 가지는 Pvr4 유전자 및 이의 용도
CN116063439A (zh) 植物14-3-3h蛋白及其编码基因在抗马铃薯Y病毒中的应用
JP4771259B2 (ja) トウモロコシ由来のストレス誘導性転写因子
CN116675751B (zh) SWEET1g蛋白及其编码基因在抗马铃薯病毒中的应用
KR20210062588A (ko) 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도
AU2015375393B2 (en) Brassica napus seed specific promoters identified by microarray analysis
US10900094B2 (en) Methods of identifying and modulating pathogen resistance in plants
AU2014329590B2 (en) Zea mays metallothionein-like regulatory elements and uses thereof
CA3089053A1 (en) Biological control of cucumber green mottle mosaic virus
CN114605504B (zh) 一种可诱导植物细胞坏死的小麦黄花叶病毒14k蛋白及其在抗病毒中的用途
CN114480486B (zh) 一种植物抗病毒rna沉默相关转录因子筛选方法及应用
KR20060002010A (ko) 생물체에 원하는 형질을 빠르게 부여하기 위한 방법 및시스템
WO2018196744A1 (zh) 转基因大豆事件gc1-1外源插入片段旁侧序列及其应用
WO2001098453A2 (fr) Vecteurs d'expression comprenant un fragment modifie de l'operon tryptophane
CN113249403A (zh) 一种具有spvd抗性甘薯的育种方法
Mehran et al. Evaluation of iceA1 Gene Expression of Helicobacter pylori Risk Factor of Gastric Cancer in Transgenic Brinjal
WO2024174954A1 (zh) 小麦广谱抗白粉病基因wtk7-tm克隆、功能标记及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant