CN116666219A - 一种半导体器件的制造方法及半导体器件 - Google Patents

一种半导体器件的制造方法及半导体器件 Download PDF

Info

Publication number
CN116666219A
CN116666219A CN202310447504.7A CN202310447504A CN116666219A CN 116666219 A CN116666219 A CN 116666219A CN 202310447504 A CN202310447504 A CN 202310447504A CN 116666219 A CN116666219 A CN 116666219A
Authority
CN
China
Prior art keywords
semiconductor device
drain
metal contact
manufacturing
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310447504.7A
Other languages
English (en)
Inventor
黄峰荣
杨斌
喻声洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suining Hexin Semiconductor Co ltd
Original Assignee
Suining Hexin Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suining Hexin Semiconductor Co ltd filed Critical Suining Hexin Semiconductor Co ltd
Priority to CN202310447504.7A priority Critical patent/CN116666219A/zh
Publication of CN116666219A publication Critical patent/CN116666219A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种半导体器件的制造方法及半导体器件,涉及半导体技术领域,方法包括确定衬底,在衬底生长出顶面为平面的异质结;在异质结的顶面一体加工形成间隔布置的多个鳍结构,鳍结构的横截面由矩形面,以及衔接于矩形面底边的梯形面组成;在整个器件表面涂抹光刻胶,并进行曝光处理;在整个器件表面,采用刻蚀的方法形成隔离台面,实现有源区电隔离;在有源区光刻出源金属接触区和漏金属接触区,在源金属接触区和漏金属接触区沉积金属形成源极导体和漏极导体;在鳍结构表面沉积金属形成栅极导体;除源极部、漏极部和栅极部外,在整个器件表面沉积钝化层。本发明制备的半导体器件具有更短的电子传导距离,具有转换效率高的特点,功耗更低。

Description

一种半导体器件的制造方法及半导体器件
技术领域
本发明涉及半导体技术领域,具体而言,涉及一种半导体器件的制造方法及半导体器件。
背景技术
Ga随着Si基功率器件走向器件的极限,以及在移动通信、航空航天等领域对功率器件提出的要求越来越高,Si材料在功率器件领域逐渐势微。新型的第三代半导体材料GaN、SiC在功率电子器件方面崭露头角。其中,GaN材料以其出色的器件特性(宽禁带、高饱和速度、高热稳定性和高电流密度)被当作HEMT器件的基底材料。GaN HEMT在高功率微波集成电路的应用中展现了其优异的特性,包括高击穿电压、高工作频率和高功率密度等。GaNFinFET结合了FinFET鳍式结构的优点,比如更好的抑制短沟道效应、静电特性和亚阈区摆幅等,相比传统的平面HEMT器件展现了更好的线性度、更高的电流密度和功率密度。在集成电路的设计过程中,器件模型充当着工艺与电路设计之间桥梁的角色。高质量的器件模型不仅可以预测电路性能,还能优化电路设计流程,减少不必要的错误并缩短电路设计的周期和成本。现有的GaN FinFET半导体器件,一般与栅极导体形成的单沟道,导致电子传导距离相对较长,且鳍结构横截面采用矩形结构,转换效率较低,使整个器件功耗较高。
发明内容
本发明在于提供一种半导体器件的制造方法及半导体器件,其能够缓解上述问题。
为了缓解上述的问题,本发明采取的技术方案如下:
第一方面,本发明提供了一种半导体器件的制造方法,包括:确定衬底,在衬底生长出顶面为平面的异质结;在异质结的顶面一体加工形成间隔布置的多个鳍结构,所述鳍结构的横截面由矩形面,以及衔接于矩形面底边的梯形面组成;在整个器件表面涂抹光刻胶,并进行曝光处理;在整个器件表面,采用刻蚀的方法形成隔离台面,实现有源区电隔离;在有源区光刻出源金属接触区和漏金属接触区,在源金属接触区和漏金属接触区沉积金属形成源极导体和漏极导体;在鳍结构表面沉积金属形成栅极导体;除源极部、漏极部和栅极部外,在整个器件表面沉积钝化层。
在本发明的一较佳实施方式中,所述衬底为SiC层。
在本发明的一较佳实施方式中,所述异质结由生长于所述衬底的GaN层,以及生长于所述GaN层的AlGaN层组成,所述鳍结构位于所述AlGaN层。
在本发明的一较佳实施方式中,多个所述鳍结构等距离布置,且相互平行。
在本发明的一较佳实施方式中,在异质结的顶面采用ICP刻蚀法刻蚀形成间隔布置的多个鳍结构。
在本发明的一较佳实施方式中,采用磁控溅射的方式在源金属接触区和漏金属接触区沉积金属,在保护气体环境下快速热退火使源金属接触区和漏金属接触区的金属形成源极导体和漏极导体。
在本发明的一较佳实施方式中,在鳍结构表面采用磁控溅射的方式沉积金属,在保护气体环境下快速热退火后形成栅极导体。
在本发明的一较佳实施方式中,所述钝化层为SiNx
第二方面,本发明提供了一种半导体器件,由上述制造方法得到。
与现有技术相比,本发明的有益效果是:
本发明制备的半导体器件,在鳍结构表面沉积金属形成栅极导体,缩短了电子传导距离,鳍结构的横截面由矩形面,以及衔接于矩形面底边的梯形面组成,可以更快速地从关态状态调整到开态状态,具有转换效率高的特点,鳍结构利用率更高,功耗更低,可以很好地满足14nm节点以下的相关研究和实际应用。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举本发明实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明所述半导体器件的制造方法流程示意图;
图2是本发明所述半导体器件的主剖视结构示意图;
图3是本发明所述半导体器件的侧剖视结构示意图;
图4是本发明所述半导体器件的俯视结构示意图;
图中:1-衬底,2-GaN层,3-AlGaN层,4-源极导体,5-漏极导体,6-栅极导体,7-鳍结构,8-钝化层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
请参照图1,本发明公开了一种半导体器件的制造方法,包括:
确定SiC衬底,在衬底生长出GaN层,在GaN层生长出AlGaN层,AlGaN层顶面为平面,继而形成异质结。
在异质结的顶面采用ICP刻蚀法刻蚀形成间隔布置的多个鳍结构,多个鳍结构等距离布置,且相互平行,每个鳍结构的横截面由矩形面,以及衔接于矩形面底边的梯形面组成。
在整个器件表面涂抹光刻胶,并进行曝光处理。在整个器件表面,采用刻蚀的方法形成隔离台面,实现有源区电隔离。
在有源区光刻出源金属接触区和漏金属接触区,采用磁控溅射的方式在源金属接触区和漏金属接触区沉积金属,在保护气体环境下快速热退火使源金属接触区和漏金属接触区的金属形成源极导体和漏极导体。在鳍结构表面采用磁控溅射的方式沉积金属,在保护气体环境下快速热退火后形成栅极导体,这样栅极导体与鳍结构之间形成多个电子通道,相当于降低了整个器件的栅极导体长度,缩短了电子传导距离。剥离光刻胶和多余的金属;除源极部、漏极部和栅极部外,在整个器件表面沉积SiNx钝化层,得到的半导体器件如图2、3、4所示。
在本发明中,对GaN FinFET半导体器件的鳍结构进行了优化设计。在本发明中,为了能够更好地降低漏电流和提升对栅的控制能力,在器件的设计中加入了氮化物作为栅极侧墙材料,此材料能进一步优化器件的亚阈值性能。
将本发明制备的半导体器件定义为器件Ⅰ,将器件Ⅰ中的鳍结构换成矩形结构后形成的器件定义而器件Ⅱ。
器件Ⅰ的鳍结构(矩形面宽度为5nm,梯形面顶宽为8nm,底宽为12nm,有效宽度为45.57nm),与具有现有技术单独矩形鳍(鳍宽为11.6nm,有效宽度为64.75nm)的器件Ⅱ进行对比,有效宽度更小。
通过TCAD软件对两种器件进行仿真,为了更好地进行模拟,设定仿真恒定条件,将栅极导体的长度Lg、沟道高度hf、漏极电压Vd分别设置为10nm、19nm和0.7V。改变栅极电压Vg从0V开始缓慢上升,可以发现由于器件Ⅰ中鳍结构的有效宽度We最小,因此漏极电流Id相比于器件Ⅱ在相同Vg下数值更小。
Vd=Vg=0.7V时,开态电流Ion值最大,在沟道的掺杂浓度Nch为1015,1016和1017cm-3的情况下,输出的参数受器件的掺杂影响较小,但是在掺杂浓度Nch为1018cm-3高掺杂条件下,对整个器件性能造成的影响较大且开态电流Ion的数值更小。
Vd=0.7V、Vg=0V时,器件Ⅰ凭借较小的鳍结构的有效宽度We获得更小的关态电流Ioff,并且由于高沟道掺杂浓度所造成的高阈值电压影响,掺杂浓度Nch为1018cm-3时的关态电流Ioff也比掺杂浓度Nch为1015cm-3时的关态电流Ioff更高。
器件Ⅰ的Ion/Ioff最大,对于所有的器件来说,仿真得到的数值皆接近SS的理想值66mV/dec,其中器件Ⅰ的SS数值最接近理想值,说明这种器件可以更快速地从关态状态调整到开态状态,具有转换效率高的特点。
为了更好地研究器件Ⅰ和器件Ⅱ的射频特性,引入了跨导gm与TGF参数,在Vd=0.7V时跨导gm与TGF参随栅极电压Vg的变化曲线。其中,跨导gm为漏极电流Id的变化量与栅极电压Vg的变化量的比值,其数值可以反映出栅极电压Vg对漏极电流Id的控制能力。在栅极电压Vg处于0.3~0.6V的位置,器件Ⅰ的跨导gm在数值上相比矩形和梯形器件的更小,且随着栅极电压Vg的增加差距更为明显。同时,器件Ⅰ的TGF参数在亚阈值区域则明显高于器件Ⅱ,而在栅极电压Vg较高的区域则是两种器件的数值近乎相同。这说明了器件Ⅰ的鳍结构相比器件Ⅱ的鳍结构在将电流转换为跨导的能力上更强,也反映出该器件Ⅰ对漏极电流Id的控制能力更强。
在栅极电压Vg=0.7V时,设输出电导gd为漏极电流Id的变化量与漏极电压Vd的变化量的比值。输出电导gd与鳍结构的有效宽度We呈正相关,并且在亚阈值区域曲线斜率较大,其中,器件Ⅰ的输出电导gd明显低于器件Ⅱ的,但随着栅极电压Vg的增大,两种器件的输出电导gd变化平缓,皆趋于零。设Early电压Ve为漏极电流Id的变化量与输出电导gd的比值,固有增益A为跨导gm与输出电导gd的比值。
在Vd=0.7V时,器件Ⅰ的输出电导gd较低,因此也导致了其Early电压Ve与增益A的数值最大,这是因为器件Ⅰ具有更小的有效宽度,使器件在使用中可以充分地利用鳍片面积,达到更高的利用率。同样,这也说明了使用鳍片尺寸小的器件不仅可以降低成本,还能更好地抑制漏端势垒降低,并且这种器件的漏极电流Id对漏极偏置依赖更小,拥有更高的性价比。静态功耗是电路应用中重要的考核指标,静态功耗为漏极电压最大值Vd,max和开态电流Ion的乘积。器件Ⅰ比器件Ⅱ具有更小的功耗。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种半导体器件的制造方法,其特征在于,包括:确定衬底,在衬底生长出顶面为平面的异质结;在异质结的顶面一体加工形成间隔布置的多个鳍结构,所述鳍结构的横截面由矩形面,以及衔接于矩形面底边的梯形面组成;在整个器件表面涂抹光刻胶,并进行曝光处理;在整个器件表面,采用刻蚀的方法形成隔离台面,实现有源区电隔离;在有源区光刻出源金属接触区和漏金属接触区,在源金属接触区和漏金属接触区沉积金属形成源极导体和漏极导体;在鳍结构表面沉积金属形成栅极导体;除源极部、漏极部和栅极部外,在整个器件表面沉积钝化层。
2.根据权利要求1所述半导体器件的制造方法,其特征在于,所述衬底为SiC层。
3.根据权利要求1所述半导体器件的制造方法,其特征在于,所述异质结由生长于所述衬底的GaN层,以及生长于所述GaN层的AlGaN层组成,所述鳍结构位于所述AlGaN层。
4.根据权利要求1所述半导体器件的制造方法,其特征在于,多个所述鳍结构等距离布置,且相互平行。
5.根据权利要求1所述半导体器件的制造方法,其特征在于,在异质结的顶面采用ICP刻蚀法刻蚀形成间隔布置的多个鳍结构。
6.根据权利要求1所述半导体器件的制造方法,其特征在于,采用磁控溅射的方式在源金属接触区和漏金属接触区沉积金属,在保护气体环境下快速热退火使源金属接触区和漏金属接触区的金属形成源极导体和漏极导体。
7.根据权利要求1所述半导体器件的制造方法,其特征在于,在鳍结构表面采用磁控溅射的方式沉积金属,在保护气体环境下快速热退火后形成栅极导体。
8.根据权利要求1所述半导体器件的制造方法,其特征在于,所述钝化层为SiNx
9.一种半导体器件,其特征在于,由权利要求1~8任一项所述制造方法得到。
CN202310447504.7A 2023-04-24 2023-04-24 一种半导体器件的制造方法及半导体器件 Pending CN116666219A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310447504.7A CN116666219A (zh) 2023-04-24 2023-04-24 一种半导体器件的制造方法及半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310447504.7A CN116666219A (zh) 2023-04-24 2023-04-24 一种半导体器件的制造方法及半导体器件

Publications (1)

Publication Number Publication Date
CN116666219A true CN116666219A (zh) 2023-08-29

Family

ID=87723190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310447504.7A Pending CN116666219A (zh) 2023-04-24 2023-04-24 一种半导体器件的制造方法及半导体器件

Country Status (1)

Country Link
CN (1) CN116666219A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895686A (zh) * 2016-01-21 2016-08-24 苏州能讯高能半导体有限公司 高电子迁移率晶体管器件及其制造方法
CN106024880A (zh) * 2016-07-04 2016-10-12 厦门市三安集成电路有限公司 一种图形化栅结构的微波晶体管及其制备方法
CN106158923A (zh) * 2015-04-17 2016-11-23 北京大学 基于多二维沟道的增强型GaN FinFET
CN109727918A (zh) * 2018-12-29 2019-05-07 苏州汉骅半导体有限公司 集成增强型与耗尽型场效应管的结构及其制造方法
CN111430456A (zh) * 2020-03-13 2020-07-17 西安电子科技大学 基于跨导补偿法的类Fin侧墙调制的HEMT器件及其制备方法
CN115881774A (zh) * 2022-11-03 2023-03-31 大连理工大学 一种具有阵列侧栅结构的hemt器件及其制备方法
CN115966603A (zh) * 2021-10-09 2023-04-14 中国科学院微电子研究所 一种高线性hemt器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158923A (zh) * 2015-04-17 2016-11-23 北京大学 基于多二维沟道的增强型GaN FinFET
CN105895686A (zh) * 2016-01-21 2016-08-24 苏州能讯高能半导体有限公司 高电子迁移率晶体管器件及其制造方法
CN106024880A (zh) * 2016-07-04 2016-10-12 厦门市三安集成电路有限公司 一种图形化栅结构的微波晶体管及其制备方法
CN109727918A (zh) * 2018-12-29 2019-05-07 苏州汉骅半导体有限公司 集成增强型与耗尽型场效应管的结构及其制造方法
CN111430456A (zh) * 2020-03-13 2020-07-17 西安电子科技大学 基于跨导补偿法的类Fin侧墙调制的HEMT器件及其制备方法
CN115966603A (zh) * 2021-10-09 2023-04-14 中国科学院微电子研究所 一种高线性hemt器件及其制备方法
CN115881774A (zh) * 2022-11-03 2023-03-31 大连理工大学 一种具有阵列侧栅结构的hemt器件及其制备方法

Similar Documents

Publication Publication Date Title
CN105895686A (zh) 高电子迁移率晶体管器件及其制造方法
KR100922575B1 (ko) 티형 게이트 전극을 구비한 반도체 소자 및 그의 제조 방법
JP7368535B2 (ja) 窒化ガリウムデバイス、スイッチングパワートランジスタ、駆動回路、及び窒化ガリウムデバイス製造方法
CN106158923A (zh) 基于多二维沟道的增强型GaN FinFET
JP3369464B2 (ja) 半導体装置
CN106298906A (zh) 一种功率半导体器件及其制造方法
KR20210065843A (ko) 와이드 밴드갭 ⅲ-ⅴ족 화합물 반도체 드레인을 구비하는 금속 산화물 실리콘 반도체 전계효과 트랜지스터 및 그의 제조 방법
KR20120066362A (ko) 반도체 소자 및 이의 제조방법
WO2020052204A1 (zh) 一种基于电荷分部调制的高线性毫米波器件
CN116666219A (zh) 一种半导体器件的制造方法及半导体器件
CN207611772U (zh) 一种大栅宽的GaN基微波功率器件
CN113555430B (zh) 一种通过渐变栅实现多阈值调制技术的hemt器件及制备方法
CN109817711B (zh) 具有AlGaN/GaN异质结的氮化镓横向晶体管及其制作方法
CN111668304A (zh) 一种高线性mis-hemt器件及其制备方法
CN115985960B (zh) 一种高速GaN功率器件及其制备方法
CN206422040U (zh) 一种iii‑v族半导体moshemt器件
CN111668305A (zh) 一种高线性mis-hemt器件及其制备方法
CN110993692B (zh) 隧穿场效应晶体管及其制作方法
Zhang et al. 100 nm Gate-Length AlGaN/GaN FinFETs with High Linearity of G m and f T/f max
KR101623381B1 (ko) 질화물 반도체 소자 및 질화물 반도체 소자 제조 방법
CN111048586B (zh) 半导体器件及其制备方法
Yadav et al. Temperature effect on analog/rf and linearity parameters of stacked oxide tmg finfet
KR102125386B1 (ko) 전력 반도체 소자 및 그 제조방법
CN218414587U (zh) 插指栅结构的hemt射频器件
CN216413092U (zh) 一种功率晶体管及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 629000 No. 2 Suharitao Science and Technology Park, 73 Chunxiao Road, East of Rose Avenue, Chuanshan Logistics Port, Suining City, Sichuan Province

Applicant after: Sichuan Xinhe Microelectronics Co.,Ltd.

Address before: 629000 No. 2 Suharitao Science and Technology Park, 73 Chunxiao Road, East of Rose Avenue, Chuanshan Logistics Port, Suining City, Sichuan Province

Applicant before: Suining Hexin Semiconductor Co.,Ltd.