CN116655379A - 一种新型无铅铁电复合储能陶瓷材料 - Google Patents

一种新型无铅铁电复合储能陶瓷材料 Download PDF

Info

Publication number
CN116655379A
CN116655379A CN202310569247.4A CN202310569247A CN116655379A CN 116655379 A CN116655379 A CN 116655379A CN 202310569247 A CN202310569247 A CN 202310569247A CN 116655379 A CN116655379 A CN 116655379A
Authority
CN
China
Prior art keywords
energy storage
ceramic material
nanbo
sintering
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310569247.4A
Other languages
English (en)
Inventor
张岭
肖佳明
贠瑶瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shihezi University
Original Assignee
Shihezi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shihezi University filed Critical Shihezi University
Priority to CN202310569247.4A priority Critical patent/CN116655379A/zh
Publication of CN116655379A publication Critical patent/CN116655379A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种用于储能的新型无铅NaNbO3基弛豫铁电陶瓷材料及其制备方法,克服了现阶段技术中无铅储能陶瓷材料有效储能密度和储能效率偏低的问题。该新型无铅NaNbO3基弛豫铁电陶瓷材料的化学通式为:(1‑x)NaNbO3‑x(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3,式中0.02≤x≤0.1。本发明制备的储能陶瓷材料在25℃条件下,有效储能密度变化范围为:1.92J/cm3≤Wrec≤2.91J/cm3,储能效率变化范围为:58.57%≤η≤74.93%。

Description

一种新型无铅铁电复合储能陶瓷材料
技术领域
本发明涉及一种介电储能陶瓷材料的制备,具体涉及一种用于储能的新型无铅NaNbO3基弛豫铁电陶瓷材料及制备方法,本发明归类于功能陶瓷材料技术领域。
背景技术
介质储能陶瓷材料的介电常数大、介电损耗低、抗击穿电场较高、温度稳定性高且抗疲劳性好,故深受研究者们的青睐。作为介电陶瓷材料中典型的弛豫铁电材料,在电场诱导相变时表现出较强烈的非线性效应,适用于有高储能密度和储能效率需求的便携式电子设备。
NaNbO3是一种具有代表性的无铅铁电材料,其特征为:低温时铁电性强、饱和极化强度大且抗击穿场强低,因而储能密度较小、储能效率偏低,由此在储能方面的应用受到限制。针对上述缺陷,研究人员通常采用离子掺杂以及多元组分复合两种手段来进行性能调节和优化。
其中在多元组分复合方面,通过选取合适的复合组分,可利用组分的多样性和性能的可调性,达到各组分优势互补的效果,从而拔高复合陶瓷的储能性能和充放电性能。
发明内容
本发明通过将NaNbO3与(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3复合,提高了单纯NaNbO3的有效储能密度和储能效率,增强了综合储能性能。为实现上述目的,本发明采用的技术方案如下:
一种用于储能的新型无铅NaNbO3基弛豫铁电陶瓷,其特征在于,该弛豫铁电储能陶瓷材料的化学组成为(1-x)NaNbO3-x(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3,其中0.02≤x≤0.1。
具体包括以下步骤:
(1)根据化学通式(1-x)NaNbO3-x(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3,计算各原料所需配比质量。按量称取高纯干燥的Na2CO3(99.5%)、Nb2O5(99.9%)、SnO2(99.5%)、SrCO3(99.0%)、Bi2O3(99.9%)和TiO2(99.0%)原料,球磨混匀,烘干备用;
(2)对步骤1得到的粉体过筛装钵后进行初次烧结,烧结温度为800℃-850℃,烧结时间为3h-5h,冷却至室温后再次球磨烘干;
(3)对步骤2得到的粉体进行造粒,粘合剂采用浓度为5wt%的聚乙烯醇,添加量为6wt%;
(4)对步骤3得到的颗粒粉末进行压片成型,获得生胚,成型压力为250MPa;
(5)将步骤4获得生胚置于马弗炉中烧结成瓷,其中烧结温度为1270℃-1290℃,升温速率为10℃/min-15℃/min,保温时间为30min-40min;
(6)对步骤5中烧制的样品进行打磨、电极涂覆以及性能测试。
步骤1中,球磨时长为4h-5h,球磨介质采用质量分数≥99.7%的无水乙醇。
步骤4中,生胚胚体形状为圆柱体,其直径为12mm,厚度为1.2mm。
步骤6中,样品打磨厚度为0.1mm,电极涂覆采用高温导电银浆,银浆固化温度为500℃。
与现有技术相比,本发明具有的优点和效果如下:
(1)本发明所制备的陶瓷材料综合储能性能表现良好,可应用于有高储能密度和储能效率需求的便携式电子设备,应用前景良好;
(2)本发明所制备的陶瓷材料的晶粒排布紧密、气孔率低,有助于有效储能密度和储能效率的提升;在25℃温度下,外加电场为350KV/cm时,有效储能密度Wrec和储能效率η均达到最大,分别为2.91J/cm3和74.93%。
附图说明
实施例1制备的NaNO3基陶瓷材料的SEM图,如图1所示。
实施例2制备的NaNO3基陶瓷材料的SEM图,如图2所示。
实施例3制备的NaNO3基陶瓷材料的SEM图,如图3所示。
实施例1制备的NaNO3基陶瓷材料的电滞回线图,如图4所示。
实施例2制备的NaNO3基陶瓷材料的电滞回线图,如图5所示。
实施例3制备的NaNO3基陶瓷材料的电滞回线图,如图6所示。
具体实施方式
为使本发明目的更明确,优点更清晰直观,下面结合附图以及实施例进一步阐释本发明,下述实施方式仅用于对本发明的解释说明,而非限制本发明。
本发明提供了(1-x)NaNbO3-x(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3的制备方法,其中0.02≤x≤0.1,制备方法采取传统固相烧结法,制得样品具有较高的有效储能密度和储能效率。
本发明所述方法包括以下步骤:
在NaNbO3材料里面引入(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3组分,形成(1-x)NaNbO3-x(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3复合材料,其中0.02≤x≤0.1。具体步骤为:
(1)根据化学通式(1-x)NaNbO3-x(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3,计算原料所需配比质量。按量称取高纯干燥的Na2CO3(99.5%)、Nb2O5(99.9%)、SnO2(99.5%)、SrCO3(99.0%)、Bi2O3(99.9%)和TiO2(99.0%)原料,球磨烘干,球磨介质采用质量分数≥99.7%的无水乙醇,烘干温度为90℃-95℃;
(2)对步骤1得到的粉体过筛装钵后进行初次烧结,烧结温度为800℃-850℃,烧结时间为3h-5h,冷却至室温后再次球磨烘干,球磨介质采用质量分数≥99.7%的无水乙醇,烘干温度为90℃-95℃;
(3)对步骤2得到的粉体进行造粒,粘合剂采用浓度为5wt%的聚乙烯醇,添加量为6wt%;
(4)对步骤3得到的颗粒粉末进行压片成型,获得生胚,成型压力为250MPa,生胚形状为圆柱体,其直径为12mm,厚度为1.2mm;
(5)将步骤4所得生胚置于马弗炉中烧结成瓷,其中烧结温度为1270℃-1290℃,升温速率为10℃/min-15℃/min,保温时间为30min-40min;
(6)对步骤5中烧结成瓷的瓷胚进行打磨、电极涂覆以及性能测试,样品打磨厚度为0.1mm,电极涂覆采用高温导电银浆,银浆固化温度为500℃。
本发明涉及的储能密度与效率均来于对所测电滞回线数据的整理分析,测试仪器为铁电综合分析仪(LC II-100V,Radiant,美国),本发明中的方法如无特别说明均为常规方法。
实施例1
根据化学式0.90NaNbO3-0.10(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3,计算各原料所需配比质量,按量称取高纯干燥的Na2CO3(99.5%)、Nb2O5(99.9%)、SnO2(99.5%)、SrCO3(99.0%)、Bi2O3(99.9%)和TiO2(99.0%)原料;对称量的各原料进行球磨混匀,球磨介质为质量分数≥99.7%的无水乙醇;烘干所得混合料后进行初次烧结,烧结温度为800℃-850℃,烧结时间为3h-5h,冷却至室温后再次球磨烘干得到粉体;对所得粉体进行造粒,造粒中选用的粘合剂为5wt%浓度的聚乙烯醇,添加量为6wt%;对造粒所得的颗粒粉末压片成型,获得生胚,压力为250MPa,生胚形状为圆柱体,其直径为12mm,厚度为1.2mm;将获得的生胚置于马弗炉中烧结成瓷,烧结温度为1270℃-1290℃,升温速率为10℃/min-15℃/min,保温时间为30min-40min;对烧制的样品进行打磨、电极涂覆以及性能测试。
实施例2
根据化学式0.92NaNbO3-0.08(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3,计算各原料所需配比质量,按量称取高纯干燥的Na2CO3(99.5%)、Nb2O5(99.9%)、SnO2(99.5%)、SrCO3(99.0%)、Bi2O3(99.9%)和TiO2(99.0%)原料;对称量的各原料进行球磨混匀,球磨介质为质量分数≥99.7%的无水乙醇;烘干所得混合料后进行初次烧结,烧结温度为800℃-850℃,烧结时间为3h-5h,冷却至室温后再次球磨烘干得到粉体;对所得粉体进行造粒,造粒中选用的粘合剂为5wt%浓度的聚乙烯醇,添加量为6wt%;对造粒所得的颗粒粉末压片成型,获得生胚,压力为250MPa,生胚形状为圆柱体,其直径为12mm,厚度为1.2mm;将获得的生胚置于马弗炉中烧结成瓷,烧结温度为1270℃-1290℃,升温速率为10℃/min-15℃/min,保温时间为30min-40min;对烧制的样品进行打磨、电极涂覆以及性能测试。
实施例3
根据化学式0.94NaNbO3-0.06(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3,计算各原料所需配比质量,按量称取高纯干燥的Na2CO3(99.5%)、Nb2O5(99.9%)、SnO2(99.5%)、SrCO3(99.0%)、Bi2O3(99.9%)和TiO2(99.0%)原料;对称量的各原料进行球磨混匀,球磨介质为质量分数≥99.7%的无水乙醇;烘干所得混合料后进行初次烧结,烧结温度为800℃-850℃,烧结时间为3h-5h,冷却至室温后再次球磨烘干得到粉体;对所得粉体进行造粒,造粒中选用的粘合剂为5wt%浓度的聚乙烯醇,添加量为6wt%;对造粒所得的颗粒粉末压片成型,获得生胚,压力为250MPa,生胚形状为圆柱体,其直径为12mm,厚度为1.2mm;将获得的生胚置于马弗炉中烧结成瓷,烧结温度为1270℃-1290℃,升温速率为10℃/min-15℃/min,保温时间为30min-40min;对烧制的样品进行打磨、电极涂覆以及性能测试。
观测烧制的陶瓷样品表面的SEM图像,采用的仪器为扫描电子显微镜(SU8010,日立,日本),结果见图1-3。
采用800目的金刚砂对上述实施例1-3所制成的陶瓷胚体进行打磨抛光,打磨厚度为0.1mm,打磨好的陶瓷胚体用超声波清洗仪清洗烘干后在其两面涂覆盖电极,再使用铁电分析系统(LCII-100V,Radiant,美国)测取样品的电滞回线,结果见图4-6。
由实施例1-3所制备陶瓷材料的SEM图可以看出,材料表面晶粒排布紧密、气孔率低,另外,随着(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3含量的增多,陶瓷晶粒的平均尺寸逐渐减小。
实施例1所制备的陶瓷材料在25℃条件下,测取的电滞回线如图4所示,由图中曲线运算可得,外加电场强度为350KV/cm时,有效储能密度Wrec为2.91J/cm3,储能效率η为74.93%。
实施例2所制备的陶瓷材料在25℃条件下,测取的电滞回线如图5所示,由图中曲线运算可得,外加电场强度为270KV/cm时,有效储能密度Wrec为1.92J/cm3,储能效率η为58.57%。
实施例3所制备的陶瓷材料在25℃条件下,测取的电滞回线如图6所示,由图中曲线运算可得,外加电场强度为350KV/cm时,有效储能密度Wrec为2.17J/cm3,储能效率η为69.29%。

Claims (4)

1.一种用于储能的新型无铅NaNbO3基弛豫铁电陶瓷材料,其特征在于,该新型材料的化学组成通式为(1-x)NaNbO3-x(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3,其中0.02≤x≤0.1。
2.一种用于储能的新型无铅NaNbO3基弛豫铁电陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)按化学通式(1-x)NaNbO3-x(Sr0.6Na0.2Bi0.2)(Sn0.7Ti0.3)O3计算原材料配比。按量称取高纯干燥的Na2CO3(99.5%)、Nb2O5(99.9%)、SnO2(99.5%)、SrCO3(99.0%)、Bi2O3(99.9%)和TiO2(99.0%)原料,球磨混匀,烘干备用;
(2)对步骤1得到的粉体过筛装钵后进行初次烧结,合成功能相,烧结温度为800℃-850℃,烧结时间为3h-5h,冷却至室温后再次球磨烘干;
(3)对步骤2得到的粉体进行造粒,粘合剂采用浓度为5wt%的聚乙烯醇,添加量为6wt%,得到的颗粒粉末在模具中加压成型,获得生胚,压力为250MPa;
(4)将步骤3中所得生胚置于马弗炉中烧结成瓷,其中烧结温度为1270℃-1290℃,升温速率为10℃/min-15℃/min,保温时间为30min-40min。
3.根据权利要求1所述的NaNbO3基陶瓷材料,其特征在于,该材料中的挥发性金属元素不含毒性。
4.根据权利要求2所述的储能陶瓷制备方法,其特征在于,所述介电储能陶瓷材料在用作储能电容器时,需在材料两面涂覆银电极。
CN202310569247.4A 2023-05-19 2023-05-19 一种新型无铅铁电复合储能陶瓷材料 Pending CN116655379A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310569247.4A CN116655379A (zh) 2023-05-19 2023-05-19 一种新型无铅铁电复合储能陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310569247.4A CN116655379A (zh) 2023-05-19 2023-05-19 一种新型无铅铁电复合储能陶瓷材料

Publications (1)

Publication Number Publication Date
CN116655379A true CN116655379A (zh) 2023-08-29

Family

ID=87708986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310569247.4A Pending CN116655379A (zh) 2023-05-19 2023-05-19 一种新型无铅铁电复合储能陶瓷材料

Country Status (1)

Country Link
CN (1) CN116655379A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462875A (zh) * 2009-01-15 2009-06-24 西安科技大学 一种钛酸铋钠基无铅压电陶瓷及其制备工艺
KR20160063647A (ko) * 2014-11-27 2016-06-07 울산대학교 산학협력단 무연 압전 세라믹 조성물 및 이의 제조방법
US20170373243A1 (en) * 2015-03-12 2017-12-28 Fujifilm Corporation Polymer composite piezoelectric body, electroacoustic transduction film, and electroacoustic transducer
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN112174664A (zh) * 2020-10-11 2021-01-05 桂林理工大学 一种新型高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN112919903A (zh) * 2021-03-09 2021-06-08 杭州电子科技大学 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN114478007A (zh) * 2022-02-17 2022-05-13 同济大学 一种具有良好工艺容忍性的高压电及高介电性能的铌酸钠基陶瓷材料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462875A (zh) * 2009-01-15 2009-06-24 西安科技大学 一种钛酸铋钠基无铅压电陶瓷及其制备工艺
KR20160063647A (ko) * 2014-11-27 2016-06-07 울산대학교 산학협력단 무연 압전 세라믹 조성물 및 이의 제조방법
US20170373243A1 (en) * 2015-03-12 2017-12-28 Fujifilm Corporation Polymer composite piezoelectric body, electroacoustic transduction film, and electroacoustic transducer
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN112174664A (zh) * 2020-10-11 2021-01-05 桂林理工大学 一种新型高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN112919903A (zh) * 2021-03-09 2021-06-08 杭州电子科技大学 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN114478007A (zh) * 2022-02-17 2022-05-13 同济大学 一种具有良好工艺容忍性的高压电及高介电性能的铌酸钠基陶瓷材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜金花;李雍;孙宁宁;赵烨;郝喜红;: "(1?x)K_(0.5)Na_(0.5)NbO_3-xBi(Mg_(0.5)Ti_(0.5))O_3无铅弛豫铁电陶瓷的介电、铁电和高储能行为", 物理学报, no. 12 *

Similar Documents

Publication Publication Date Title
CN106587997A (zh) 一种SrTiO3基无铅高储能密度陶瓷材料及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN107140974A (zh) 一种微波烧结的无铅高储能密度st‑nbt陶瓷材料及其制备方法
CN113735578B (zh) 高介电温度稳定兼具储能特性的钛酸铋钠基无铅铁电陶瓷材料及其制备方法
CN108975907A (zh) 通过变价离子掺杂提高钛酸钡介质材料抗还原性的方法
CN113248253A (zh) 一种巨介电常数钛酸锶介质陶瓷及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN106673643A (zh) 一种(Bi0.5Na0.5)1‑xSrxTiO3体系无铅弛豫铁电体的制备方法
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN107814569A (zh) 一种无铅反铁电体陶瓷及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN102976748A (zh) 高致密钛酸锶钡陶瓷及其制备方法
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN106699173A (zh) 一种反铁电高储能陶瓷材料及其制备方法
CN111807838B (zh) 一种Na0.25K0.25Bi2.5Nb2O9陶瓷的制备方法及其产品
CN113024250A (zh) 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN107857585A (zh) (Na0.5Bi0.5)(1‑x)BaxTi(1‑x)SnxO3陶瓷及其制备方法
CN115196960B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN116655379A (zh) 一种新型无铅铁电复合储能陶瓷材料
CN112299845B (zh) 一种高性能的陶瓷介质材料及其制备方法
CN114573338A (zh) 一种高储能密度介电陶瓷的制备方法及应用
CN110563459A (zh) 三/五价离子共掺二氧化钛基电介质陶瓷材料的制备方法
CN108794004B (zh) 一种镧钕掺杂镍酸盐陶瓷及其制备方法和应用
CN113185288A (zh) 一种新型铌酸钠基陶瓷材料及其制备方法
CN112851336A (zh) 一种钛酸铋钠铋层状压电陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination